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Figure 1: A large collection of shapes created by a procedural model developed with our data-guided method. The inset figure shows the
clean structure of the procedurally-created shapes, i.e., no self-intersections or defects are present in the shapes.

Abstract
Procedural models enable the generation of a large amount of diverse shapes by varying the parameters of the model. However,
writing a procedural model for replicating a collection of reference shapes is difficult, requiring much inspection of the original
and replicated shapes during the development of the model. In this paper, we introduce a data-guided method for aiding a
programmer in creating a procedural model to replicate a collection of reference shapes. The user starts by writing an initial
procedural model, and the system automatically predicts the model parameters for reference shapes, also grouping shapes
by how well they are approximated by the current procedural model. The user can then update the procedural model based
on the given feedback and iterate the process. Our system thus automates the tedious process of discovering the parameters
that replicate reference shapes, allowing the programmer to focus on designing the high-level rules that generate the shapes.
We demonstrate through qualitative examples and a user study that our method is able to speed up the development time for
creating procedural models of 2D and 3D man-made shapes.

CCS Concepts
• Computing methodologies → Computer graphics; Shape modeling;

1. Introduction

3D content is important in a variety of areas, including anima-
tion, games, simulation, and virtual worlds. However, creating 3D
shapes is a difficult task and one of the main barriers for the gen-

eration of large volumes of diverse 3D content. The manual ap-
proach where a person models a shape through an interface is
time-consuming and requires skilled artists. Recently, much inter-
est has been devoted to developing deep neural networks that auto-
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matically synthesize 3D objects. Networks that represent shapes
as implicit functions are able to learn models for collections of
shapes [PFS∗19, CTZ20], but the quality of the results is not opti-
mal; the created shapes are not clean, having unnecessary bumps
and dents, while lacking fine details. Recent methods based on
transformers or diffusion models provide results that are visually
smoother [HPG∗22, YLM∗22, ZVW∗22, HLHF22], but depend on
the availability of enough data resembling the target shapes.

In contrast, procedural generation is a powerful tool for auto-
matically synthesizing a large amount of clean shapes. Procedural
models have been proposed for a variety of shapes [STBB14], such
as plants, architecture, and man-made objects. A procedural model
is essentially a set of operations implemented as a computer pro-
gram that can generate shapes from a set of input parameters. By
varying the parameters, a large amount of shapes with a variety
in fine details can be generated (Figure 1). And, by writing new
rules, more diversity can be added to the structure of the shapes.
In addition, the output shapes can be programmed to be clean, i.e.,
devoid of self-intersections and artifacts, and having a complexity
that matches the amount of details present on the shapes. The gen-
erated shapes can also be further annotated with information like
semantic labels, and creating a procedural model does not require
the availability of a large training set of shapes. The main down-
side of procedural generation is that writing procedural models is
difficult. The programs have to be manually written by experienced
programmers, requiring significant time.

To reduce the time invested in the creation of procedural mod-
els, some work in the literature has investigated the automatic pre-
diction of model parameters or rules. For example, earlier meth-
ods for inverse procedural modeling infer the procedural rules
of a set of shapes based on geometric analysis, such as symme-
try [BWS10, SPK∗14]. Some approaches assume that a procedu-
ral model is given and predict the parameters of instances, e.g.,
from sketches [HKYM17]. Other approaches allow for shape edit-
ing based on discovered editing handles or directions [GGC∗20,
ZAESB20, WSS∗20]. Differentiable rendering has been applied
for model fitting [LLCL19], and networks have been proposed
for learning a space of programs that generate shapes [JBX∗20,
JCG∗21]. However, in most approaches, the user does not have di-
rect control over the complexity of the rules and representations
that are generated, possibly leading to highly-complex and redun-
dant models which are difficult to be further edited by a user.

In this paper, we introduce a data-guided method for facilitating
manual creation of procedural models. In our problem setting, a
programmer is given a large set of shapes and is tasked with writ-
ing a procedural model to replicate the shapes in the set. We fo-
cus on this problem setting since a reference input set of shapes
can be a good communication tool between artists (or directors)
and programmers when crafting the procedural model. Artists can
create reference shapes using arbitrary modeling tools, while di-
rectors can collect reference models from online repositories. The
programmers then generalize the reference shapes by writing code.
The reference shapes can also be scanned shapes that are not clean,
i.e., not directly usable in products such as movies and games. De-
veloping procedural models to replicate shapes is often a good way
to improve the quality of references shapes. In addition, the ref-

erence collections do not have to be as large as the typical sets
required for training neural networks for 3D synthesis.

We assume that the programmer is familiar with the procedural
modeling language and has enough experience to create new shape
generation rules. The input shapes may have been obtained from
on-line repositories and thus may be non-manifold triangle soups.
Hence, the goal is to create a set of rules that can recreate the given
shapes with proper triangle meshes while allowing for further gen-
eration of additional shapes by varying the model parameters.

Our method works in an iterative fashion (Figure 2). The user
starts by writing an initial set of rules, and the method automati-
cally predicts the rule parameters for the shapes in the given set,
also highlighting shapes that are not approximated well by the pro-
cedural model. The computation takes a few minutes to complete.
The user can then add additional rules based on the given feed-
back and iterate the process. Thus, our method is designed to best
combine the strengths of human and computer intelligence. Given a
set of shapes, humans can easily derive high-level rules to roughly
approximate an object. However, setting the parameters to exactly
replicate the shapes can be tedious and labor-intensive. Thus, for
this task, we employ a learning-based approach to automatically
predict shape parameters.

Our method can be seen as an active learning tool where the ex-
isting rules are applied to all the shapes that can be approximated
well, while only the shapes that are not replicated well are brought
to attention to the user for inspection. In contrast to the existing
methods, our method allows the user to maintain full control over
the creation of the procedural model, while saving development
time by automating the tedious steps of the process. In principle,
our method is not limited to a specific representation of shapes
or by the syntax used for developing the procedural model. Also,
our method does not necessarily apply to only one specific type of
shapes such as organic or architectural shapes, although our exper-
iments focus on the generation of man-made shapes. Our method
enables a generalized workflow that allows the user to decide the
details of the procedural model for particular use cases.

We demonstrate our method for the generation of man-made
shapes that can compose indoor environments. Our main results
include the development of procedural models for four classes of
3D shapes. We evaluate our system with a user study for the devel-
opment of a procedural model of 2D shapes, which demonstrates
the advantages of our method over manual creation, and perform
ablation studies to justify the components of our method.

2. Related work

Forward and inverse procedural modeling. Procedural model-
ing systems have been designed for generating a variety of ge-
ometry, such as organic shapes and man-made shapes [STBB14].
Different strategies can be used to guide the generation of shapes
with a procedural model, such as the use of geometric con-
straints [MM11, KMG∗21] or high-level specifications [TLL∗11].
On the other hand, only a few systems have been proposed for
facilitating the creation of the procedural model itself: Lipp et
al. [LWW08] introduce a system for visual editing of procedural
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Figure 2: Overview of our data-guided authoring of procedural models. (a) The system predicts procedural model parameters for reference
shapes, and estimates the compatibility between procedurally-generated shapes and reference shapes. (b) The user manually updates the
procedure to improve shape compatibility.

rules, while Patow [Pat12] proposes the use of a graph-based vi-
sual interface for writing model rules. However, these tools focus
mainly on visual representations of the rules, rather than on provid-
ing feedback during the creation of the model. On the other hand,
our method is not tied to the specific form used for the procedural
model. Instead, the user can decide the implementation details of
the procedural model.

Some recent works [HLHF22,ZVW∗22,LMW∗22] enable shape
generation and its counterpart problem shape inversion using la-
tent representations of shapes. However, this approach is applica-
ble in specific use cases such as shape editing, where the procedu-
ral model is hidden from the user. The latent space is difficult to
explain and since the user does not have direct access to the proce-
dural model, extending it by addition of new rules is not possible. In
comparison, our method does not map shapes onto a latent space.
Shapes are replicated by first predicting their parameters and then
invoking the procedure.

There has also been considerable work on inverse procedural
modeling. Some methods assume that a procedural model is given
and infer the parameters for generating a given shape. For exam-
ple, Stava et al. [SPK∗14] identify parameters that replicate organic
trees based on optimization with a tree similarity measure, Nishida
et al. [NGDA∗16] identify the grammar snippets that recreate a
user sketch of a building, and Huang et al. [HKYM17] infer the
parameters for generating a shape that resembles an input draw-
ing. Moreover, Wei et al. [WSS∗20] learn the parameters of a tem-
plate that approximates a given shape, Gaillard et al. [GKG∗22]
introduce a system that identifies the procedural parameters of a
shape based on user edits, while Sharma et al. [SGL∗22] predict
the sequence of constructive solid geometry statements that repli-
cate an input shape. There have also been methods for finding good
designs based on parametric models [KG01, TGY∗09, KSI14], or
exploring the space of shapes generated by an existing procedural
model [YAMK15]. However, these methods assume that a model
is already given and do not aid in the incremental design of the
procedural model as our method does.

Some recent studies focus on learning inverse procedural models
in the 2D domain. Hu et al. [HDR19] study graph-based procedural

generation of materials and proposed a framework that automati-
cally selects graphs from a predefined database to create procedu-
ral materials from images. Shi et al. [SLH∗20] propose a method
that optimizes the parameters used by graph nodes when generat-
ing materials from images. Hu et al. [HGH∗22] extends this idea by
proposing a technique that involves differentiable proxies for graph
nodes that are otherwise not differentiable. In contrast, our work-
flow can be applied to both 2D images and 3D shapes. We show
examples of the 2D case in a user study in Section 5 and present
results for the 3D case in Section 4.

Another group of work investigates prediction of parameters for
procedural models as a means to enable shape editing. Michel
et al. [MB21] propose to represent shapes as directed acyclic
graphs and edit shapes via amendments made to the graphs. Mathur
et al. [MPZ20] introduces an approach that uses a decision-tree
based optimization to edit parametric CAD models. Cascaval et
al. [CSQ∗22] put forth a CAD-based Domain Specific Language
which allows for bidirectional editing. Hertz et al. [HPG∗22] and
Yan et al. [YLM∗22] investigate shape editing and shape com-
pletion, respectively, using transformer-based approaches. The pri-
mary focus of these methods is to enable exploration of shapes via
edit operations, while the underlying procedural models are static.
In contrast, our method allows a user to dynamitcally create a pro-
cedural model.

Only a few methods seek to infer both the rules of a procedu-
ral model and parameters for generating a given shape. Some of
the earlier studies attempt solving this problem by formulating a
hierarchical grammar of rules that define a shape’s geometry. For
instance, Wu et al. [WYD∗14] utilize a Split Grammar to define
façade layouts procedurally and determine the least-cost grammar
for given façades in an iterative way. Demir et al. [DAB14] define
their grammar as various transformations applied to tree nodes of
basic components, in order to procedurally model cityscapes. In a
subsequent study [DAB16], they adapt a Split Grammar to repre-
sent 3D architectural models. Lipp et al. [LSL∗19] also use a Split
Grammar to create procedural approximations of buildings, and
add the ability of local edits. Alternatively, Bokeloh et al. [BWS10]
generate a procedural model of a shape based on an analysis of the
shape’s symmetry, Nishida et al. [NBA18] infer the rules for gener-
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Figure 3: Workflow and details of our procedural model authoring method, showing the method’s manual and automatic learning-based
steps.

ating buildings and their façades from a photograph, while Guérin
et al. [GDGP16] introduce a system for inverse procedural model-
ing of terrains based on a sparse representation. Using generative
models to learn inverse procedural models has been investigated
by researchers as well [TLS∗19, JWR22]. Despite the advances on
this front, inverse procedural modeling remains practical mainly
for more constrained domains such as buildings and terrains, and
is difficult to apply for shapes in general. Since our method does
not restrict the user to a particular domain of shapes or a specific
grammar, our method can be applied to a wider range of use cases,
although the user is responsible for creating the rules of the model.

Recently, Jones et al. [JBX∗20] introduced a method that learns
a generative model of programs. Although this generative model
can be used to automatically predict a program for an input shape,
to learn the model, the method requires a training set of existing
programs or shapes hierarchically organized into parts, while the
feature set of the programming language is also limited. In contrast,
our method addresses a different problem statement, where our goal
is to aid the user in freely designing a procedural model.

3. Data-guided authoring of procedural models

Problem setting. Given an input collection of reference shapes,
the goal of our method is to help an expert programmer in creating
a procedural model that replicates the given shapes. The procedural
model takes as input a vector that collects a set of multiple param-
eters, and outputs a shape corresponding to the parameters. The
procedural model can then be used to generate a large number of
shapes by varying the parameters. In this paper, we experiment with
procedural models that generate polygonal mesh models. However,
the basic framework is applicable to other shape representations.

The process for developing the procedural model can be decom-
posed into a workflow with the following three steps:

1. Define a vector of input parameters;
2. Define a procedure that generates shapes based on an input pa-

rameter vector;
3. Find the parameter values to replicate each reference shape.

While humans are proficient at the programming part of the
workflow, i.e., examining a set of shapes and writing a procedure
for reproducing the shapes, estimating specific parameters to repli-
cate given shapes is tedious and time consuming. The latter task be-
comes impractical when a large number of shapes need to be repli-
cated by means of trial and error. An additional challenge in this
scenario is to identify shapes from the large collection of reference
shapes that cannot be replicated by the current procedural model,
unless the model is amended to replicate these shapes as well. This
task is also labour-intensive for humans, but crucial for improv-
ing the procedural model. In this work, we introduce an iterative
method to make this process more efficient. The user is responsi-
ble for the first two steps (programming), while we delegate the
third step (parameter prediction) entirely to an automatic method.
Moreover, the method also gives feedback to the user to provide
assistance with the first step (programming).

Method overview. Figure 2 gives an overview of our procedural
model authoring method. The process starts with an initial proce-
dure/program crafted by the user. Next, the method predicts param-
eter values for all the shapes in the reference collection and pro-
cedurally generates shapes corresponding to the reference shapes.
Then, the method identifies which shapes from the collection can
be approximated well with the current procedural model and which
shapes not. For the sake of brevity, throughout the rest of the pa-
per, we will refer to the well-approximated shapes as compatible
shapes and the shapes that are not well-approximated as incompat-
ible shapes. If the input collection is large, inspecting the results
of the procedural model for the entire collection can be a laborious
and error prone task. Thus, we delegate this task to our method.

The method measures how closely each replicated shape resem-
bles the corresponding shape in the collection, presenting the in-
compatible shapes to the user. Specifically, the method groups sim-
ilar shapes together, so that the user mainly has to inspect a repre-
sentative of each group rather than all of the incompatible shapes.
By inspecting these shapes, the user can then adjust the procedural
model accordingly. Once the user made changes to the procedural
model to better approximate additional shapes, the entire process is
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repeated. The method continues iteratively until a replication accu-
racy is achieved for all the shapes in the collection.

Figure 3 illustrates the authoring method in more detail. We use
a learning-based method to predict the parameter vectors of un-
known shapes. Thus, to create the training data for this purpose,
the method obtains multiple random samples of the parameter vec-
tor and generates the corresponding sample shapes. This data com-
posed of pairs of shapes and their parameter vectors is used for
training a neural network that predicts the parameter vectors of
reference shapes. After training, the method predicts the parame-
ters of the unknown shapes, generates the corresponding procedural
shapes, and then compares the generated shapes with the reference
ones. If the replicated shapes are dissimilar to their references, the
automatic method flags them as incompatible and presents them to
the user, at which point the user can inspect these shapes and decide
how to improve the procedural model further.

A possible alternative approach for predicting parameter vectors
is to use search/optimization methods that do not involve learning.
However, these methods typically require multiple evaluations of
the function being optimized, which in our context is the invocation
of the procedural model. Thus, the execution time for predicting the
parameters of a shape can easily become prohibitive when using
complex procedural models. In contrast, our method requires the
generation of a training set with a pre-defined size and training of
a neural network, but inference times are fast once the network has
been trained. Thus, our method is faster than optimization-based
methods in situations where parameters need to be estimated for a
large number of reference shapes.

In the next sections, we provide details on the procedural model
created by the programmer and discuss the parameter prediction,
shape comparison, and feedback methods in more detail.

3.1. Procedural Model

We test our method with the task of writing procedural models of
2D and 3D man-made shapes such as tables and chairs. In both
cases, the model has a similar structure: the model encodes a set
of rules which define the grammar for one category of shapes. In
3D, the rules operate with primitives such as 3D boxes and surface
patches. To generate a shape, the rules start by recursively splitting
an initial 3D box to roughly represent the finer structure of the tar-
get shape. The finer boxes are then transformed into surface patches
to generate a triangle mesh for the shape. Deformation is applied to
surface patches when curved geometry is desired. In this process,
a set of tags are assigned to the boxes or patches, where the tags
dictate which rules should be applied to the primitives. In 2D, for
simplicity, the program draws primitive shapes such as boxes and
circles directly in their final position.

In the procedural models, the parameter vector is allowed to have
a mix of four different kinds of parameters. A parameter can be a
continuous scalar, e.g., to encode the height of a shelf. A parameter
can be an integer value, e.g., to indicate how many rows a shelf has.
A parameter can also be an item from a set, e.g., to indicate what
type of legs a shelf has, such as column-like legs or legs spanning
an entire side of the furniture. Lastly, a parameter can be a binary

value, e.g., to define whether a shelf has a back surface closing the
furniture or not.

Since the procedural model used in our experiments is fairly
complex and is not suitable for illustration within limited space, we
also present an experiment with a simpler procedural model in the
supplementary material, showing the code and results of the model
for each iteration of our method. We note that our method can be
used with these different procedural models without requiring any
modifications.

3.2. Parameter Prediction

We use a supervised learning approach to predict the parameters
of shapes in a collection. Thus, we require training data in the
form of shapes and their corresponding parameter values, which
can be automatically generated from the procedural model. Then,
we train a neural network to learn the parameter prediction. Note
that, since there can be a non-linear relationship between param-
eters and the output of a procedural model, there are no guaran-
tees that a learning-based method will capture all of these relation-
ships. However, with sufficient training data, learning-based meth-
ods have been shown to perform reasonably well for difficult re-
gression problems. We discuss the data generation and neural net-
work model as follows.

Training data generation. Once the user defined the entries of
the parameter vector and a procedure, we can generate a dataset
of shapes with their corresponding parameter vectors by randomly
sampling the parameter vector and invoking the procedure with the
sampled vectors. For instance, if the parameter vector has 3 ele-
ments and they are sampled into 4, 6 and 5 steps, then we take
random samples from 4 × 6 × 5 = 120 parameter vectors in to-
tal. For scalar elements in the parameter vector, we find that it
is best if the user defines the number of steps. For example, the
user can decide to sample a “bed width” parameter according to
semantically-meaningful values, e.g., twin, double, and queen size.
Integer elements are sampled into M −m+ 1 steps where M and
m are the maximum and minimum possible value of the element,
respectively. The binary elements are sampled into two steps. With
the procedural model used in this study, it takes approximately 90
ms on average to generate a shape.

Neural network architecture. The training dataset is a collection
of shapes with their corresponding parameter vectors. Thus, we can
pose the prediction of a parameter vector for a shape as a regression
task learned from the generated dataset, and use a neural network to
learn the regression function. The shapes created by the procedural
model are represented as triangle meshes, while the shapes from
the reference collection can be represented in any desired format.
Thus, in order to accept shapes with multiple formats as input, we
use a more general prediction approach based on rendered images.

Specifically, we render the triangle meshes into multiple images,
and then the images are processed through a convolutional neu-
ral network to predict parameter vectors. In our method, multiple
cameras render a given shape into a stack of images, where the
positions of the cameras are also learnable parameters optimized
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Figure 4: Model architecture for parameter prediction, where the camera positions are also optimized during training.

during training. Optimizing the camera positions allows us to se-
lect the viewpoints that potentially provide the best prediction ac-
curacy. For optimizing the camera positions during training, we
used the scheme proposed by Loper et al. and subsequent stud-
ies [LB14, LLCL19, RRN∗20].

Figure 4 shows the architecture of the prediction network. We
use VGG19 [SZ15] for extracting features from the data. Although
the VGG19 model has been superseded by other architectures in
certain domains, we find that in our setting it performs similarly
as other models such as ResNet and MobileNet. Thus, we opt to
use VGG19 due to its simplicity. Each parameter is predicted by
an independent MLP, as it leads to a simpler MLP architecture for
each parameter, as opposed to a single, more complex MLP that
predicts all the parameters. Our chosen approach allows for fewer
weights that need to be adjusted during training.

Loss function. We define the network’s loss function as:

L = ∑
s∈S

n

∑
i=1

Ls
i , (1)

where Ls
i represents the loss for the i-th parameter of shape s, and

n is the total number of parameters. Li is an L1 loss for real-valued
scalars, and a cross-entropy loss for integer and binary parameters.

Optimization. In order to minimize the loss, the Adam optimiza-
tion algorithm is used with a learning rate of 10−5 and a weight
decay of 10−8 for 50 epochs. Training is performed on an NVIDIA
RTX 3090 GPU. In this specific configuration of hardware, the
training process takes approximately 16 minutes to complete. In-
ference can then be completed in approximately 16 ms for each
shape.

3.3. Shape Comparison

Our method compares shapes for two reasons: first, to determine if
a given shape is compatible with the procedural model, and sec-
ondly, to collect shapes with similar characteristics into groups.
Since the number of shapes in the collection can be large, we show
to the user only representative shapes from different shape groups
to avoid visual clutter. For compatibility testing, we predict param-
eters for unseen shapes using the neural network described in Sec-
tion 3.2, replicate the shapes from the predicted parameters using
the procedure, and finally measure how similar the shapes are to
their corresponding references. For grouping incompatible shapes

that look similar, we apply a clustering method and show to the user
the shape from each cluster which is closest to the cluster centroid.

In both tasks, we measure shape similarity by calculating the dis-
tnace between the Light Field Descriptors (LFD) [CTSO03] com-
puted for two shapes according to the L1 metric. We choose this
descriptor instead of other metrics such as IoU or Chamfer dis-
tance since LFDs are more suited for quantifying visual similarity.
The automatic method identifies shapes to be incompatible with the
procedural model if the light field distances between the recreated
shapes and their references fall below a predetermined threshold
of 0.18. For grouping the incompatible shapes, we apply a hierar-
chical clustering algorithm where the maximum light field distance
is used as the linkage criterion. Specifically, we use the Agglom-
erative Clustering algorithm available with the Python scikit-learn
package [PVG∗11]. We determine the number of clusters dynami-
cally by normalizing all shape distances between [0,1] and using a
threshold of 0.4 for hierarchical merging of clusters.

4. Evaluations

In this section, we discuss the experiments and studies
we performed to evaluate our method and its components.
Our implementation can be found at https://github.com/
ishtiaquehossain-sys/SimpleProcShapes.

4.1. Datasets

We evaluate our method for the creation of procedural models on
four categories of 3D shapes: bed, chair, shelf, and table. Training
data for parameter prediction is generated by sampling parameter
vectors for each category and using the procedure to create shapes
based on the sampled vectors. The number of all possible samples
can be high when the parameter vector has many elements. Thus,
we limit the training data by randomly sampling 3,000 vectors. The
resulting dataset is composed of (shape, parameter vector) pairs.

We use a subset of the ShapeNet dataset [CFG∗15] to compose
our reference collections of 3D shapes. Note that the shapes from
ShapeNet are not procedurally created and do not have a parameter
vector associated with them. We included 200 examples for each of
chair and table, and 20 examples for each of bed and shelf.
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iteration 2iteration 1

Figure 5: Example of the output of the procedural model authoring system after parameter prediction and shape grouping in two iterations.
Compatible shapes are green and incompatible shapes are yellow. Each colored shape is the representative of a group, where the number
beneath denotes the quantity of additional shapes in the group.

4.2. Qualitative Evaluation of Authoring System

Figure 6 demonstrates the data-guided workflow for authoring pro-
cedural models for the four classes of 3D shapes. We start with a ba-
sic procedural model and improve it over two iterations. The rows
of shapes colored gray are reference shapes selected from differ-
ent classes of ShapeNet. The following three rows show the same
shapes represented by one of the four procedural models, starting
from the results of the initial procedural model to the final model.
The colors represent the level of visual similarity between the ref-
erence shapes and the shapes recreated by the procedural model,
where the colormap ranges from red (most dissimilar) to green
(most similar). It can be seen that the number of compatible shapes
increases with each iteration. At the end of the iterative authoring,
we obtain procedural models with 25, 35, 29, and 15 rules, for bed,
chair, shelf, and table classes, respectively.

Figure 5 depicts two iterations of the the iterative authoring pro-
cess in more detail for the table class. The reference shapes from
ShapeNet are colored gray and the recreated compatible and incom-
patible shapes are colored green and yellow, respectively. Figure 5
also shows how the incompatible shapes are collected into groups
of shapes that look similar. A representative shape from each group
is shown, along with the number of additional shapes in each group.

We see that the number of compatible shapes increases in one it-
eration from 45 to 74. Thus, the interface groups all the compatible
shapes into the cluster represented by the green shape, and shows
new clusters of incompatible shapes. Specifically, in the first iter-
ation, some of the groups show tables with round tops which the
initial procedural model does not support. By adjusting the proce-
dural model to support round tops, these shapes can be reproduced
and the first iteration is complete. We see that improving the pro-

cedural model resulted in an increase of shapes that are compatible
with the procedural model. Moreover, at the end of the first itera-
tion, there are still groups of tables that have rounded bottoms that
are not currently supported by the procedural model. Addition of
this detail to the procedural model allows to reproduce these shapes
and completes the second iteration.

We present a more complete example using a simpler procedural
model and involving more iterations in the supplementary material.

4.3. Comparison with ShapeAssembly

Figure 7 shows a comparison of our method to the ShapeAssembly
method of Jones et al. [JBX∗20]. ShapeAssembly is able to auto-
matically extract a set of rules that generate a given shape, after be-
ing trained with a related set of data. However, shape primitives are
restricted to cuboids. In contrast, our semi-automatic method does
not restrict the user in terms of syntax and semantics of the proce-
dure. Thus, the user can also use more complex programming state-
ments, and encode any type of shape primitive, including curved
geometry. For the comparison, we predicted the parameters of se-
lected ShapeNet objects and recreated them with our user-defined
procedure. At the same time, using the ShapeAssembly point-cloud
encoder, we converted the same shapes into latent vectors and then
generated ShapeAssembly programs from the latent vectors, ob-
taining shapes from the programs using their pre-trained model.

It is worth mentioning here that the objective of this comparison
is not to highlight limitations of ShapeAssembly in terms of visual
details reproduced. Rather, the intention here is to delineate how
the problems addressed by ShapeAssembly and our method are
fundamentally different. Given a procedural model, ShapeAssem-
bly can create a procedural replication of unseen shapes. However,
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Figure 6: Improvement of the shapes generated by the procedural model after each iteration, where the colormap ranging from green to red
denotes the level of similarity of the shapes to the reference shapes (rows of shapes in gray).

it neither takes into account that there can be shapes that are not
replicated well, nor does it provide feedback for extending the pro-
cedural model, which itself is an essential and a time-consuming
part of developing a procedural model. Our method aims to solve
this problem by providing the user with assistance that shortens the
time for refining the model.

4.4. Parameter Prediction Model

We evaluate how well the neural network presented in Section 3.2
predicts the parameters for given shapes. For training data, we take
the four 3D datasets of shapes discussed in Section 4.1 and the
parameters given by the complete procedural model developed in
Section 4.2. The training data is split into train, validation, and test
sets at a ratio of 0.8 : 0.1 : 0.1. For the normalized scalar elements
in the parameter vector, we report the average of mean absolute er-

rors (MAE) for all parameters, and for integer and binary elements,
we report the average F1 scores, since a measurement of fractional
improvements over the parameter values is not meaningful in the
case of integers or booleans. Table 1 shows the prediction results
for different categories of shapes. We see that the model is able to
predict the parameter vectors reasonably well, with errors for scalar
parameters of 0.1 or lower.

We also investigate how the number of cameras used by the net-
work influences the prediction performance. In our experiments,
increasing the number of cameras generally results in better perfor-
mance. However, increasing the number of cameras also introduces
more parameters to optimize and results in longer training time. In
such a situation, a trade-off can be made by finding the point of
diminishing returns. For instance, we observed that in our specific
setting involving 3D shapes, using more than three cameras does
not result in any significant improvement in performance. In prin-
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Table 1: Performance of the parameter prediction model. (a) Aver-
age parameter prediction errors (MAE) for normalized scalar pa-
rameters and average prediction scores (F1) for integer and binary
parameters, for each category of shapes. The number of parameters
predicted for each class/type are reported next to each prediction
score. Lower MAE and higher F1 are better. (b) Changes in pre-
diction scores when camera positions are optimized as opposed to
using fixed camera positions. Improvements are shown in bold.

Bed Chair Shelf Table

(a)
Scalar (MAE↓) 0.07(6) 0.05(4) 0.08(4) 0.10(6)
Integer (F1↑) 1.00(1) 1.00(4) 0.91(1) 1.00(2)
Binary(F1↑) - - 0.89(3) 0.70(1)

(b)
Scalar (MAE↓) +0.04 +0.01 -0.01 -0.09
Integer (F1↑) 0 +0.01 +0.02 +0.03
Binary(F1↑) - - +0.01 +0.21
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Figure 7: Comparison of ShapeNet objects (top) recreated with
ShapeAssembly (middle) and our method (bottom). Our method in-
volves manual editing of the procedural model, but provides feed-
back on how to improve the model, and allows for more flexibility
in the program syntax, such as adding curved parts.

ciple, the number of cameras can be treated as a hyper-parameter
of the prediction model that can be tuned for optimizing the results.

Table 1 also shows the results of an ablation study where we
investigated the effectiveness of optimizing the camera positions
described in Section 3.2. We trained the model on the same dataset
twice; first with the cameras at fixed positions and then with op-
timization of the camera positions. We kept all other settings the
same. When the camera positions were not optimized, we used
three camera positions randomly sampled around a sphere. We then
tested the two models on the same test set and compared the results.
Table 1 shows the changes in parameter prediction scores when the
camera position is optimized. For some shapes (chair, shelf, and
table), optimizing the camera positions results in better prediction.
For others (bed), a fixed camera position is more suitable. Thus,
the effectiveness of the camera optimization depends on the type of
shape. From an application standpoint, both options can be made
available to the user who ultimately chooses the one that performs
the best in specific scenarios.

Figure 8: Examples of compatible (green) and incompatible (red)
shapes predicted by our method for the reference shapes (in gray).

Figure 9: Examples of table projections that users were asked to
recreate procedurally in the user study.

4.5. Visual Similarity of Replicated ShapeNet Objects

To give examples of how the parameter prediction scores translate
to visual results, Figure 8 shows some examples of ShapeNet ob-
jects and their replications obtained with the procedural model. We
show examples where the replicated shapes closely resemble the
reference shapes (colored in green), as well as shapes that are not
replicated very well (colored in red). The reference shapes are col-
ored gray. The reason for some of the shapes not being approxi-
mated well is that the procedural model still needs additional rules
to be able to fully replicate these shapes.

5. User Study

We performed a user study where we tasked users with creating
a procedural model for a reference collection of shapes. To keep
the development time within reasonable bounds, we chose a sim-
plified task for the user study. We asked users to create a proce-
dural model for a collection of 2D silhouettes of tables, illustrated
in Figure 9. The shapes are derived from 2D front projections of
ShapeNet objects. The programming environment is based on the
Python programming language and allows to write instructions that
create shapes based on a combination of geometric primitives such
as lines, polygons, boxes, circles, and arcs, which are sufficient for
replicating the shapes in the collection. The user is also able to
employ programming constructs such as loops, conditionals, etc.
The user starts with a white background and writes a program that
draws multiple geometric primitives of black color over the back-
ground. The placement and size of the primitives can be controlled
by parameters that are input to the program. The objective of the
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user study task is for the user to write a complete program that is
able to replicate the shapes from a reference collection. Figure 10
shows the graphical user interface that we designed for the user
study. The pane on the right side shows a summary of the original
shapes and replicated shapes. The user can click on any shape from
the summary pane and view the enlarged pair of shapes for side-
by-side comparison. The shapes colored in green are shapes that
are replicated well. The bench shapes are provided as examples the
users can refer to and the table shapes are for the users to complete.
The users from the baseline group have the same interface, except
it does not have any automatic assistance.

We compared different aspects of the creation process in two set-
tings: when using our method and a baseline method. When using
the baseline method, users develop the procedural model and are
also required to determine the parameter values for each shape in
the collection. The users also need to visually inspect if the gen-
erated shapes replicate the shapes in the collection. On the other
hand, our method provides assistance for parameter selection and
visual inspection. The parameter prediction involves the training of
the neural network described in Section 3.2. For the simpler 2D set-
ting, the training time is substantially lower than the 3D case. In the
hardware configuration used for the experiment, the training time
is approximately 5 minutes.

To conduct the user study, we allocate the same amount of time
for users in both settings. We evaluate each resulting procedural
model by counting the number of shapes within the reference 2D
shape collection that are accurately replicated. A shape is consid-
ered to be accurately replicated when the visual similarity between
the input shape and its procedurally recreated counterpart exceeds a
predefined threshold. For measuring visual similarity between two
shapes in 2D, we use Visual Information Fidelity [SB06] and a
threshold of 0.05, which captures reasonably-similar shapes. In ad-
dition to the number of well-replicated shapes, we also record the
average similarity between the reference shapes and the procedu-
rally recreated shapes using the shape IoU metric.

After obtaining institutional ethics approval, we recruited a
group of 10 participants (8 upper-year undergraduate students and
2 graduate students). Other than the graduate students, the partici-
pants did not have prior experience with procedural modeling. The
participants were divided into two groups (between-subjects study),
one to test our method (5 users) and one for the baseline (5 users).
We divided the graduate students into two groups of participants to
avoid bias. Each participant had 2 hours to complete the task which
did not include the time to brief the participants.

When analyzing the results, we find that the users of our method
were able to replicate an average of 34 out of 50 shapes within the
given time. Almost all of them were able to complete at least two it-
erations, improving their procedural model in an incremental man-
ner. In comparison, the users of the baseline method replicated only
12 shapes on average. Meanwhile, both groups achieved a compa-
rable similarity (measured by IoU) of 92% between the replicated
shapes and the reference shapes.

We observed that the variance in the number of replicated shapes
for the baseline group is 141.8, while the variance is 26.2 for the
group that used our method. Most of the users did not have prior ex-
perience with procedural modeling, and different users implement

the procedural models at a different pace, which is reflected by the
high variance. We also investigated the difference in the average
number of replicated shapes between the two groups and performed
a T-test. The resulting P-value is 0.01, indicating statistical signif-
icance and implying that our method does allow users to replicate
more shapes on average in the time given.

To further verify the effectiveness of our method, we applied our
parameter prediction model to the procedures written by the users
of the baseline setting, so that the parameters of shapes are set au-
tomatically. In this manner, for the same procedures, our prediction
model is able to successfully replicate 27 shapes on average. This
is a significant increase over the number of shapes replicated man-
ually and demonstrates how our method can facilitate development
of procedural models.

We also asked the participants to complete questionnaires at the
end of the study. Participants commented that our method would
benefit from the addition of measurement tools to the user-interface
and quicker feedback.

6. Conclusions

We introduced a data-guided method for authoring a procedural
model in order to replicate a collection of shapes. Starting from an
initial procedural model, our method enables an iterative workflow
where a programmer can refine the model according to feedback
provided by our method on how well the shapes in the collection
are replicated. We showed with a user study and qualitative exam-
ples that the method speeds up the work of authoring a procedural
model, and makes it easier to verify how well the shapes in the
collection are replicated by the model.

Limitations and future work. Our method has limitations stem-
ming from the components that compose the method. First, the
quality of the parameter prediction can be suboptimal when deal-
ing with complex procedural models that require many parameters,
since the limited sample of training data may not capture suffi-
cient parameter variations. The prediction in such scenarios could
be improved by increasing the training data sample, which will in-
cur in an increase of the training time, or developing an adaptive
sampling that selects the representatives of the parameter space
capturing the most variation. In addition, we use Light Field De-
scriptors for shape comparison, which we found to be sufficient
in our evaluation. Nevertheless, other shape comparison methods
such as ones based on metric learning could be used. Finally, our
method currently only provides feedback on which shapes are not
replicated well by the model. An interesting direction for future
work is to develop methods that provide more detailed feedback,
such as providing localized feedback on shape parts not approx-
imated well, or automatically suggesting procedural rules (code
snippets [NGDA∗16]) that can then be refined by the programmer.
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1. Additional result of our method on 3D shapes

Since the procedural model used in our paper for the main results
on 3D shapes is too complex for illustration purposes, in this sec-
tion, we show an example of a complete result of our method ob-
tained with a simplified procedural model. The procedural model
used here combines primitive shapes such as cubes and cylinders
to create tables. The primitive shapes are created with the Blender
API for Python. Figure 1 shows the cube and the cylinder func-
tions, which are parameterized by the location and the scale of the
corresponding primitive.

For the set of reference shapes, we selected 20 shapes from the
table category in ShapeNet. Figure 2 shows the selected shapes.
The figure also shows how the clustering step of our method col-
lects similar-looking shapes into groups for the user to inspect.
Each group is assigned a different color. In this example, after
looking at the groups in Figure 2, the user decided to write an ini-
tial procedural model that creates a rectangular table-top and four
straight legs, which can be created using cubes at various locations
and scales. Figure 3 shows the initial procedural model.

Figure 4 shows the result of one iteration of our method af-
ter using the initial procedural model written by the user. We see
how our method identifies the compatible shapes, i.e. the refer-
ence shapes that can be replicated well using the initial procedural
model, as well as the incompatible shapes. Good replications are
colored green and other approximations are colored yellow. Again,
similar shapes are grouped together and looking at these groups,
the user decided to add an additional parameter and code to cre-
ate rectangular or rounded table-tops. Figure 5 shows the second
version of the procedural model after this change.

Figure 6 shows the second iteration of our method. While in-
specting the groups of incompatible shapes, the user noticed that
some tables have a support structure among the four legs and de-
cided to introduce another parameter and code to specify the type of
leg to be constructed. Figure 7 shows the revised procedural model
that takes this change into account.

The next iteration of our method is shown in Figure 8. Among
the groups of incompatible shapes, there are tables that have only
one leg with a rounded base. The user then included this type of

leg into the model and revised the procedural model accordingly.
Figure 9 shows the fourth version of the procedural model.

Figure 10 shows the next iteration, where the only remaining
incompatible shapes have another type of leg. Then, the user mod-
ifies the procedural model to accommodate the additional leg type.
Figure 11 shows the fifth version of the procedural model.

Figure 12 shows the final iteration of our method, where all the
reference shapes are replicated well. At this point, the procedural
model has grown in both complexity and its ability to generate vari-
ations of tables similar to the reference shapes.
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1 import bpy
2

3

4 def cube(location=(0.0, 0.0, 0.0), scale=(1.0, 1.0, 1.0)):
5 bpy.ops.mesh.primitive_cube_add(size=1.0, location=location, scale=scale)
6

7

8 def cylinder(location=(0.0, 0.0, 0.0), scale=(1.0, 1.0, 1.0)):
9 bpy.ops.mesh.primitive_cylinder_add(radius=0.5, depth=1.0, location=location, scale=scale)

Figure 1: Methods for creating cube and cylinder primitives.

Figure 2: Initial grouping performed automatically by our method on selected shapes from ShapeNet.
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1 def create_table(height, breadth, top_thickness, leg_thickness):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 # create table-top
4 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
5 cube(location=top_loc, scale=top_scl)
6 leg_scl = (l_th, l_th, h)
7 # create four legs
8 x = (1.0 - l_th) / 2.0
9 y = (b - l_th) / 2.0

10 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
11 for leg_loc in leg_locs:
12 cube(location=leg_loc, scale=leg_scl)

Figure 3: Initial procedural model.

Figure 4: Replication result using the initial version of the procedural model.
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1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt = roundtop
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 # create four legs
12 a = 1.41 if rt else 1.0
13 x = (1.0 - a * l_th) / (2 * a)
14 y = (b - a * l_th) / (2 * a)
15 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
16 for leg_loc in leg_locs:
17 cube(location=leg_loc, scale=leg_scl)

Figure 5: Second version of the procedural model.

Figure 6: Replication result using the second version of the procedural model.
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1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop, leg_type):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt, l_tp = roundtop, leg_type
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 # create four legs
12 a = 1.41 if rt else 1.0
13 x = (1.0 - a * l_th) / (2 * a)
14 y = (b - a * l_th) / (2 * a)
15 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
16 for leg_loc in leg_locs:
17 cube(location=leg_loc, scale=leg_scl)
18 # create support between legs
19 if l_tp == ’support’:
20 if rt:
21 leg_sprt_scl = (l_th, b / a, l_th)
22 else:
23 leg_sprt_scl = (l_th, b, l_th)
24 cube(location=(x, 0.0, -h / 3.0), scale=leg_sprt_scl)
25 cube(location=(-x, 0.0, -h / 3.0), scale=leg_sprt_scl)
26 cube(location=(0.0, 0.0, -h / 3.0), scale=((1.0 - a * l_th) / a, l_th, l_th))

Figure 7: Third version of the procedural model.

Figure 8: Replication result using the third version of the procedural model.
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1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop, leg_type):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt, l_tp = roundtop, leg_type
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 if l_tp == ’round’:
12 # create rounded leg
13 cylinder(location=(0.0, 0.0, 0.0), scale=leg_scl)
14 cylinder(location=(0.0, 0.0, -(19.0 * h) / 40.0), scale=(0.5, 0.5, h / 20.0))
15 else:
16 # create four legs
17 a = 1.41 if rt else 1.0
18 x = (1.0 - a * l_th) / (2 * a)
19 y = (b - a * l_th) / (2 * a)
20 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
21 for leg_loc in leg_locs:
22 cube(location=leg_loc, scale=leg_scl)
23 # create support between legs
24 if l_tp == ’support’:
25 if rt:
26 leg_sprt_scl = (l_th, b / a, l_th)
27 else:
28 leg_sprt_scl = (l_th, b, l_th)
29 cube(location=(x, 0.0, -h / 3.0), scale=leg_sprt_scl)
30 cube(location=(-x, 0.0, -h / 3.0), scale=leg_sprt_scl)
31 cube(location=(0.0, 0.0, -h / 3.0), scale=((1.0 - a * l_th) / a, l_th, l_th))

Figure 9: Fourth version of the procedural model.

Figure 10: Replication result using the fourth version of the procedural model.
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1 def create_table(height, breadth, top_thickness, leg_thickness, roundtop, leg_type):
2 h, b, t_th, l_th = height, breadth, height * top_thickness, breadth * leg_thickness
3 rt, l_tp = roundtop, leg_type
4 # create table-top
5 top_loc, top_scl = (0.0, 0.0, (h - t_th) / 2.0), (1.0, b, t_th)
6 if rt:
7 cylinder(location=top_loc, scale=top_scl)
8 else:
9 cube(location=top_loc, scale=top_scl)

10 leg_scl = (l_th, l_th, h)
11 if l_tp == ’round’:
12 # create rounded leg
13 cylinder(location=(0.0, 0.0, 0.0), scale=leg_scl)
14 cylinder(location=(0.0, 0.0, -(19.0 * h) / 40.0), scale=(0.5, 0.5, h / 20.0))
15 elif l_tp == ’split’:
16 # create split legs
17 for x in [0.5 - l_th / 2.0, l_th / 2.0 - 0.5]:
18 cube(location=(x, 0.0, 0.0), scale=(l_th, l_th, h))
19 cube(location=(x, 0.0, (l_th - h) / 2.0), scale=(l_th, b, l_th))
20 else:
21 # create four legs
22 a = 1.41 if rt else 1.0
23 x = (1.0 - a * l_th) / (2 * a)
24 y = (b - a * l_th) / (2 * a)
25 leg_locs = [(x, y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (-x, -y, 0.0)]
26 for leg_loc in leg_locs:
27 cube(location=leg_loc, scale=leg_scl)
28 # create support between legs
29 if l_tp == ’support’:
30 if rt:
31 leg_sprt_scl = (l_th, b / a, l_th)
32 else:
33 leg_sprt_scl = (l_th, b, l_th)
34 cube(location=(x, 0.0, -h / 3.0), scale=leg_sprt_scl)
35 cube(location=(-x, 0.0, -h / 3.0), scale=leg_sprt_scl)
36 cube(location=(0.0, 0.0, -h / 3.0), scale=((1.0 - a * l_th) / a, l_th, l_th))

Figure 11: Fifth version of the procedural model.

Figure 12: Replication result using the fifth version of the procedural model.
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