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We introduce a learning-based method to reconstruct objects acquired in a

casual handheld scanning setting with a depth camera. Our method is based

on two core components. First, a deep network that provides a semantic

segmentation and labeling of the frames of an input RGBD sequence. Second,

an alignment and reconstruction method that employs the semantic labeling

to reconstruct the acquired object from the frames. We demonstrate that the

use of a semantic labeling improves the reconstructions of the objects, when

compared to methods that use only the depth information of the frames.

Moreover, since training a deep network requires a large amount of labeled

data, a key contribution of our work is an active self-learning framework

to simplify the creation of the training data. Speciically, we iteratively

predict the labeling of frames with the neural network, reconstruct the

object from the labeled frames, and evaluate the conidence of the labeling,

to incrementally train the neural network while requiring only a small

amount of user-provided annotations. We show that this method enables

the creation of data for training a neural network with high accuracy, while

requiring only little manual efort.
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1 INTRODUCTION

In recent years, we have witnessed a huge advance in the devel-

opment of scanning technologies. Yet, the acquisition and recon-

struction of three-dimensional content remains a challenging task,

especially for creating a massive amount of high-quality models. A
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Fig. 1. A semantic reconstruction of an object obtained with our method

(top), using a semantic labeling of frames (one example shown in the botom-

right) computed for RGB and depth input images (botom-let and middle).

simple approach to scan a 3D object is to work in an uncalibrated

setting, where the scanner is hand-held and casually rotated around

the object. However, it is often diicult to obtain an accurate recon-

struction in such a casual setting, since the scans are not accurately

tracked during the acquisition, and noise in the data may easily lead

to incorrect registration of the scans.

Due to these challenges, the advances in scanning technologies

have been accompanied by research to improve the quality of scan

reconstruction. Methods focused on simultaneous localization and

mapping (SLAM) typically use tracking methods to perform the

alignment of scanned sequences [Fuentes-Pacheco et al. 2015; Thrun

2002]. Thus, these methods rely mainly on the geometric similarity

and temporal coherence between subsequent frames, which may

not be reliable in the casual setting described above. A few methods

combine segmentation and registration to improve the alignment

based on semantic information. However, these methods are either

trained on a sparse set of examples with class-speciic priors [Häne

et al. 2016], or assume that the registration is suiciently reliable

with objects being abstracted as bounding boxes [Xiao et al. 2013],

which can be unreliable for objects with detailed geometry. More-

over, all of these methods are designed to reconstruct 3D scenes

based on object labels instead of a 3D object based on part labels.
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In this paper, we present a learning-based method to reconstruct

a 3D object, which consists of segmenting, registering and recon-

structing RGBD frame sequences acquired in a casual handheld

scanning setting. The premise of our work is that a semantic seg-

mentation of RGBD frames leads to a signiicant improvement of

their registration and, as a consequence, improves the reconstruc-

tion of the object. Shapes can have many local patches with similar

geometry, which may lead to ambiguities in the matching. Thus,

the advantage of a semantic labeling is to break the ambiguity in

such cases, indicating that similar geometry should only be matched

if belonging to regions with the same semantics. With the use of

a semantic labeling, the method is more accurate than traditional

reconstruction techniques, and yields as a byproduct a segmentation

of the reconstructed object; see Figure 1 for an example result. Our

method is based on two core components: (i) A deep network that

labels the pixels of each frame into diferent semantic parts, and

(ii) A reconstruction method that employs the semantic labeling to

register the RGBD frames and reconstruct a 3D object.

Training a deep network for segmentation requires a large amount

of training data in the form of multiple labeled scanning sequences.

Thus, a key contribution of our work is an active self-learning frame-

work that simpliies the creation of training data, relieving users

from considerable manual work (Figure 2). The active learning is

an iterative process where the frames that should be labeled by the

users are strategically selected to minimize the amount of required

annotations. Speciically, the user annotates a few frames of multiple

sequences, which are used to train a deep network that predicts

a semantic segmentation and labeling of the remaining frames of

all the sequences. The process is then repeated by asking users

to annotate frames from sequences labeled with low conidence,

and retraining the network, until all the sequences are labeled with

high conidence or the method reached the maximum number of

iterations. To estimate the labeling conidence of a sequence, we

reconstruct 3Dmodels of the objects acquired in each sequence from

all the labeled frames, while fusing the frame labels into consensus

segmentations for each model. Then, we compute the agreement

between the labels of each frame and the segmentations of the 3D

models, which provides a measure of the labeling consistency of

each frame. Sequences are deemed to be of high-conidence if most

of their frames have high consistency.

Since requesting user input is the laborious part of the active

learning, which we seek to minimize, we introduce a self-learning

approach that exploits the use high-conidence sequences as much

as possible. Speciically, after retraining the network with user an-

notations, several sequences are labeled with high conidence based

on the reconstruction consensus. Thus, we automatically sample

frames from these sequences to serve as new training data to re-

train the network. This self-learning cycle is repeated until no new

high-conidence sequences are generated. Then, the active learning

continues and the user is asked to annotate a new batch of frames

from low-conidence sequences. The result of the active learning

is a trained network that is able to label frames accurately without

any user assistance.

Moreover, to obtain a reconstructed model, another key contribu-

tion of our work is a rigid registration method based on the semantic

labeling of the frames. We iteratively build a 3D model by register-

ing frames to the model, according to the correspondence between

regions of the frames and the model with the same label. Note that

this semantic registration is a crucial component for the estimation

of the conidence of the labeling used in the active self-learning.

Although there has been recent work [Häne et al. 2016; McCor-

mac et al. 2017; Salas-Moreno et al. 2013; Xiao et al. 2013] and

datasets [Dai et al. 2017] aimed at semantically labeling indoor

scenes at the object level, our work is the irst to create a dense set

of labeled training sequences in the context of single object recon-

struction with part labels. The training data is obtained with an

active learning framework that lowers the amount of manual work

needed to create such dense sequences of data. With the use of our

trained deep network, we are able to aggregate information coming

from multiple training sequences to label new sets of frames and

reconstruct labeled 3D objects with higher accuracy.

An important message of our work is that semantic segmentation

improves the reconstruction of scanned sequences. We demonstrate

this point by evaluating our method in terms of both segmentation

and reconstruction quality. We show segmentation results of the

RGBD scans and reconstructed models using our method. Moreover,

we compare the results obtained with our semantic reconstruction

method to results obtained with a standard method that considers

mainly the depth information of the frames.

2 RELATED WORK

Weorganize the discussion of relatedworks into three general topics:

reconstruction, segmentation, and their combination.

2.1 Object and scene reconstruction

The traditional pipeline for object reconstruction from multiple

scanned views involves the alignment of the scans followed by the

reconstruction of a surface, e.g., via itting an implicit function.

The alignment step can be performed by matching feature points

according to descriptors, or by performing an alignment with local

techniques such as iterative closest points (ICP) or more global

methods such as transformation sampling and voting [van Kaick

et al. 2011]. These techniques require a suicient amount of overlap

and similarity between the scans, which can be achieved usually

only in a controlled setting.

One group of recent approaches for object reconstruction create

models by reusing and itting parts from existing shapes. Xu et

al. [2011] it a 3D model to an image by taking parts from a dataset

of shapes. Shen et al. [2012] it parts from a dataset to reconstruct

an object given in a single RGBD image, where the dataset allows

to handle scans with considerable missing data. In addition, Huang

et al. [2015] reconstruct objects from single views with an analysis

that jointly considers entire datasets of images and 3D shapes. Xu

et al. [2016] and Lin et al. [2018] focus on recovering functional

mechanical assemblies. These works assume the availability of parts

that are similar to their projections in the 2D frames. Thus, the

idelity of the 3D reconstruction is bounded by the density of the

shape database. In practice, the reconstructed 3D models only ap-

proximate the original objects.
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Moreover, another group of methods aim to reconstruct entire

scenes from multiple scans. In the ield of robotic mapping, simul-

taneous localization and mapping (SLAM) is one of the main ap-

proaches used to guide a robot through an environment. SLAM

techniques typically involve the acquisition and reconstruction of

the 3D environment sensed by the autonomous agent [Fuentes-

Pacheco et al. 2015; Thrun 2002]. The reconstruction is obtained by

aligning multiple scanned views and fusing them into a single model

of the environment. Recent work derives the views from a video

sequence of RGBD scans [Chen et al. 2015; Morell-Gimenez et al.

2014]. Notable examples of methods working on this type of input

reconstruct the scene with live tracking of depth and normals [New-

combe et al. 2011], alignment of depth and color maps [Kähler et al.

2015; Nießner et al. 2013; Whelan et al. 2015], or alignment of prim-

itives larger than points, such as scene fragments [Choi et al. 2015].

A few works also leverage tracking for scanning of objects with

deformable or inaccessible parts [Dou et al. 2015; Yan et al. 2014].

Note that these works use mainly geometry tracking and align-

ment to guide the reconstruction. Additional structural information

or semantics about the input are not extracted. The goal of our work

is to use a semantic segmentation of an object and labeling of its

parts to provide additional cues for reconstruction.

2.2 Object and scene segmentation

Our method generates a semantic segmentation of the reconstructed

shape as a byproduct of the analysis. Numerous methods have been

developed to semantically segment 3D shapes [Shamir 2008]. In re-

cent years, methods based on learning have also been introduced for

segmenting shapes, including supervised [Guo et al. 2015; Kaloger-

akis et al. 2010], unsupervised [Shu et al. 2016; Sidi et al. 2011], and

semi-supervised approaches [Wang et al. 2012; Yi et al. 2016].

The oline training stage of our approach is based on an ac-

tive learning framework. However, unlike in the works of Wang

et al. [2012] and Yi et al. [2016], our input is not a complete re-

constructed model, but a sequence of RGBD scans. Recently, deep

learning has been used to segment 3D models, assigning semantic

labels to mesh triangles [Guo et al. 2015; Shu et al. 2016]. These

methods also assume clean input 3D models, while we use a deep

network to label portions of RGBD frames and then reconstruct the

models from the frame sequences.

Our method also shares similarities with the work of Wang et

al. [2012] and Fish et al. [2016] in using a projective analysis for

3D segmentation. Wang et al. transfer labels from available 2D

images by selecting and back-projecting the inferred labels onto a

3D shape. Fish et al. propagate 3D semantic labels via corresponding

2D projections and integrate the labels in the target 3D model. In

our work, the integration of 2D segmentations into a 3D model is

performed in an uncalibrated setting, where the views appear in a

sequence of RGBD frames.

Furthermore, there is a large body of work addressing the segmen-

tation of video sequences. Recent methods in this area perform the

segmentation of entire scenes acquired with RGBD videos with user

assistance. For example, Wong et al. [2015] introduce an interactive

system to facilitate the annotation of raw RGBD images. The system

predicts segmentations and labels of objects, and the user mainly

needs to reine them with scribbles and select among the hypothe-

ses suggested for each object. Diferently from our approach, these

methods focus on providing automatic or semi-automatic solutions,

and do not perform reconstruction combined with segmentation.

2.3 Reconstruction + segmentation

A more specialized class of methods combine both segmentation

and reconstruction into a single approach, especially to enhance

the reconstruction step with semantic information given by the

segmentation. A common approach is to irst learn object classiiers

from isolated objects or manually-labeled scans, and then apply the

classiiers to a scan to segment and label the objects that appear in

the scene. Kim et al. [2012] irst carefully scan objects of interest

that are expected to appear in the acquired scenes, and then learn

structural models to detect these objects. Similarly, Salas-Moreno et

al. [2013] use a database of carefully scanned objects for adding se-

mantics to the scanned scenes. Nan et al. [2012] and Shao et al. [2012]

learn classiiers from examples of individual objects, and then apply

the classiiers to label input scans. Both approaches populate the

scans with models from a database to create a clean output, since

the sparse number of scans used by these methods does not allow

to fully reconstruct the scanned geometry. Stückler et al. [2015]

segment RGBD sequences with random forest classiiers, and then

combine the segmented frames into a 3D semantic map with camera

pose localization and label fusion. The segmentation and registra-

tion are performed independently. McCormac et al. [2017] use a

convolutional neural network trained on segmented images to label

scanned frames. Kundu et al. [2014] combine semantic cues with a

CRF to infer a volumetric semantic map of a scene, while Rünz and

Agapito [2017] employ both motion and semantic cues to segment

RGBD sequences at the scene-level.

The methods more closely related to our work enable more inter-

action between the segmentation and reconstruction components.

Xiao et al. [2013] proposed an interactive tool for constructing a

labeled dataset of scanned 3D scenes. Their method performs a

joint optimization where the segmentation and reconstruction steps

beneit from each other. The reconstruction is performed with a

structure-from-motion method that uses the segment labels to im-

prove the correspondences, while the labels of segmented frames

are propagated to corresponding views. However, it is up to the

user to traverse the entire video and locate segmentation errors

that need to be manually corrected. Moreover, to incorporate object

labels into the reconstruction error, their method abstracts each

object with a bounding box of ixed size based on an object prior,

and optimizes the camera pose so that each object is always inside

the predicted box. For object parts with more detailed geometric

and structural variations, such an approximation is not reliable.

Moreover, Häne et al. [2016] also optimize segmentation and

reconstruction simultaneously, but their method applies object clas-

siiers automatically, without incorporating any user input to correct

potentially mislabeled objects. Their method considers a set of class-

speciic geometric priors, while in our case, the input is a RGBD

sequence of object scans. Besides, the methods of Xiao et al. [2013]

and Häne et al. [2016] label scenes with object labels, while we

consider part labels for the reconstruction of single objects.
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Fig. 2. Overview of our active self-learning method for object reconstruction. We learn how to segment and label a sequence of RGBD frames (a), to improve

the quality of object reconstruction (e). Specifically, we employ an active self-learning approach to create the necessary data for the learning while involving

minimal user efort. The active learning asks for user input on strategically-selected frames (green arrow) and then invokes a self-learning component on

the annotated frames. The self-learning is an automatic learning approach consisting of cycles of prediction, reconstruction, and confidence estimation for

creating additional training data from the remaining frames in the sequence (black + blue arrows). Please refer to Section 3 for details on these steps.

3 OVERVIEW

Our goal is to train a neural network to semantically segment and

label RGBD sequences of a single object, and use the labeling to

obtain an improved frame alignment and consequently improved

object reconstruction. The training data is composed of multiple

RGBD sequences for diferent objects of the same category, where

the individual frames are segmented and labeled. To create this

training data with minimal user involvement, we introduce an active

self-learning framework, illustrated in Figure 2.

3.1 Active self-learning

During the active learning process, the user is asked to annotate a

sparse set of frames with labels, denoted as (a) and (b) in Figure 2,

which are used to train a deep network (c) that provides a semantic

segmentation and labeling of all the frames (d). The labeled frames

are then aligned and fused together to reconstruct a 3D model (e).

During the fusion, we also transfer the labels from all the frames to

the model with a voting scheme. We then estimate the consistency

of the labeling of each frame. The consistency is derived from the

agreement between the labels predicted by the network (d) and the

labels obtained by projecting labels from the model back onto the

frame via the frame’s alignment (f). A sequence is considered to be

of high-conidence if it does not contain any subsequence longer

than 30 frames with all the frames being of low-consistency.

Once all the sequences have been processed, we select frames

from the high-conidence sequences as additional training data to

ine-tune the network and improve its labeling accuracy (blue arrow

in the igure). This self-learning process involving prediction, recon-

struction, and conidence estimation is iterated until the conidence

of the reconstructions cannot be further improved.

Then, the user is asked to annotate frames sampled from the

sequences that remained labeled with low conidence (green ar-

row), and we repeat the self-learning process. We repeat the active

learning combined with self-learning until all the sequences are

reconstructed with high conidence or we reached a maximum num-

ber of iterations. We demonstrate that this approach leads to the

creation of high-quality training data to successfully train the deep

network while requiring minimum manual labeling, since the user

is only asked to annotate frames from sequences with persistently

low conidence.

3.2 Semantic reconstruction

To reconstruct a 3D model, we iteratively align the frames to an

evolving model based on their semantic labeling. The model is

represented as volume. We start with an empty volume and project

the irst frame onto the model based on the identity transformation.

Next, we align and project each subsequent frame to the model.

For each frame, sets of pixels in the frame with a common label are

matched to sets of voxels in the model with the same label. Note that

we only consider pixels and voxels with high labeling conidence in

the matching.

The matching determines a candidate transformation that aligns

the frame to the model. Since each label determines a diferent

transformation, we combine all the candidates into a single transfor-

mation by optimizing for a transformation that best approximates

all of the candidates. The optimized transformation is used to align

the frame to the model, which is then projected onto the volume

to update the model. The labeling of pixels of the frame is also

accumulated onto the labeling of voxels of the model.

After obtaining the reconstructed model and its labeling, we

perform a reinement of the labeling. Speciically, we divide the

reconstructed model into super-voxels and eliminate super-voxels

corresponding to the background. We then optimize a graph-cut

energy to reine the granularity of the labeling.We show that the use

of semantic labels and the label reinement improve the quality of

the registration and reconstruction, when compared to approaches

oblivious to the semantics of the objects.
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4 NETWORK FOR FRAME SEGMENTATION

Our neural network belongs to the category of fully convolutional

networks (FCNs) that has been successfully applied to perform

regression of dense label maps for semantic segmentation [Long

et al. 2015]. We model our FCN following the architecture of ResNet-

101 [He et al. 2016]. However, our network is modiied to accept

frames with depth information as input, since the original ResNet-

101 is based on RGB images. Thus, similarly to Shen et al. [2016],

we append a depth channel to each parametric kernel of the irst

convolutional layer of the network. We train the network with the

back-propagation algorithm using stochastic gradient descent.

During the learning phase, the input to the network is a set of

RGBD images and their segmentations with part labels. Since the

amount of training data in the irst iterations of the method can be

quite small, we pre-train the network on existing datasets. Given that

there are no large datasets of segmented RGBD images available, we

pre-train our network with the dataset of object scans provided by

Choi et al. [2016] for object classiication from RGBD frames, where

we are given a set of training images {Ii } along with their object

labels {yi }, e.g., chair, bench, etc. Although the problem of object

classiication is distinct from image segmentation, we remark that

a similar approach has been successfully applied to ine-tune RGB

part segmentation networks [Tsogkas et al. 2015; Xia et al. 2015].

Features learned for object classiication tend to also be relevant

for part segmentation, as object classiication often depends on the

appearance of individual object parts. Thus, the pre-trained features

for object classiication form a useful prior for further learning a

network for segmenting RGBD frames.

In more detail, we pre-train the network to ind the set of network

parametersWs that minimize the object classiication loss:

Loss({Ii }, {yi },Ws ) = −
1

N

N∑

i=1

log P (yi |Ii ,Ws ), (1)

where N is the number of training images, and P (yi |Ii ,Ws ) is the

probability of image Ii having the ground-truth object label yi ac-

cording to the network.

After the pre-training, we ine-tune the network parametersWs

using the segmented and labeled RGBD images obtained during the

active self-learning. The ine-tuning objective is to minimize the

pixel-level classiication loss deined as:

Loss(I ,m,Ws ) = −
1

N

N∑

i=1

1

|Ii |

|Ii |∑

j=1

log P (mi j |Ii ,pi j ,Ws ), (2)

where Ii is an input image, pi j is the j-th pixel of Ii , mi j is the

ground-truth part label of pi j , |Ii | is the number of pixels in Ii , and

P (mi j |Ii ,pi j ,Ws ) is the probability of pi j ∈ Ii having the ground-

truth labelmi j , according to the network. We minimize the sum of

pixel-wise errors for all pixels coming from all training images.

In the testing phase, for each pixel p of a given image I ′, we use

the learned network parameters to compute the label probabilities

of the pixel:

P (mk |p) = P (mk |I
′,p,Ws ), for all k ∈ {1, . . . ,K }, (3)

where K is the number of possible labels, andmk is the k-th label.

5 SEMANTIC RECONSTRUCTION

5.1 Improved reconstruction with semantic information

Our reconstruction method iteratively builds a 3D modelMt from

a sequence of depth frames {F1, . . . , Ft }. The model is maintained as

a volumetric representation, which is accessed with a hash function

for eiciency [Nießner et al. 2013]. Speciically, we use a volumetric,

truncated signed distance function (TSDF) representation, where

we also store the label distribution for each voxel. We register the

frames to this volume by mapping the depth maps to the voxels and

updating the TSDF values with the corresponding values from the

depth map, as in the method of Nießner et al. [2013].

We start with an empty volume where the TSDF is zero and reg-

ister the irst frame to the volume with the identity transformation.

An intermediate iteration of our method then consists in register-

ing a frame Ft to an existing modelMt−1, built from previously

registered frames {F1, . . . , Ft−1}, to obtain an updated modelMt .

For the registration, we use a method similar to the sensor pose

estimation method of Newcombe et al. [2011], based on an objective

function involving the depth information of the frames. However,

we extend this method to also consider the semantic labeling of

frames. The pixels of Ft and voxels ofMt−1 are partitioned into

semantic groups, which are then mapped to each other and used to

derive a transformation for registering Ft toMt−1.

First, we group pixels in Ft into semantic sets Si , one for each

possible part label i . In each set, we keep only the pixels with high

labeling conidence. A pixel is deined as having high conidence if

the information entropy H (P ) of the label probability distribution P

of the pixel is below a threshold θ = 0.15, where the information

entropy is computed in the usual manner:

H (P ) = −

K∑

i=1

Pi log Pi , (4)

with Pi being the probability of the pixel having label i . Similarly, we

group the voxels ofMt−1 into semantic groups S ′i , which contain

only high conidence voxels.

Next, we compute candidate transformations for the semantic

sets by aligning each set Si in Ft to its corresponding set S
′
i inMt−1

with the Iterative Closest Points (ICP) method, which provides a

rigid transformationTi that aligns the two sets. Then, we obtain the

optimal transformation between Ft andMt−1 with an optimization

involving all candidate transformations.

Given the set of transformations {Ti } for all part labels, our goal

is to ind a global transformation T that best combines all the trans-

formations in {Ti }. Since the part labels are obtained by the network

prediction, and diferent parts may have diferent geometric proper-

ties, the transformations corresponding to diferent semantic sets

should have diferent importance in the optimization. Towards this

goal, we deine a weightwi for each set Si as:

wi = confi + sizei + vari , (5)

where confi is the average conidence in the prediction of the label

of Si , given by the average of H (P ) for all pixels in Si , sizei is the

percentage of pixels assigned with the label of Si within Ft , and vari
is the variation in the angles between each pair of normal vectors

of the voxels of the set S ′i corresponding to Si in the reconstructed
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w/o semantics w/o con�dence w/o size w/o normal variation

Fig. 3. Efect of diferent terms of the reconstruction objective. Top row:

result without specified term. Botom row: result obtained with our full

method. Note themisalignments present in the top row compared to botom.

model. Thus, the weight captures the idea that sets with higher

labeling conidence, larger size, and more variation in the normals

should inluence more the global transformation. The rationale for

preferring high normal variation is that pixels with small normal

variation tend to provide more mismatches, e.g., the matching for

pixels on a lat table top is ambiguous, as adding a translation before

mapping any such pixel results in the same loss value.

With the weight deined per set, the global transformationT ∗ can

be computed by solving the following optimization problem:

T ∗ = argmin
T

∑

i

∑

j

wi | |T pi, j −Ti pi, j | |
2
2 , (6)

where pi, j is the j-th pixel of set Si . The objective states that the op-

timal transformationT ∗ minimizes the weighted alignment distance

for all the sets. We use the Gauss-Newton method to minimize this

objective, where we iteratively linearize the objective function and

solve a system of equations [Kerl et al. 2013]. We constrain T ∗ and

each {Ti } to be rigid transformations, composed only of translations

and rotations. We then align Ft toMt−1 with T
∗, and integrate the

frame with the model, yielding a new modelMt .

Figure 3 shows the efect that diferent terms of the reconstruc-

tion objective have in the results. We compare the results obtained

with our full reconstruction objective to four diferent alternatives:

(i) Traditional ICP without semantic information; (ii) Semantic ICP

without the conidence term; (iii) Semantic ICP without the segment

size term; and (iv) Semantic ICP without the normal variation term.

We observe that the lack of each term causes misalignments in the re-

construction for diferent examples, while our method that includes

the four terms, especially the use of semantic labels, consistently

provides good reconstruction results.

After the alignment, we update the label probability distribution

for each voxel inMt by accumulating the label distribution of the

corresponding pixel in Ft :

PMt =

(t − 1) × PM
t−1 + P

F
t

t
, (7)

where PMt is the label distribution of a voxel in themodel at iteration

t , while P Ft is the label distribution for the corresponding pixel in

the frame t . The updated label probability distribution of each voxel

is then normalized so that the sum of all entries is 1.

5.2 Background removal and label refinement

Although we only consider semantic parts during the registration,

the background is also labeled and stored in the volumetric represen-

tation for the reconstructed 3D model. The background consists of

any data not related to the object being acquired, e.g., walls behind

the scanned object. To obtain the inal 3D object, we remove the

background and keep only the object voxels. However, simply re-

moving voxels where the background label has maximal conidence

may introduce holes in the inal 3D model due to the accumulated

uncertainty from the label prediction. Thus, to remove the back-

ground in a robust manner, we employ an adaptive version of the

method of Papon et al. [2013] to group the voxels into super-voxels

with high labeling conidence. This method incorporates 3D rela-

tionships between voxels into a clustering algorithm to prevent

super-voxels from overlowing semantic object boundaries. After

obtaining the super-voxels, we remove background super-voxels

not suiciently surrounded by part super-voxels.

More speciically, the method of Papon et al. [2013] requires a

resolution parameter, which controls the size of the super-voxels

generated. In our label reinement, we start by specifying a large

super-voxel size, and generate a irst set of super-voxels. Within

each super-voxel, only the voxels with high-conidence labeling

are taken into consideration when determining which super-voxels

to remove. Since our goal is to remove the background, we do not

need to distinguish diferent semantic labels. Thus, we divide voxels

into two types, background voxels and part voxels, by checking

the label with maximal probability. A super-voxel is considered

to be a part/background super-voxel if 85% of its high-conidence

voxels are part/background voxels. Supervoxels that do not satisfy

these criteria are set as łundeinedž and are not considered in fur-

ther computations. A background super-voxel is then removed if

less than half of its neighboring super-voxels are part super-voxels.

After removing these background super-voxels, we keep the con-

nected component that has the maximal number of part voxels. We

repeat the process iteratively. At each iteration, we decrease the

super-voxel size parameter to group the voxels from the connected

component of the previous iteration into iner super-voxels. We

end the iterations when there are only part super-voxels, or when

the super-voxel size reached a given threshold. In our experiments,

we set the initial super-voxel size as n = 200 and stop the process

when n < 10, dividing n by 2 at each iteration. Figure 4(a) shows an

example of the iterative background removal process.

During this process, we partition the model into super-voxels,

where each super-voxel can be associated with an average part label

distribution. Based on these distributions, we use the graph-cuts

method [Boykov and Kolmogorov 2004] to smooth the labeling of

the super-voxels. Speciically, we deine a graph where each super-

voxel is a node that is connected to its neighboring super-voxels.

The data term for labeling a node is based on the label distribution of

the corresponding super-voxel, where we translate the probability

values into energy costs. The smoothness term simply follows the

Potts model where the cost for diferent labels is 1. Only part labels

are used during the reinement. Figure 4(b) shows an example of

the reined labeling of an object.
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(a) Background Removal (b) Re�nement

Fig. 4. Background removal and label refinement: (a) We remove the background of a reconstruction with an iterative process based on super-voxel grouping

(5 iterations shown). (b) We then refine the labeling of voxels with a graph cuts method that smoothes the labels and fills gaps.

Final

Projection

Intermediate

Projection

Prediction

400 900 1200 1500 1800

Fig. 5. Improvement of the frame labeling during the active learning: pre-

diction given by the neural network for each frame, labels fused on the 3D

model projected back onto the frames (intermediate projection), and labels

projected back ater refinement. Note how the quality of the labeling is

improved ater each step. The frame index is shown in the botom row.

6 ACTIVE SELF-LEARNING COMPONENTS

After background removal and label reinement, we map the fused

voxel labels back to the input frames. Figure 5 shows how the ini-

tial prediction of frames is improved after fusion, especially with

label reinement, since the alignment and fusion provide a form of

consensus of the labelings. Thus, the diference between the initial

predictions and fused labels guides our active self-learning.

6.1 Confidence estimation and frame selection

To guide the active self-learning, we deine a measure of label consis-

tency of a frame. In an accurate reconstruction, the label prediction

from the network and the labels projected from the reconstructed

3D model back onto the frame would have high consistency. For

inaccurate reconstructions, there would be a large inconsistency

between the prediction and projection, especially after the label re-

inement with graph cuts when poorly reconstructed regions would

be deleted from the model.

To compute the label consistency of a frame, since each pixel is

associated with a label probability distribution, we irst assign the

label with maximal probability to each pixel. Then, the consistency

between the two labelings is deined as the percentage of pixels

with the same labels on both labelings. In our work, a frame is

considered to be labeled with high-consistency if the agreement of

labels between its predicted and projected labelings is above 0.8.

A sequence is considered to be of high-conidence if it does not

contain any subsequence longer than 30 frames with all the frames

being of low-consistency.

For the self-learning, we select frames from the high-conidence

sequences to feed into the neural network for ine-tuning. Note

that frames in high-conidence sequences have consistently high-

conidence and could all be used to extend the training data. How-

ever, since the sequence is captured continuously, the diference

between adjacent frames is often very subtle, and so these frames

would not provide much new information to the network. Thus,

we sample one out of every 25 frames from each high-conidence

sequence for network ine-tuning. If after one round of ine-tuning

we obtain new high-conidence sequences, we iterate the process

to extend the training data with the new sequences. We continue

this iterative process of self-learning until no new high-conidence

sequences are generated. Then, we switch to the active learning to

ask for additional user annotations.

For the active learning, we ask users to annotate frames selected

from the low-conidence sequences. The total number of frames

to be annotated, m, is divided by the number of low-conidence

sequences to determine the number of frames that we select from

each sequence. For each sequence, we randomly sample the frames

by assigning a high sampling probability to low-consistency frames,

since these frames are more likely to be labeled incorrectly.

6.2 User input

During the active learning, the user is asked to annotate frames from

low-conidence sequences. Since we do not have an estimate of se-

quence conidence at the beginning of the active learning, we select

the frames to be annotated by the user based on the registration error

obtained using the method of Newcombe et al. [2011]. Speciically,

when registering the frames using depth maps without semantic

information, we record the values of the registration energy in the it-

erative alignment of the sequence. Peaks in the energy curve formed

by a sequence of frames correspond to larger registration errors,

which are more likely to be improved by adding semantic informa-

tion to the frames involved. Thus, we sample frames by assigning

high probability to frames corresponding to curve peaks.

For user annotation, we use a scribbling interface similar to the

one proposed by Wong et al. [2015]. The input frame is irst seg-

mented into a set of super-pixels. The user selects a label from a

menu and draws one or more scribbles over the image. The sys-

tem then groups all the super-pixels covered by the scribbles into a

segment, and assigns the selected label to the segment.
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Fig. 6. Examples of labeling instructions provided to the users.

7 RESULTS AND EVALUATION

We present results of our semantic reconstruction method, and

evaluate the active learning and frame segmentation method.

Dataset. We use RGBD sequences from a large dataset of object

scans provided by Choi et al. [2016]. We select three representative

categories that capture a variety of object characteristics to test

our method: chairs, tables, and motorcycles. For example, chairs

have various topologies and part connections, tables have large, lat

regions which are challenging to register, and motorcycles possess

many diferent small parts and complex structures. For each cat-

egory, we select sequences where the object to be reconstructed

appears in all the frames. Speciically, we selected 78 sequences

with motorcycles, 100 sequences with tables, and 160 sequences

with chairs. For each category, we divide the sequences roughly

into an 8:2 ratio for training:testing. On average, each sequence

has around 2,000 frames, which results in a dataset with a total of

around 676,000 frames for all sequences and categories.

Frame annotation. To obtain annotations of the frames, we used

the services of a company that labeled the frames with quality guar-

antees. Thus, this data is more reliable than data obtained through

crowdsourcing, which would require multiple users to label each

frame to ensure the consistency of the data. We provided example

annotations to the employees, to ensure the consistency of the label

names and segment sizes, as shown in Figure 6.

7.1 Evaluation of semantic segmentation

We irst evaluate our deep network to demonstrate that it provides

accurate labeled frames if trained with adequate data. Since the

entire dataset is comprised of around half a million frames, it is

infeasible for the users to annotate all the frames. Thus, we per-

form the training and evaluation on a subsample of the frames.

Speciically, for each category, we samplem frames from the testing

sequences to test the segmentation accuracy. For the active learn-

ing, we start with 2m training frames annotated by the users. In

each iteration of the active learning, we ask the users to annotate

m additional frames. We end the active learning after 8 iterations,

once the number of annotated training frames reaches 9m. We use

a batch ofm new frames at each iteration since it is expensive to

retrain the network, and thus it would be impractical to retrain after

Table：

Chair：

legtop

backarmrestseat leg

Motorcycle： handle lightgas tankwheelbodyseat

background

background

background

Fig. 7. Selected segmentations and labelings of frames obtained with our

deep network. Each example shows the RGB and depth inputs, and the

prediction. Note the semantic correctness and low noise level of the results.

adding single images. The frames labeled during the active learn-

ing are selected by the algorithm, while the initial set of training

frames are uniformly selected from the training frames based on

the registration error, as described in Section 6. In our experiments,

m = 200/100/120 for chairs/tables/motorcycles.

The overall accuracies of labeling object parts on the test sets

of chairs, tables, and motorcycles are 94.2%, 97.6%, and 91.7%, re-

spectively. We obtain an average labeling accuracy of 94.3% for all

classes. Note that the average object classiication accuracy of the

pre-trained network is 98.6%. Figure 7 shows example labeling re-

sults on selected test frames from the three classes used in our work.

We observe in this qualitative evaluation that the segmentations are

semantically correct, as implied by the average accuracy. The results

also have a low amount of noise, and the size of the components

is approximately correct, despite noise in the input frames, such

as in the back of the bottom-right chair, and the region near the

wheel of the top-right motorcycle. On the other hand, we note that

improving 2D segmentation is not a contribution of our work, as

we use a standard deep architecture for this task. Thus, it is possible

that other network architectures may provide higher accuracies.

Active self-learning. We also show that we obtain a better per-

formance by incorporating the self-learning into our approach, in

contrast to using active learning only. Figure 8 shows the rate of

improvement in the labeling accuracy of the test data for the two

methods. Each circle in the graph represents a model trained with

the data provided by the iterations up to that point. We clearly see

that with the same number of frames provided by the users, the

self-learning provides a more accurate model and improves the la-

beling accuracy, due to the additional training frames provided by

the self-learning. Note how the accuracy improves not only when
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Fig. 8. Comparison of the segmentation accuracy of our active self-learning

to a method based on active learning only, on three classes of objects.

frames annotated by users are added (points labeled in blue as łAc-

tive learningž), but also when frames automatically selected by the

self-learning are added to the training data (points labeled in blue

as łSelf-learningž). In contrast, the method based purely on active

learning (red points) never reaches the same accuracy as the active

self-learning, after two or more batches of user input were provided.

To further demonstrate that the frames fed to the network during

the self-learning provide useful information to the network, Fig-

ure 9 shows the labeling of frames provided by the neural network,

compared to the labeling of the same frames obtained after the la-

bels are fused, reined, and projected back onto the frame during

the training. We notice a clear improvement in the accuracy of the

segmentation, with less noise in the detected segments, as in the

one-seat sofa. Some parts that were only faintly detected, such as the

chair legs, are labeled with more accuracy after fusion. Moreover,

for all the test frames, we compute the accuracy of re-projected

labels and compare that to the predicted labeling accuracy. We ob-

tain an accuracy of 96.9% (vs. 94.2%) for chairs, 97.7% (vs. 97.6%) for

tables, and 94.4% (vs. 91.7%) for motorcycles. We see that for chairs

and motorcycles, the accuracies increase by around 2.7% due to the

re-projection. The accuracy of tables does not increase much since

the prediction accuracy is already quite high at 97.6%.

Fig. 9. Comparison between the label prediction provided by the neural

network and the labels obtained ater fusion and back-projection (in the

red boxes). Note the improvement in the quality of segments ater fusion.

Minimal number of images required to bootstrap the pipeline. Al-

though we start executing our pipeline withm frames annotated for

each category, wherem is derived from the initial registration error

given by the method of Newcombe et al. [2011], the active learning

can be started without any labeled images. Here, we investigate

the minimal number of images that need to be annotated so that

the self-learning component is activated and the whole pipeline is

bootstrapped. Since we need high-conidence sequences to enable

the self-learning, we calculate the minimal number of annotated

images required for high-conidence sequences to appear. To obtain

the minimal number, we perform an iterative search where we start

the pipeline with a ixed number of annotated images and verify if

high-conidence sequences are produced. We start with 400/200/240

images for chairs/tables/motorcycles, and iteratively decrease these

numbers of initial images by 50/20/20, until no high-conidence

sequences are produced. We ind that when the initial number of
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Fig. 10. Gallery of reconstruction results obtained with our method.

images is less than 200/140/180, no high-conidence sequences are

produced for chairs/tables/motorcycles.

7.2 Evaluation of semantic reconstruction

Figure 10 shows a gallery of reconstruction results obtained with

our method on test data, for four sequences from each class in the

dataset. Note that both the reconstructions and their segmentations

are of high-quality, despite the complexity of the acquired shapes.

The tables and chairs possess diferent types of topologies, relected

by the connections between object parts, while the motorcycles have

many small parts around their engines and handle bars. Although

each shape is labeled mainly into four parts, the boundaries between

parts are accurate, except for some of the motorcycle wheels (second

row), since there are many training examples that have covered

wheels (top motorcycle).

It is diicult to perform comparisons to related works such as Xiao

et al. [2013] and Häne et al. [2016], given that the input assumptions

of these works are quite diferent from our work, as discussed in

Section 2. Thus, we compare our results to reconstructions obtained

with the method of Nießner et al. [2013]. The method of Nießner et

al. and our method are similar in that they align frames to an evolv-

ing method. However, their method uses mainly depth information

for the alignment without involving any learning, while our method

also considers semantics. We also perform this evaluation on sepa-

rate test data not used during the active learning. Figure 11 shows

a qualitative comparison of the reconstructions of both methods

on selected test sequences. It is noticeable that the results obtained

with our method are less noisy and have less missing regions in

Fig. 11. Reconstruction results obtained with the method of Nießner et

al. [2013], which does not consider semantic information (let of each ex-

ample), compared to the results of our method that incorporates semantic

information (right, in the red boxes). Note how our reconstructions are

smoother, and have less missing data and less misalignments.

the reconstructed models, e.g., chairs and tables. In addition, the

results on the motorcycles and one of the chairs do not have the

misalignments of frames which are visible in the results obtained

without semantics.

To evaluate the results in a quantitative manner, we randomly

selected 20 sequences from each class and asked 5 users to visually

compare the reconstruction results with and without semantics.

Since the method of Nießner et al. [2013] does not automatically

remove the background, to avoid a biased comparison, we only

showed to the users our reconstruction results in the same manner

as Figure 11, without coloring the semantic parts or removing the

background. We put the reconstruction videos of those two methods

side by side, and ask the users which reconstruction result is better.

Users can choose from three options: A) Left is better, B) Right is

better, and C) Same quality. For 95% of the sequences, the users

considered our reconstruction results to have at least the same

quality as the ones obtained with the method of Nießner et al. [2013],

among which 32% of our results were considered to have better

quality. The chair category received the most positive feedback from

the users, with 50% of the reconstruction results being considered

better. The main reason for this outcome is that most of the chairs

have complex and thin structures which are hard to capture using
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Fig. 12. Comparison of part labels before and ater applying label refinement

(in the red boxes).

depth alone, while our part label prediction can usually locate such

regions well. The 5% of our results that were considered to have

worse reconstruction quality have incorrect label predictions. The

incorrect labels lead to an incorrect alignment between the frames.

In the supplementary material, we also provide a comparison of

our semantic registration to a global registration method, the 4PCS

method of Aiger et al. [2008].

In Figure 12, we compare the reconstruction results obtained with

and without applying the label reinement with graph cuts after the

label fusion and background removal. In this manner, we evaluate

the efect of this post-processing step in the inal result. We see in

these results how the reinement has the efect of smoothing out

the labels and creating larger connected components with the same

label, while the results without reinement have more gaps in the

segments and small connected components.

7.3 Timing statistics

We test our method on a computer with an Intel Xeon 2.10GHz CPU

with 32GB of memory and an NVIDIA Quadro M4000 GPU. The

Average time for reconstructing one testing sequence, including the

semantic segmentation of the frames, is 5.41fps for chairs, 7.41fps

for tables, and 4.55fps for motorcycles. Comparing to the original

implementation of Nießner et al. [2013], whose average timing is

13.33 fps on our computer, our method is 2-3 times slower. This

is mainly due to the extra amount of data transmission between

CPU and GPU for the labeling information. The processing time

increases linearly with the number of labels.

Fig. 13. Failure cases in the frame labeling. Let: object of the same class in

the background. Right: motion blur.

8 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduced a learning-based reconstruction method composed

of two main components. First, a deep network that provides a

semantic labeling of RGBD frames. Second, an alignment and re-

construction procedure guided by the semantic labels of the frames.

To alleviate the creation of the training data for the deep network,

we introduced an active self-learning framework that enables the

creation of training data while requiring minimal user input. We

showed in our experiments that the use of a semantic labeling im-

proves the quality of reconstructions, especially when compared to

a state-of-the-art method that aligns frames using depth information

only. Moreover, we showed that the active learning performs well in

terms of requiring a small amount of user-annotated frames, while

enabling us to train a network for labeling RGBD frames accurately.

Limitations and future work. As a irst solution for semantic re-

construction, a few of the components in our method currently have

limitations and could thus be further developed in future work. For

example, we use the semantic labeling mainly to partition frames

and voxels into regions with contiguous labels; then, these regions

are aligned with ICP based only on the depth of the frames. In future

work, we would like to investigate possible approaches for taking

advantage of the semantic labeling also during the alignment, e.g.,

by possibly inding matching features in the semantic regions.

Moreover, as shown by the examples in Figure 13, we can obtain

an incorrect labeling of frames when an object of the same class

is present in the background of the scans, or when signiicant blur

exists in the input frames due to motion. In addition, our method

is unable to handle datasets in which large occlusions are present.

Occlusions can cause abrupt changes in the continuity of labels

across the frames, which conlict with the smoothness expected by

the registration and label reinement methods.

In general, we have shown that a semantic labeling leads to bet-

ter reconstruction results. Nevertheless, reconstructing 3D objects

from scans acquired in a casual, handheld setting remains a dii-

cult problem. There are still many factors that can pose diiculties

during semantic prediction and alignment of frames, such as back-

ground clutter, fast camera movements, occlusions, and suboptimal

viewpoints. Thus, there is still room for further work in this area.
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