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Abstract

We introduce an algorithm for unsupervised co-segmentation of a
set of shapes so as to reveal the semantic shape parts and estab-
lish their correspondence across the set. The input set may exhibit
significant shape variability where the shapes do not admit proper
spatial alignment and the corresponding parts in any pair of shapes
may be geometrically dissimilar. Our algorithm can handle such
challenging input sets since, first, we perform co-analysis in a de-
scriptor space, where a combination of shape descriptors relates the
parts independently of their pose, location, and cardinality. Sec-
ondly, we exploit a key enabling feature of the input set, namely,
dissimilar parts may be “linked” through third-parties present in the
set. The links are derived from the pairwise similarities between
the parts’ descriptors. To reveal such linkages, which may manifest
themselves as anisotropic and non-linear structures in the descrip-
tor space, we perform spectral clustering with the aid of diffusion
maps. We show that with our approach, we are able to co-segment
sets of shapes that possess significant variability, achieving results
that are close to those of a supervised approach.
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1 Introduction

In recent years, there has been an increasing interest in high-level
analysis of 3D shapes. Some methods try to infer high-level knowl-
edge about a given shape from its geometry [Fu et al. 2008; Mitra
et al. 2010]. There are also works which utilize semantic knowl-
edge to segment a given shape [Simari et al. 2009; Kalogerakis et al.
2010] or establish a correspondence between a pair of shapes [van
Kaick et al. 2011]. The problem of analyzing a set of shapes as
a whole has received less attention [Golovinskiy and Funkhouser
2009; Xu et al. 2010]. The interesting question about co-analysis
of a set of shapes is whether more knowledge can be inferred from
the set rather than from an individual or pairs of shapes alone. For
example, can we better segment the shapes given as a set rather than
as individuals? While it seems obvious that a set of shapes contains
more knowledge than each individual, it remains a challenge, par-
ticularly in the unsupervised setting, to extract appropriate knowl-
edge inherent to the set to facilitate fundamental analysis tasks such
as segmentation and correspondence.

Figure 1: Unsupervised co-segmentation of a highly varied set of
container objects using our algorithm. Corresponding parts differ
significantly in their shape, pose, position, and cardinality.

In this paper, we investigate the problem of unsupervised co-
segmentation of a set of shapes so as to reveal the semantic shape
parts and establish their correspondence across the set. In our set-
ting, the input shapes belong to a common family, that is, loosely
speaking, they share the same functionality and general form. How-
ever, their corresponding parts are not necessarily similar; see Fig-
ure 1. The co-segmentation is unsupervised in that there is no train-
ing set which provides any knowledge to assist the analysis, as op-
posed to works such as [Kalogerakis et al. 2010] and [van Kaick
et al. 2011], where the ability to properly match geometrically dis-
similar parts is critically supported by the existence of relevant prior
knowledge in the training set. It should also be noted that the anal-
yses performed in the above works do not represent a co-analysis of
a set. Our work can be seen to complement these knowledge-driven
approaches with knowledge extracted from a target set.

The setting and objective of our analysis share similarities with
the recent works of Golovinskiy and Funkhouser [2009] and Xu et
al. [2010], which both compute an unsupervised co-segmentation of
a set of shapes. The method in [Golovinskiy and Funkhouser 2009]
pre-aligns the set of shapes and then combines criteria for intra-
shape segmentation and inter-shape proximity to cluster mesh faces
across the set. Xu et al. [2010] apply a similar co-segmentation
scheme with the focus being to remove non-homogeneous part
scales from the analysis equation. In our setting, the set consists of
shapes with a variety of non-rigid, geometric, and even topological
differences; see Figure 1. The dissimilarity between corresponding
parts is reaching a point where the power of the set has to be ex-
ploited beyond what can be afforded by spatial-domain alignment
or clustering. Towards this end, our approach allows correspon-
dence to be inferred indirectly through third parties in the set and
the analysis is performed in a descriptor space; see Figure 2.

Specifically, we treat the unsupervised co-segmentation of a set of
shapes as a clustering problem. The clustering is performed in a
space of shape descriptors rather than on the spatial coordinates of
the shapes themselves. This allows the handling of corresponding
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Figure 2: Challenge of unsupervised co-segmentation amid signifi-
cant geometric variation (left) and effectiveness of descriptor-space
spectral clustering (right). In the original descriptor space (left),
two segments in the same semantic class (two pink handles) can
be far apart, while unrelated segments (a pink handle and a yel-
low neck) can be closer. It is challenging to resolve this without
any knowledge of the semantic classes. However, the handles are
drawn close in the diffusion map (right) through third-party connec-
tions. The third parties, which are all the segments lying in-between
the two handles, establish several paths between the two segments,
given by the high similarities between pairs of points. These multi-
ple paths create a strong connection between the two handles. Note
that the two plots are 2D embeddings of the descriptor space, ob-
tained with multidimensional scaling.

parts which may differ in pose, location, and even cardinality. Obvi-
ously, such variations would challenge any technique based on spa-
tial alignment or direct clustering of shape geometry, e.g., [Golovin-
skiy and Funkhouser 2009], as shown in Figure 3. In addition, the
descriptor clustering approach allows us to exploit a key enabling
feature of the input set, namely, third-party connections. Even if
two shapes possess parts that are significantly dissimilar, we can
still establish a link between them if there are other parts in the
set (third parties) that create such a connection, resulting in a suc-
cessful co-segmentation. Figure 4 provides a concrete example. In
contrast, spatial-domain alignment and clustering alone is unable to
fully utilize the existence of third-party connections.

When performing the analysis in a descriptor space, the clusters
that characterize the different shape parts do not necessarily take on
an isotropic form; they may be elongated so that two correspond-
ing parts which should belong to the same cluster are relatively far
apart, e.g., see Figure 2. To this end, we perform spectral cluster-
ing with the aid of diffusion maps, which take the non-linear and
anisotropic structures in the data and unfold them into a new space,
so that the similarities between data points are translated into ge-
ometric proximity. Mean-shift clustering can then succeed in the
embedded space by simply considering Euclidean distances.

Our algorithm starts by computing a per-object segmentation for
each shape in the input set. For each segment on each shape, we
compute a shape descriptor. Using the set of shape descriptors, all
the obtained segments are then embedded into a common space via
diffusion maps. By clustering the segments in this space, the ini-
tial co-segmentation is completed. Finally, the resulting clusters are
used to create a statistical model to describe each class of parts, and
a refined co-segmentation is obtained by labeling the shapes based

on the statistical models. This step allows us to correct imperfec-
tions that appear in the initial co-segmentation, e.g., at segmenta-
tion boundaries. Figure 5 illustrates the steps of our algorithm. We
show that our unsupervised approach is able to co-segment families
of shapes with significant geometric variations, achieving results
that are competitive to supervised approaches [Kalogerakis et al.
2010; van Kaick et al. 2011]; e.g., see Figures 1 and 7.

2 Related work

One of the fronts in geometry processing that has been receiving
much attention lately is high-level shape analysis, where the goal
is to derive structural and semantic shape information from their
low-level geometric properties. For example, some methods extract
a set of representative primitives from a shape, such as structural
curves [Gal et al. 2009] or rigid components and joints [Xu et al.
2009], so that the shape’s defining characteristics are preserved dur-
ing deformation. Other achievements in high-level analysis include
finding the upright orientation of shapes [Fu et al. 2008], a property
closely related to the functionality of the objects, automatically an-
alyzing an assembly of mechanical parts to infer their motion and
chain of interaction [Mitra et al. 2010], and building a symmetry-
induced hierarchy of man-made shapes [Wang et al. 2011].

Shape segmentation [Shamir 2008] and correspondence [van Kaick
et al. 2010] are two of the most fundamental problems in high-level
shape analysis. To segment a shape into meaningful parts, and to
compare or match these parts, we need to understand the high-level
structure of the shapes. Much effort has been devoted to solving
these problems, however, the endeavor has been mainly focused on
analyzing only one shape or a pair of shapes at a time.

The question that naturally follows is whether we can benefit from
simultaneously analyzing a set of shapes from the same family,
since intuitively more information is then available. In the im-

Figure 3: Co-segmentation in descriptor space (left) vs. in spa-
tial domain [Golovinskiy and Funkhouser 2009] (right). The use
of descriptor-space clustering enables our method to handle vari-
ations in part placement and cardinality (see the handles). Co-
segmentation results via spatial alignment are less meaningful.

Figure 4: The power of third-party connections. When presented
with a set containing only two rather dissimilar shapes (a), our co-
segmentation scheme returns a less-than-satisfactory result. How-
ever, when the set is augmented with the two “in-between” shapes
(b), they serve as third-parties which help establish a link between
the dissimilar parts, providing a meaningful co-segmentation of the
set. In contrast, a method based on spatial alignment and cluster-
ing [Golovinskiy and Funkhouser 2009] does not benefit from this
property and leads to a less meaningful co-segmentation (c).



Figure 5: Overview of the steps in our co-analysis: (a) An individual segmentation is computed for each shape. (b) The segments from all the
shapes are embedded into a common space by using diffusion maps based on a similarity matrix, where darker colors in the matrix entries
indicate higher similarities. (c) The segments are clustered in the embedded space. (d) A statistical model is created to describe each cluster.
(e) The statistical model is used to label the shapes and obtain the final co-segmentation of the set.

age domain, positive results for co-segmentation have been demon-
strated, e.g., by using a generative model to match the appearance
histogram of two images and enforce spatial coherency [Rother
et al. 2006], or by making use of discriminative clustering, which
seeks maximal separation of the classes [Joulin et al. 2010].

In the case of shapes, a first indication of the advantage of set analy-
sis appears in the works of Kalogerakis et al. [2010] and van Kaick
et al. [2011], where the knowledge is represented in the form of dis-
criminative part models which are learned from a set of manually
segmented and labeled shapes. The models can then be used to seg-
ment and label an unknown shape from the same class [Kalogerakis
et al. 2010], or to establish a part correspondence between a pair of
shapes [van Kaick et al. 2011]. Although the knowledge is defined
in terms of a set of shapes, it is still manually created and not auto-
matically inferred from the set.

The works of Golovinskiy et al. [2009] and Xu et al. [2010] take
a concrete step towards co-analysis of shapes and propose meth-
ods that infer knowledge from the set alone. In [Golovinskiy and
Funkhouser 2009], the co-segmentation is posed as a graph cluster-
ing problem. In this graph, each node corresponds to a face in one
of the meshes, and the edges come from: (1) the individual con-
nectivity of the shapes, and (2) from a set of correspondence edges
connecting faces that are geometrically close. The correspondence
edges are added after the shapes were aligned to each other. The
clustering of this graph naturally provides a per-shape segmentation
that is coherent across the group; the method is however limited to
shapes that can be spatially aligned; see Figures 3 and 4.

To overcome limitations of global alignment and scaling [Kazhdan
et al. 2004; Golovinskiy and Funkhouser 2009], Xu et al. [2010]
classify the input shapes into different styles according to the scales
of the shape parts. Co-segmentation based on graph clustering is
then applied only to the shapes within each style cluster, and is
modified to take into consideration the parts and derive the cor-
respondence edges from part similarity. This modification allows
the co-analysis to succeed for a larger variety of shapes, especially
those whose parts differ by non-homogeneous part scaling.

We are interested in co-segmenting shapes with more variability
than those in [Golovinskiy and Funkhouser 2009; Xu et al. 2010],
such that corresponding parts can be rather dissimilar geometrically
as well as topologically. Therefore, we deviate from the scheme of
spatial alignment or clustering the shape parts in the spatial domain
where the shapes reside. Instead, we automatically derive statistical
models that describe the different parts of the shapes in a space
of shape descriptors and utilize spectral clustering to account for
clusters of arbitrary shapes.

In an independent work published in this issue, Huang et al. [2011]

describe an unsupervised algorithm that jointly segments shapes in
a heterogeneous shape library, obtaining results comparable to su-
pervised approaches on a benchmark test. However, unlike our ap-
proach, this technique does not guarantee that the segmentations of
all shapes within a shape class are consistent.

There has been a large body of works in geometry processing us-
ing spectral methods [Zhang et al. 2010]. Spectral clustering via
diffusion maps is also not new. The mesh segmentation work of
de Goes et al. [2008] specifically applies the diffusion distance, as
we do in our work. All these solutions exploit special properties of
the spectral embedding. However, the computed embeddings have
always been a transformation from the spatial coordinates of indi-
vidual input shapes. Our work computes spectral embeddings of
shape descriptors. The descriptors of all the shapes in the set take
part in the embedding, enabling us to perform a co-analysis.

3 Overview

Our co-analysis method takes as input a set of meshes from a given
family and computes their co-segmentation and labeling. The co-
analysis also provides a correspondence among the segments of any
pair or group of shapes in the set, since the segments correspond-
ing to the same part class will possess a common label. The label
does not necessarily carry a semantic meaning, but serves more as
a part index. For each family of shapes, the user also provides the
maximum number of labels L that should be recovered from the set.
This number loosely corresponds to the number of different kinds
of semantic parts that constitute the shapes, e.g., L = 4, for a set of
vases that can have a base, body, handle, and neck. Note that some
types of parts can repeat or be omitted on the shapes, e.g., there can
exist vases with multiple handles and vases without a base.

To carry out the co-analysis, we start with a per-object segmenta-
tion of each shape in the input set. Then we extract shape descrip-
tors for the initial sets of segments. Next, based on the descriptors,
we cluster the segments using diffusion maps. Finally, we build a
statistical model for each cluster, which is used to obtain the final
co-segmentation and labeling of the shapes in the set. We describe
these steps as follows (see Figure 5 for an illustration).

Per-object segmentation. The first step in the co-analysis is to ob-
tain an individual segmentation for each shape in the input set. We
achieve this by grouping the mesh faces with mean-shift cluster-
ing based on shape descriptors defined for the faces, although any
reasonable alternative can be used here. More details are given in
Section 4. The outcome of this procedure is a set of candidate seg-
ments per shape. The purpose of the per-object segmentation is to
facilitate the co-analysis, since we are interested in analyzing shape



Figure 6: Result of the co-segmentation refinement (bottom) ap-
plied on an initial co-segmentation (top). Notice how boundaries
are displaced to better locations (candles) and some mislabeled
segments receive the correct label after the refinement (chairs). The
co-segmentation is performed independently for each class.

parts, rather than lower-level primitives. However, notice that the
final co-segmentation given by our algorithm is a refined labeling
performed at the face level (Section 6), which allows us to correct
imperfections that appear in the per-object segmentation.

Descriptor-space spectral clustering. All the candidate segments
produced by the per-object segmentation are embedded into a com-
mon space via diffusion maps. The embedding translates similar-
ity between segments into spatial proximity, so that a clustering
method based on Euclidean distance will be able to find meaning-
ful clusters in this space; see Figure 2 for an example. To define
the embedding, an affinity matrix is constructed from the similar-
ities between pairs of segments. The similarities are given by the
distance between descriptors defined at the segment level. The em-
bedding is then given by the first few scaled eigenvectors of the
affinity matrix. Note that the embedding is constructed from the
similarities among all the segments in the set. This implies that,
even if two corresponding parts are far apart in the original descrip-
tor space, they may end up close-by in the embedding if other parts
in the set (third parties) imply their correspondence by transitivity.
We obtain an initial co-segmentation by clustering the segments in
the embedded space. All the segments in a single cluster potentially
represent a certain class of parts, e.g., base, body, handle, or neck
of a vase. This step is carried out with a hierarchical clustering
scheme. We elaborate on descriptor-space clustering in Section 5.

Statistical model and refined co-segmentation. A statistical
model is then built to describe each cluster of parts and used to
label the shapes. The advantage of this final step of the method
is that it allows us to correct eventual errors that appear in the ini-
tial segmentation, since now we perform a more detailed labeling
of the shapes (Figure 6). More specifically, the statistical model is
defined in terms of Gaussians learned from the shape descriptors.
We derive the probability of labeling each face with a given class
by how well the descriptors of the face fit the part model. Next, we
obtain the best segmentation for each shape by applying graph cuts
labeling based on these probabilities. The final result is a refined
co-segmentation and coherent labeling of all the shapes in the set.
More details on this step of the algorithm are given in Section 6.

4 Descriptors and per-object segmentation

Shape descriptor extraction. We normalize the shapes for overall
scale, and compute a set of shape descriptors that are used in the dif-

ferent steps of the co-analysis. The algorithm works with faces and
segments (a group of connected faces). Thus, we compute descrip-
tors both at the face-level and at the segment-level. First, we obtain
an upright orientation of each shape [Fu et al. 2008] and define a
subset of the face-level descriptors based on the reoriented shapes.
More specifically, we record for each face, the geodesic distance
from the base of the shape to the face, and the angle between the
normal of the face and the upright orientation vector. Finally, we
also make use of the shape diameter function [Shapira et al. 2009],
which gives an estimate of the thickness of the shape at the face.

For the segment-level descriptors, we compute histograms that cap-
ture the distribution of each face-level descriptor for all the faces
in the segment. For a segment si and the face-level descriptor d,
we denote the histogram as hdi . We also include two descriptors
only defined at the segment level. ai is the segment area nor-
malized by the total shape area. gi is a vector of three compo-
nents that describes the overall geometry of the segment. We have
gi = [µl µp µs], where

µl =
λ1 − λ2

λ1 + λ2 + λ3
, µp =

2(λ2 − λ3)

λ1 + λ2 + λ3
, and (1)

µs =
3λ3

λ1 + λ2 + λ3
, with λ1 ≥ λ2 ≥ λ3 ≥ 0. (2)

These terms give an indication of how linear (cigar-shaped), pla-
nar and spherical the shape of the segment is. λ1, λ2, and λ3 are
the three eigenvalues obtained when applying principal component
analysis to all the vertices that are part of the segment.

Per-object segmentation. Using the shape descriptors, we com-
pute a per-object segmentation for each shape in the set. Although
any reasonable segmentation algorithm can be used for this step, we
opted to use the mean-shift algorithm [Comaniciu and Meer 2002],
where we cluster the mesh faces into larger segments. Mean-shift
operates by finding the modes (local maxima of density or cluster
centers) of points in feature space. The advantage of using mean-
shift lies in its non-parametric nature, i.e., the number of clusters
does not have to be known in advance. Instead, the algorithm re-
quires an estimation of the bandwidth or radius of support around
the neighborhood of a point. However, this can be typically esti-
mated from the data, e.g., as done in shape analysis [Shamir et al.
2006]. Following a similar procedure, we fix the bandwidth in our
experiments to a percentage of the range of each descriptor. The
actual distance measure used for the clustering is derived from the
descriptors, but defined in terms of diffusion distances (Section 5).
Finally, disconnected clusters are broken into separate segments ac-
cording to their connectivity.

The output of this step is a set of candidate segments for each object.
Notice that the result can constitute an over-segmentation of the
shapes, i.e., a semantic part might be composed of more than one
segment. However, our goal here is to obtain candidate segments as
suggested by the shape descriptors. These segments will be utilized
in the subsequent co-analysis of the set, which will then provide a
refined segmentation and coherent labeling of the shapes.

5 Descriptor-space spectral clustering

We recall that one of our goals in the co-analysis is to extract infor-
mation on what types of parts compose the shapes in the set. With
this objective in mind, we take the segments computed individually
for each shape (as described in the previous section) and cluster
them into groups of similar segments. Next, we derive a statistical
model for each cluster to represent each type of part that appears in
the set. More details are given in Section 6.



However, it is important to notice that the objects that we consider
can have a large amount of variability. Thus, a simple clustering
algorithm will not group the segments into the proper classes, since
the segments are non-uniformly distributed in descriptor space. The
shape of the clusters can be highly anisotropic or even non-linear.
To overcome this difficulty, we first embed the segments into a new
space with the aid of diffusion maps, where the Euclidean distance
between two segments will better reflect their similarity. Then,
clustering in the embedding will provide a more accurate group-
ing of segments. The usefulness of applying the diffusion maps for
the co-segmentation of a group of shapes is illustrated in Figure 2.

Embedding computation. We start with the set of segments ob-
tained from all the shapes, S = {s1, . . . , sn}. The dissimilarity
between two segments si and sj is given by

D(si, sj) =

√√√√ nd∑
d=1

EMD2(hdi , h
d
j ) + |ai − aj |2 + ‖gi − gj‖22,

(3)
where hdi , ai, and gi are the segment-level descriptors discussed
in Section 4 and nd = 3. EMD is the earth-mover’s distance, a
common measure of the dissimilarity between two probability dis-
tributions, since the hdi are histograms.

Next, we construct an affinity matrix W , with

Wi,j = exp(−D(si, sj)/2σ
2). (4)

Note that, in our method, we obtain the pairwise affinities by ap-
plying a Gaussian kernel to the segment dissimilarities, but other
choices for the kernel are also possible [Nadler et al. 2005]. By
defining a matrix Di,i =

∑
jWi,j , we obtain the normalized

M = D−1W . M can be seen as a stochastic matrix, with Mi,j

being the probability of a transition from segment si to segment sj
in one time step. The transition probability can be interpreted as the
strength of the connection between the two segments.

Finally, we compute the eigendecomposition of the matrix M , ob-
taining eigenvalues λ0 = 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0 and
eigenvectors ψ0, . . . , ψn−1 [Nadler et al. 2005; Coifman and Lafon
2006]. The diffusion map at time t is then given by

Ψt(s) = (λt1ψ1(s), . . . , λtn−1ψn−1(s)), (5)

where Ψt(s) defines the coordinates of segment s in the embedding
or map. The eigenvector ψ0 is constant and is thus discarded.

Interpretation. The main result regarding diffusion maps is that
the Euclidean distance between two points x and y on the map is
equal to the diffusion distance between the two points [Nadler et al.
2005]. The diffusion distance is given by

D2
t (x, y) =

∑
z

(p(t, z|x)− p(t, z|y))2w(z), (6)

where p(t, z|x) is the probability of transition from x to z in t time
steps, and w(z) weights the local density at z. The larger the num-
ber of short paths that exist between x and y, the more the distance
will decrease, giving an indication of how strongly the two points
are connected. The time parameter t can be varied to analyze the
structure of the points at different scales [Coifman and Lafon 2006].
An alternative interpretation is to see the map as the state of a dy-
namic system after t steps of a diffusion process have taken place.

Implementation. We compute the diffusion map using only the
first three eigenvectors, since the diffusion distance can be well ap-
proximated in this manner [Nadler et al. 2005]. Moreover, we select

t = 3 for computing the embedding of all the segments and t = 5
for the initial per-object segmentation (as described in Section 4).

Clustering. After obtaining the diffusion maps, we cluster the seg-
ments in the embedded space with an agglomerative hierarchical
algorithm. We start with each segment as an initial cluster and,
during the incremental construction of the hierarchy, we merge the
current pair of clusters with minimal distance. The distance be-
tween two clusters is given by the Euclidean distance between their
centroids. The final number of clusters is provided by the user, and
it corresponds approximately to the number of semantic parts that
constitute the shapes. The result is a grouping of the segments into
the potential classes of parts that exist in the set.

6 Statistical model and co-segmentation

Statistical model. We now derive a statistical model for each class
of parts. The models are constructed from the clusters of segments,
based on the shape descriptors.

For each cluster ci, we collect the descriptor values for all the faces
of all the segments in the cluster. Based on the observed values, we
estimate a multi-dimensional Gaussian to model the class,

p(f |ci) = p(f, µi,Σi) = C e−
1
2

(f−µi)
T Σ−1

i (f−µi), (7)

where µi and Σi are the parameters that model the i-th class, and
C is the Gaussian’s normalization constant. The parameter dimen-
sions are 3 × 1 and 3 × 3, respectively, as we use three face-
level descriptors. The parameters are estimated with a standard
expectation-maximization approach. We observed that this scheme
provides a simple, yet effective, class model, e.g., as opposed to
more complex models such as mixtures of Gaussians.

Finally, the probability that an unknown face f belongs to class ci
is given by Bayes’ Theorem,

p(ci|f) ∝ p(f |ci)p(ci), (8)

where the prior p(ci) is taken as the sum of the area of the seg-
ments that are part of cluster ci, normalized by the total area of all
segments in the set.

Refined co-segmentation. The statistical model for each class
is used to perform the final co-segmentation. We pose the co-
segmentation as a labeling optimization which is solved individu-
ally for each shape. The group information enters the optimization
through the data term of the labeling energy.

Given a mesh, we define the graph G = {V,E}, where the nodes
V are given by the faces of the mesh and an arc {u, v} ∈ E if the
faces u and v are neighbors on the mesh. The optimization is then
posed as finding the labeling l that minimizes the energy

E(l) =
∑
u∈V

ED(u, lu) +
∑
uv∈E

ES(u, v, lu, lv) , (9)

where lu and lv are the labels assigned to nodes u and v, respec-
tively, and ED and ES are the data and smoothness energy terms.

The data term is given by

ED(u, lu) = −ω log(p(clu |u)), (10)

where p(clu |u) is the probability that node u is part of cluster clu ,
given by the statistical model of cluster clu , and ω is a constant that
regulates the influence of the data term in the total energy. The cost
of assigning a specific label to the node increases according to how
unlikely it is that the face belongs to the corresponding class.



Figure 7: Results of our co-segmentation on a variety of shapes. Corresponding segments in each class are shown with the same color.
Notice how the segmentation and labeling is coherent for many of the parts in each set. The results for all the sets were obtained with the
same parameters and shape descriptors. Labeling accuracy statistics for each class are shown in Table 1.

Similarly to [Shapira et al. 2009], the smoothness term is defined as

ES(u, v, lu, lv) =

{
0, if lu = lv

− log(θuv/π) luv, otherwise, (11)

where luv is the length of the edge between the faces corresponding
to u and v, and θuv is the dihedral angle between the two faces.

To obtain the labeling that minimizes the energy E , we use graph
cuts optimization [Boykov et al. 2001]. More specifically, the
multi-label α-expansion algorithm is utilized.

The result of the labeling optimization is a co-segmentation of the
set, since the labeling energy is based on the statistical models ob-
tained from the co-analysis. Thus, in addition to an individual seg-
mentation for each shape, we also obtain a correspondence among
the segments, so that two segments on two different shapes cor-
respond to each other if they possess the same label. Notice also
that this step allows us to correct errors that appear in the initial
co-segmentation, such as displaced boundaries and mislabeled seg-
ments. An example of the refinement is shown in Figure 6.

7 Results

In this section, we evaluate our unsupervised co-segmentation
method and present qualitative and quantitative results. We also
compare our method with the state-of-the-art in co-segmentation
and with a supervised approach. Since our goal in this work is to
present a fully unsupervised approach, all the results were obtained
with a fixed set of parameters.

Datasets and methodology. We use seven classes of shapes in our
experiments: candelabra, chairs, four-legged animals, goblets, gui-
tars, lamps, and vases. The sets of man-made shapes are composed
of objects that possess significant variability, i.e., a common type of
part can appear with different topologies and geometries across the
set, and it can be absent or appear multiple times on a shape. We
modeled two new classes of man-made shapes for this work, while

the remaining classes appeared in [van Kaick et al. 2011]. We man-
ually segmented and labeled each shape, according to a specific la-
beling scheme for each class. This provides a ground-truth label for
each face. We also selected one set of organic shapes (four-legged
animals) from the Princeton Segmentation Benchmark [Chen et al.
2009], and use the ground-truth labeling created by Kalogerakis
et al. [2010]. Note that the ground truth is only used for a sta-
tistical evaluation and is not utilized by our algorithm. The co-
segmentation is performed separately for each class.

Co-segmentation and labeling. Visual results of our co-
segmentation are shown in Figure 7. Notice how, despite the great
variability in the shape parts, our co-analysis is able to extract the
common parts in the set and yield a coherent labeling. We point out
illustrative examples. For candelabra, the method is able to iden-
tify the flames and wax candles of different sizes across the set, and
separate them from the bases and holders, which appear in rich vari-
eties. Also, the multiplicity of the flames and candles does not pose
a problem to the method. Moreover, the lamps and goblets are suc-
cessfully segmented and labeled into their three constituent parts,
even though the geometry or thickness of the corresponding parts
varies. Notice also the different topologies of the lamp supports
that are detected. Chairs are also co-segmented into their main con-
stituent parts, and we obtain a correspondence between legs of dif-
ferent topologies, including star-shaped legs and legs with railings.
In the vases, handles of different sizes and shapes are identified, as
well as bodies with very different geometries, including spherical,
cylindrical, or flat bodies. We also see how the various types of
guitar bodies are separated from the necks. Finally, we observe that
the co-analysis is also successful when applied to a set of organic
shapes with significant variability. Heads with short or long necks
are correctly labeled, as well as the various animal bodies and legs.

We also notice a few shortcomings in the results. The small handles
that appear on the candelabra are not properly separated from the
holders, and similarly the small guitar headstocks are not separated
from the fretboards. The cylindrical sections in the chair backrests
are assigned to the same clusters as the seats. And, the animal tails
are fused with the segments that represent the bodies, while some of



the ears and horns are fused with the heads and necks. These prob-
lems appear due to imperfections in the clustering, which assigns
these parts with an incorrect label. Another shortcoming includes
the chair made up of thin wires on the front row, which is misla-
beled. In this case, we attribute the problem to the lack of informa-
tion available to the co-segmentation: this shape has unique parts
that do not have similar counterparts in the set. This is an intrinsic
limitation of our approach.

Moreover, to assess the quality of the results in a quantitative man-
ner, we show a statistical evaluation in Table 1. The first column
indicates the number of shapes in the class, the second column cor-
responds to the labeling accuracy of the initial co-segmentation, and
the third column shows the labeling accuracy after the refined la-
beling. Each entry is the average accuracy for all the shapes in the
class. The accuracy for a single shape is given by

Accuracy(l, t) =

∑
i ai δ(li = ti)∑

i ai
, (12)

where ai is the area of face i, l is the labeling returned by the co-
segmentation, t is the ground-truth labeling, and δ(x = y) is 1 only
if x = y. This measure captures the amount of area of the shape
that is labeled correctly by the co-segmentation [Kalogerakis et al.
2010]. Since our co-segmentation does not return labels associated
to specific semantic classes, before computing the accuracy we find
the best one-to-one matching between our labels and the ground-
truth labels. The matching is used coherently for the whole set.

The average labeling accuracy for all the classes is about 84% for
the initial co-segmentation, and 88% for the refined labeling. We
notice that, with the exception of one class, the accuracies are at
least 84% or higher. We attribute the 10% accuracy gap between
certain classes, e.g., candelabra vs. lamps, to the greater part vari-
ability that appears on the candelabra, chairs, and vases. Notice also
a 4% improvement from the initial to the refined co-segmentation.
This difference arises as a result of the boundary refinement, where
parts that were oversegmented or wrongly labeled in the initial co-
segmentation are properly labeled and have their segmentation re-
fined with the statistical models (Figure 6).

Effect of the set. In Figure 8, we demonstrate the power of the set
by evaluating how the co-segmentation accuracy improves when
the set is enriched. For each class, we start with a pair of shapes
and incrementally increase the set size by adding one shape at a
time to the set. To isolate the effect of the graph cuts refinement,
we perform only the initial labeling for each subset and report the
labeling accuracy according to (12). The x-axis denotes the subset
size, while the y-axis is the accuracy for processing the subset.

For all the classes, the general trend of the curves clearly demon-
strates that the co-segmentation accuracy is improved as more
shapes are added to the set. The non-monotonicity of the accuracy
plots occurs when a difficult or unique exemplar is added to the
set. The accuracy is then recovered or improved once additional
shapes providing more information are added to the set. Note that
the curves can change according to the specific order in which the
shapes are added to the set. We particularly chose orderings that
better reveal the monotonic behavior of the algorithm. Random or-
derings lead to more points that break the monotonicity, however,
the overall upward trend of the curves remains the same.

Comparison to the state-of-the-art. Figure 9 shows the re-
sults obtained by applying the method of Golovinskiy and
Funkhouser [2009] on two selected sets1. Their results on all the
other datasets are available in the supplementary material. No-
tice that this method obtains satisfactory results for sets that can be

1The authors kindly provided their implementation to us.

Table 1: Average co-analysis labeling accuracy.

Class Num. shapes Initial lab. Refined lab.
Candelabra 28 73.0 84.4
Chairs 20 78.6 84.8
Four-legged 20 75.9 77.3
Goblets 12 98.0 98.2
Guitars 44 86.4 87.2
Lamps 20 93.8 94.3
Vases 28 84.5 87.4

Figure 8: The power of the set demonstrated for all the classes: as
the number of shapes in the set increases (x-axis), the accuracy of
the co-segmentation (y-axis) shows clear trend of improvement.

properly aligned with similarity transformations, e.g., chairs. How-
ever, when the shapes possess significant variability in topology
(vases and candelabra) or pose (four-legged animals), the segmen-
tations either miss important parts of the shapes (the animal heads),
or are not meaningful at all (as in the vases and candelabra). This
is due to the fact that this method derives the relation between the
parts of different shapes from their proximity after alignment. It is
not possible, even after a perfect alignment, to derive a correspon-
dence between the parts of some of the vases just from proximity.
Our method, on the other hand, is more robust in this regard, since
it makes use of shape descriptors to handle more shape variability,
and derives the inter-shape relations from third parties in the set.

Comparison to a supervised approach. We also compare our un-
supervised co-segmentation to the supervised approach of Kaloger-
akis et al. [2010]. The authors of this approach kindly provided
the results of applying their method on four sets that we use in this
work. In each experiment, 70% of the shapes in a set were randomly
selected as training data, while the remaining 30% were used as test
shapes on which the labeling accuracy was evaluated. These exper-
iments were repeated 5 times for each class, and the results were
averaged. The accuracy for a single shape was also computed with
the measure in (12). The accuracies obtained are: 80.9%, 91.6%,
97.3%, and 96.0%, for candelabra, chairs, lamps, and vases, re-
spectively. Although a direct comparison of the accuracies of both
approaches does not represent a meticulous evaluation, due to the
splitting of the dataset into train and test sets with the supervised
approach, we believe that in this manner we are nevertheless cap-
turing the accuracy of the supervised approach in an average case.

By comparing these numbers with Table 1, we see a difference of
at most 10% between the two approaches. We conclude that such



Figure 9: Comparison to the approach in [Golovinskiy and
Funkhouser 2009]. In contrast to our co-analysis results in Fig-
ure 7, we observe that this method provides good results for sets of
shapes that can be spatially aligned (chairs), but less meaningful
co-segmentations for shapes with great part variability (candles).

close results demonstrate the high potential of the unsupervised
co-segmentation. Although the results of the supervised approach
are more accurate on average, we recall that it requires substantial
work for the preparation of a reasonably-sized training set, since the
shapes have to be manually segmented and labeled. Additionally, a
separate training set is necessary for each different class of shapes,
and the approach only extracts a labeling that follows the pattern of
the training examples. If a different training set is given, the results
can change considerably. The unsupervised approach, on the other
hand, derives its knowledge automatically from the set. Finally, we
conjecture that the accuracies for the unsupervised approach can
possibly be increased with the enhancement of certain components
of the method, such as the shape descriptors and statistical models.

Performance. Our implementation is fairly efficient, executing in
10 minutes for a set of 30 shapes in an AMD Opteron 2.4GHz with
8Gb of memory. In contrast, supervised approaches such as those
in [Kalogerakis et al. 2010] and [van Kaick et al. 2011] can take
on the order of hours for similarly-sized training sets and hardware
configuration. Our faster performance is mainly due to two aspects:
1. The supervised approaches involve classifier training with com-
plex algorithms such as boosting. 2. We perform most of the anal-
ysis at the segment-level, rather than face-level, a natural approach
to greatly reduce the complexity of the method.

8 Conclusion, discussion, and future work

We presented a method for co-segmentation of a set of shapes via
descriptor-space spectral clustering. The question inherent to co-
analysis is whether we can extract more information by analyzing a
set simultaneously, instead of individual or pairs of shapes. Our in-
vestigation leads to an affirmative answer as we have shown that the
set makes it possible for semantically related parts that differ signif-
icantly in geometry and even topology to be linked via third-party
connections. By performing the analysis in a descriptor space and
exploiting the power of spectral clustering, we are able to properly
co-segment sets of shapes exhibiting significant variability.

Ultimately, we would like to subject our co-segmentation approach
to large-scale tests. Existing benchmarks for shape segmentation
do not quite serve the purpose however. The Princeton Segmenta-
tion Benchmark (PSB) [Chen et al. 2009] consists of multiple seg-
mentations per shape that were created individually via automatic
methods or manual efforts without taking the sets into account, i.e.,
they are not necessarily consistent across each shape class. While
Kalogerakis et al. [2010] provide a ground-truth labeling of the PSB
data which is consistent across the sets, it is not obvious that this is
the proper ground-truth to compare to. The ground-truth is pre-
pared to guide the supervised algorithm to what the user desires
to extract from the shapes. As Kalogerakis et al. clearly showed
in their paper, if an alternative ground-truth is prepared, the algo-
rithm extracts a different segmentation. Hence a comparison to a
fixed ground-truth is problematic as well. The preparation of rigor-
ous large-scale tests for co-segmentation of sets of shapes requires
significant effort and we leave that for future work.

Nevertheless, we evaluated our approach on a moderately-sized
dataset with seven classes of shapes, and compared the co-
segmentation to one possible ground-truth prepared by a human.
We showed that the result is close to the user-designed segmenta-
tions, implying that it does possess semantic meaning.

Limitations. The main limitation of our approach stems from the
obvious fact that the quality of the results is entirely dictated by
the input set. It may be possible that there is no link between two
semantically related segments since the third parties that may estab-
lish such a link are missing, e.g., the wired chair and peculiar vases
in Figure 7 are unique entities; there are no third parties that relate
these shapes to the set. Also, while related parts can be properly
linked via the set, imperfect clustering results may cause unrelated
segments to be assigned to the same label, e.g., the small candelabra
handles and animal parts in Figure 7.

Moreover, the success of our approach is inherently tied to the qual-
ity or usefulness of the shape descriptors. Firstly, one limitation of
our current descriptors is that their computation requires the input
models to be manifold meshes. Secondly, and more importantly, the
dependence on shape descriptors leads to the difficult question of
what information should be extracted to provide sufficient knowl-
edge about the shapes. Nevertheless, our approach will naturally
benefit from incorporating more sophisticated descriptors, e.g., of
a structural nature [Biasotti et al. 2008; Shapira et al. 2009]. An-
other point for practical improvement is the incorporation of more
advanced statistical models to represent the clusters of parts.

Future work. It may be naturally expected that our current re-
sults do not yet surpass those of supervised approaches that are
supported by well-built training sets [Kalogerakis et al. 2010; van
Kaick et al. 2011]. However, our set-driven co-segmentation has the
potential of outperforming a supervised approach when the knowl-
edge of the latter is insufficient. Perhaps more effective would be
a semi-supervised approach, where the user needs to provide only
a reduced amount of knowledge and the algorithm can maximally



exploit the power of the input set, or a setting where the user only
corrects the parts erroneously labeled so that the system actively
learns and adapts the co-segmentation of the set.

The question of how much we can learn from a set is still open
for further study, and could lead to novel approaches that take ad-
vantage of group information in totally different ways. Another
direction for further research is to develop domain-specific shape
descriptors, so that the co-analysis can be specialized to specific
classes, e.g., humanoid characters, creatures, tools, or vehicles.
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