COMP 3803 - Assignment 1 Solutions

January 30, 2015

1. Q: Prove that the sum of n real numbers if rational if all of them are rational. Is the converse true? Prove or disprove that the product of n real numbers is rational (resp. irrational) if all of them are rational (resp. irrational).
A: We will prove the first part by induction. Of course, the base case is trivial: the sum of a single rational number is clearly rational. Then, suppose that the sum of n rational numbers is always rational. Given $n+1$ rational numbers $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n+1}}{b_{n+1}}$, their sum is:

$$
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\ldots+\frac{a_{n}}{b_{n}}+\frac{a_{n+1}}{b_{n+1}}
$$

By the induction hypothesis, the sum of the first n of these numbers is some rational number $\frac{p}{q}$, so the above expression is:

$$
=\frac{p}{q}+\frac{a_{n+1}}{b_{n+1}}=\frac{p b_{n+1}+q a_{n+1}}{q b_{n+1}}
$$

which is rational. So by induction, the sum of n rational numbers is rational.
The converse is not necessarily true, i.e. if a number is rational, it is not necessarily only a sum of rational numbers, e.g. $0=-\sqrt{2}+\sqrt{2}$. Finally, a product of rational numbers is clearly rational (by multiplying all numerators together and all denominators together), but a product of irrational numbers need not be irrational. Indeed, $\sqrt{2} * \sqrt{2}=2$.
2. Q: Prove that if n is a positive integer, then n is odd if and only if $5 n+6$ is odd.

A: First, suppose that n is an odd positive integer, so $n=2 k+1$ for some integer $k \geq 0$. Then:

$$
5 n+6=5(2 k+1)+6=10 k+11=2(5 k+5)+1
$$

So $5 n+6$ has the form $2 \ell+1$ for some integer $\ell-$ in other words, $5 n+6$ is odd.
Conversely, suppose that $5 n+6$ is odd, so $5 n+6=2 k+1$ for some integer $k \geq 0$. Then:

$$
5 n+6=2 k+1 \Rightarrow 5 n=2 k-5 \Rightarrow n=\frac{2 k}{5}-1
$$

Since n is known to be an integer, then $5 \mid 2 k$, so $5 \mid k$, and $\frac{k}{5}=\ell$ is an integer, whereby $n=2 \ell-1$ is odd.
3. Q: Show by induction that $n^{5}-n$ is divisible by 5 for all $n \geq 0$.

A: For the base case, $n=0,0^{5}-0=0$ is divisible by 5 .
Suppose $n^{5}-n$ is divisible by 5 for some $n \geq 0$ - in other words, $n^{5}-n=5 k$ for some integer k. Then:

$$
\begin{aligned}
(n+1)^{5}-(n+1) & =\left(n^{5}+5 n^{4}+10 n^{3}+10 n^{2}+5 n+1\right)-(n+1) \\
& =\left(n^{5}-n\right)+5\left(n^{4}+2 n^{3}+2 n^{2}+n\right) \\
& =5 k+5\left(n^{4}+2 n^{3}+2 n^{2}+n\right)
\end{aligned}
$$

which is clearly divisible by 5 . Thus, by induction, $n^{5}-n$ is divisible by 5 for all $n \geq 0$.
4. Q: Show by induction that $n^{3}-n$ is divisible by 3 for all $n \geq 0$.

A: The solution is identical to that of the previous problem. For the base case, $n=0,0^{3}-0=0$ is divisible by 3 .
Suppose $n^{3}-n$ is divisible by 3 for some $n \geq 0-$ in other words, $n^{3}-n=3 k$ for some integer k. Then:

$$
\begin{aligned}
(n+1)^{3}-(n+1) & =\left(n^{3}+3 n^{2}+3 n+1\right)-(n+1) \\
& =\left(n^{3}-n\right)+3\left(n^{2}+n\right) \\
& =3 k+3\left(n^{2}+n\right)
\end{aligned}
$$

which is clearly divisible by 3 . Thus, by induction, $n^{3}-n$ is divisible by 3 for all $n \geq 0$.

Remark. Just some extra information if you are curious! You don't need to know anything about this, but you may find it interesting.
The previous two questions hint at a pattern: is it true that $n^{k}-n$ is divisible by k for every $k \geq 2$ and $n \geq 0$? We can easily verify that this is not always the case: indeed, $2^{4}-2=14$ which is not divisible by 4 .
However, if p is prime, then $n^{p}-n$ is always divisible by p. We only need a basic algebraic fact to prove this - the so-called "freshman's dream" - that if p is prime, then for any integers x and y :

$$
(x+y)^{p} \equiv x^{p}+y^{p}(\bmod p)
$$

Now, to show that $n^{p}-n$ is divisible by p, we proceed by induction as before. The base case is trivial, so we assume the induction hypothesis, and by the "freshman's dream":

$$
(n+1)^{p}-(n+1) \equiv n^{p}+1^{p}-n-1=n^{p}-n(\bmod p)
$$

Since we've assumed that $n^{p}-n \equiv 0(\bmod p)$, then we are done by induction. This result is known as Fermat's little theorem, and its more general form is seen in Euler's theorem.
5. Q: We had shown in class that the set of real numbers in the interval $[0,1]$ is uncountable. What can you then say about the cardinality of the set of real numbers in the interval $[0.5,0.6]$? If it is countable, why is it? If it is uncountable, present the arguments in the same way we did the proof for the interval $[0,1]$. Given what was taught in class, could you have come up with an easier proof?
A: You are asked to present a similar argument to the one shown in class: such an argument is called a diagonalisation, or a diagonal argument. We proceed by contradiction. Suppose $[0.5,0.6]$ is countable. Then, we can exhaustively enumerate its elements in a sequence s_{1}, s_{2}, \ldots.

We represent each s_{i} in decimal as follows:

$$
\begin{aligned}
& s_{1}=0.5 s_{11} s_{12} s_{13} \ldots \\
& s_{2}=0.5 s_{21} s_{22} s_{23} \ldots \\
& s_{3}=0.5 s_{31} s_{32} s_{33} \ldots
\end{aligned}
$$

Then, I claim that there exists an element $t \in[0.5,0.6]$ which is never listed in the above sequence. Indeed, let:

$$
t=0.5 t_{1} t_{2} t_{3} \ldots
$$

where $t_{1} \neq s_{11}, t_{2} \neq s_{22}, \ldots$, and in general, t_{n} is chosen so that $t_{n} \neq s_{n n}$. It is a fact that t is never listed: suppose $t=s_{n}$ for some n. Then $t_{1}=s_{n 1}, t_{2}=s_{n 2}, \ldots, t_{n}=s_{n n}$, but t was chosen precisely so that $t_{n} \neq s_{n n}$.
So, in conclusion, if $[0.5,0.6]$ were countable, we could exhaustively enumerate its elements, but this enumeration allows us to construct a number in $[0.5,0.6]$ which could not possibly be listed in the enumeration. Thus, by contradiction, $[0.5,0.6]$ must be uncountable.
Remark. There is a simpler proof: define the function f as follows:

$$
\begin{aligned}
f:[0,1] & \rightarrow[0.5,0.6] \\
x & \mapsto 0.1 * x+0.5
\end{aligned}
$$

f is a bijection, so $[0,1]$ is uncountable if and only if $[0.5,0.6]$ is uncountable.
6. \mathbf{Q} : Let \mathbf{A} be the set of all even natural numbers, and \mathbf{B} be the set of natural numbers divisible by 3 . Prove that the set of fractions $\frac{a}{b}$ where $a \in \mathbf{A}$ and $b \in \mathbf{B}$ is countable.
A: We will say $\mathbf{C}=\left\{\frac{a}{b}: a \in \mathbf{A}, b \in \mathbf{B}\right\}$. The task is to show that \mathbf{C} is countable.
Clearly A and B are countable as subsets of the natural numbers, which by definition is a countable set. Thus, $\mathbf{A} \times \mathbf{B}$ is also countable. Each pair $(a, b) \in \mathbf{A} \times \mathbf{B}$ exhaustively maps to an element $\frac{a}{b} \in \mathbf{C}$, so \mathbf{C} is countable. Formally, here we have constructed a surjection (or surjective mapping, also sometimes called an onto mapping), $\mathbf{A} \times$ B \rightarrow.

Remark. Again, a simple observation makes this a proof exceedingly easy. Note that \mathbf{C} is a subset of the rationals, which is a countable set, so \mathbf{C} must be countable.
7. Q: For arbitrary strings X and Y, show that $(X Y)^{R}=Y^{R} \cdot X^{R}$, where, by notation, V^{R} is the string obtained by reversing the string V.
A: If $X=x_{1} x_{2} \ldots x_{i}, Y=y_{1} y_{2} \ldots y_{j}$, then:

$$
\begin{aligned}
X^{R} & =x_{i} x_{i-1} \ldots x_{1} \\
Y^{R} & =y_{j} y_{j-1} \ldots y_{1} \\
X Y & =x_{1} x_{2} \ldots x_{i} y_{1} y_{2} \ldots y_{j} \\
(X Y)^{R} & =y_{j} y_{j-1} \ldots y_{1} x_{i} x_{i-1} \ldots x_{1} \\
Y^{R} X^{R} & =y_{j} y_{j-1} \ldots y_{1} x_{i} x_{i-1} \ldots x_{1}
\end{aligned}
$$

So $(X Y)^{R}=Y^{R} X^{R}$.
8. \mathbf{Q} : For any language \mathbf{A}, let \mathbf{A}^{R} be $\left\{X^{R}: X \in \mathbf{A}\right\}$. Then, for arbitrary languages \mathbf{A} and \mathbf{B}, show that $(\mathbf{A B})^{R}=\mathbf{B}^{R} \cdot \mathbf{A}^{R}$, and that $(\mathbf{A} \cup \mathbf{B})^{R}=\mathbf{A}^{R} \cup \mathbf{B}^{R}$. Your arguments must be brief but accurate.
A : For $(\mathbf{A B})^{R}$, by definition:

$$
\begin{aligned}
(\mathbf{A B})^{R} & =\left\{X^{R}: X \in \mathbf{A B}\right\}=\left\{(X Y)^{R}: X \in \mathbf{A}, Y \in \mathbf{B}\right\} \\
& =\left\{Y^{R} X^{R}: X \in \mathbf{A}, Y \in \mathbf{B}\right\} \\
& =\left\{Y^{R}: Y \in \mathbf{B}\right\} \cdot\left\{X^{R}: X \in \mathbf{A}\right\}=\mathbf{B}^{R} \mathbf{A}^{R}
\end{aligned}
$$

For $(\mathbf{A} \cup \mathbf{B})^{R}$, by definition:

$$
\begin{aligned}
(\mathbf{A} \cup \mathbf{B})^{R} & =\left\{X^{R}: X \in \mathbf{A} \cup \mathbf{B}\right\}=\left\{X^{R}: X \in \mathbf{A} \text { or } X \in \mathbf{B}\right\} \\
& =\left\{X^{R}: X \in \mathbf{A}\right\} \cup\left\{X^{R}: X \in \mathbf{B}\right\}=\mathbf{A}^{R} \cup \mathbf{B}^{R}
\end{aligned}
$$

9. \mathbf{Q} : If the languages \mathbf{A} and \mathbf{B} are countably infinite and we use the notation of Question 8, what can you say about the size of the language obtained by concatenating $(\mathbf{A B})^{R}$ and $(\mathbf{A} \cup \mathbf{B})^{R}$. Is the size of the set $(\mathbf{A B})^{R} \cdot(\mathbf{A} \cup \mathbf{B})^{R}$ any larger or smaller than the size of the language obtained by concatenating \mathbf{B}^{R} and \mathbf{A}^{R} ?

A: We first show that if the language \mathbf{A} is countable, then \mathbf{A}^{R} is countable. Indeed, each string $X \in \mathbf{A}$ corresponds exactly to one string $X^{R} \in \mathbf{A}$, so \mathbf{A} is countable if and only if \mathbf{A}^{R} is countable. Moreover, if either one is countably infinite, then so is the other.
Recall also that the concatenation of countably infinite languages results in a countably infinite language.
So, from the previous problem, ($\mathbf{A B})^{R}$ is countably infinte since $\mathbf{A B}$ is countably infinite. Similarly, $(\mathbf{A} \cup \mathbf{B})^{R}$ is countably infinite since $\mathbf{A} \cup \mathbf{B}$ is countably infinite.
Since \mathbf{A} and \mathbf{B} are countably infinite, then by the above observations, $(\mathbf{A B})^{R} \cdot(\mathbf{A} \cup \mathbf{B})^{R}$ is countably infinite and $\mathbf{B}^{R} \cdot \mathbf{A}^{R}$ is countably infinite, so they are both of equal cardinality..

