COMP 3803 - Assignment 2 Solutions

Solutions written in IATEX 2, diagrams drawn in ipe
February 13, 2015

1. Q: Let $\Sigma=\{a, b\}$. Write a regular expression for the set of all strings in Σ^{*} that start with an odd number of a 's and contain at least two b 's.

A:

$$
a(a a)^{*} b a^{*} b \Sigma^{*}
$$

2. Q: For each of the following languages, construct a DFA that accepts the language. In all cases, the alphabet is $\{0,1\}$.
A:
a. $\{W: W$ contains at least three 1's $\}$.

b. $\{W: W$ contains an odd number of 1 's or more than two 0 's $\}$.

c. $\{W$: every odd position in W is 1$\}$.

3. Q: For the NFA M_{1} and M_{2} of the assignment questionnaire, answer the following questions with some reasonable justification:
A:
a. Construct an NFA for $L\left(M_{1}\right) \cup L\left(M_{2}\right)$:

b. Construct an NFA for $L\left(M_{1}\right) L\left(M_{2}\right)$:

c. Construct NFA for $\left(L\left(M_{1}\right)\right)^{*}$ and $\left(L\left(M_{2}\right)\right)^{*}$:

Note: M_{2} already accepts $\left(L\left(M_{2}\right)\right)^{*}$.
d. What is a regular expression that describes $L\left(M_{1}\right)$:

$$
1(01)^{*} 1\left(01(01)^{*} 1\right)^{*}
$$

4. Q: Convert both the NFA of Question 3 into equivalent DFA.

A:

0,1

0,1
5. Q: For each of the following languages, construct an NFA, with the specified number of states, that accepts the language. In all cases, the alphabet is $\{0,1\}$.
A:
a. The language $\{W: W$ ends with 101$\}$. The NFA must have four states:

b. The language $\{W: W$ contains the substring 10001$\}$. The NFA must have six states:

c. The language $\{W$: W contains an odd number of 1 's or exactly two 0 's $\}$. The NFA must have six states:

6. Q: Give regular expressions describing the following languages in which the alphabet Σ is $\{0,1\}$:
A:
a. $\{W: W$ has length at least 3 , and its second symbol is 1$\}$:

$$
\Sigma 1 \Sigma \Sigma^{*}
$$

b. $\{W$: Every odd position of W is a 0$\}$:

$$
(0 \Sigma)^{*}(0 \cup \varepsilon)
$$

7. Q: Develop the NFA (recognizer) for each of the following regular languages:

A:
a. $(0 \cup 1)^{*} 10(01)^{*}$:

b. $\left((01)^{*} 10 \cup(00)\right)^{*}$:

8. Q: What is the regular expression accepted by the DFA presented in the questionnaire?

A: We will determine the expression using the technique demonstrated in class and described in the course notes. We have the following system of equations:

$$
\begin{aligned}
& L_{1}=\varepsilon \cup b L_{1} \cup a L_{2} \\
& L_{2}=a L_{2} \cup b L_{3} \\
& L_{3}=b L_{3} \cup a L_{1}
\end{aligned}
$$

From this, we see that $L_{3}=b^{*} a L_{1}$. Substituting this expression into L_{2}, we have:

$$
L_{2}=a L_{2} \cup b b^{*} a L_{1}
$$

so $L_{2}=a^{*} b b^{*} a L_{1}$. Substituting into L_{1}, finally:

$$
L_{1}=\varepsilon \cup\left(b \cup a a^{*} b b^{*} a\right) L_{1}
$$

So we obtain:

$$
L_{1}=\left(b \cup a a^{*} b b^{*} a\right)^{*}
$$

Since 1 is the starting state, then L_{1} represents the regular expression of the language accepted by the given DFA.

