COMP 3803 - Assignment 3 Solutions

Solutions written in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$, diagrams drawn in ipe

Last updated on March 17, 2015

Note: S is the start variable for every given CFG, unless explicitly stated otherwise.

1. Q: Using the pumping lemma for regular languages, prove that the following languages with corresponding alphabets are not regular:

A:

- $L=\left\{b^{4} a^{M} b^{2 M}: M \geq 0\right\}$:

Suppose that L is regular. Let p be the pumping length as given by the pumping lemma for regular languages, and $w=b^{4} a^{p} b^{2 p}$. By the pumping lemma, we can write $w=x y z$ where $|x y| \leq p$ and $|y| \geq 1$ such that $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq p$, then $x y=b^{4} a^{k}$ for some $k \leq p-4$. If y contains a b, then $x z$ starts with less than $4 b$'s, so that $x z \notin L$, contradicting the pumping lemma. If instead, y consists entirely of a 's, then $x z=b^{4} a^{j} b^{2 p}$ for some $j<p$, so that $x z \notin L$ again, contradicting the pumping lemma. Thus, L cannot be regular.

- $L=\left\{a^{M} b^{N} a^{M+N}: M, N \geq 0\right\}$:

Suppose that L is regular. Let p be the pumping length as given by the pumping lemma, and $w=a^{p} b^{p} a^{2 p}$. By the pumping lemma, we can write $w=x y z$ where $|x y| \leq p$ and $|y| \geq 1$ such that $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq p$, then $x y$ consists entirely of a 's, so $x z=a^{k} b^{p} a^{2 p}$ for some $k<p$. But here, $k+p<2 p$, so $x z \notin L$, contradicting the pumping lemma. Therefore, L cannot be regular.

- $L=\left\{a^{n^{3}}: n \geq 0\right\}$:

Suppose that L is regular. Let p be the pumping length as given by the pumping lemma, and $w=a^{p^{3}}$. By the pumping lemma, we can write $w=x y z$ where $|x y| \leq p$ and $|y| \geq 1$ such that $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq p$, then $|y| \leq p$. Consider the string $x y^{2} z$. We have:

$$
\left|x y^{2} z\right|=|x y z|+|y| \leq p^{3}+p<p^{3}+3 p^{2}+3 p+1=(p+1)^{3}
$$

Since $|y| \geq 1$, then $x y^{2} z$ is strictly longer than w, but the shortest string in L longer than w is $a^{(p+1)^{3}}$. Since $x y^{2} z$ has length strictly less than $(p+1)^{3}$, then $x y^{2} z \notin L$, contradicting the pumping lemma, so L cannot be regular.
2. Q: For the alphabet $\Sigma=\{()$,$\} , use the pumping lemma for regular languages to prove$ that the language consisting of matched parentheses is not regular. An example of a string in this language is " $(()(()))$ ".
A: Let L be the given language. Suppose that L is regular. Then, let p be the pumping length as given by the pumping lemma, and $w=\left({ }^{p}\right)^{p} \in L$. By the pumping lemma, we can write $w=x y z$, where $|x y| \leq p$ and $|y| \geq 1$, such that $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq p$ and $w=\left({ }^{p}\right)^{p}$, then $x y$ (and thus y) must consist entirely of (. Thus, $x y^{0} z=x z=\left({ }^{p-|y|}\right)^{p}$, and since $|y| \geq 1$, then $x z$ is no longer a string of matched parentheses, so $x z \notin L$, contradicting the pumping lemma. Therefore, L cannot be regular.
3. Q: Let $\Sigma=\{0,1\}$. Write CFGs that generate the following languages:

A:

- $\{W: W$ contains no more than three 1 's $\}$:

$$
\begin{aligned}
& S \rightarrow R|R 1 R| R 1 R 1 R \mid R 1 R 1 R 1 R \\
& R \rightarrow 0 R \mid \varepsilon
\end{aligned}
$$

- $\{W: W$ contains exactly two 1 's $\}$:

$$
\begin{aligned}
& S \rightarrow R 1 R 1 R \\
& R \rightarrow 0 R \mid \varepsilon
\end{aligned}
$$

- $\{W: W$ is of even length and starts and ends with the same symbol $\}$:

$$
\begin{aligned}
& S \rightarrow 0 R 0|1 R 1| \varepsilon \\
& R \rightarrow 00 R|01 R| 10 R|11 R| \varepsilon
\end{aligned}
$$

Note: it is ambiguous whether or not ε is in the language, and either answer is accepted.

- $\left\{0^{n} 1^{n}: n \geq 1\right\} \cup\left\{1^{2 m} 0^{m}: m \geq 1\right\}$:

$$
\begin{aligned}
& S \rightarrow A \mid B \\
& A \rightarrow 0 A 1 \mid 01 \\
& B \rightarrow 11 B 0 \mid 110
\end{aligned}
$$

- $\{W: W=0 X 1$ or $1 X 0$ where X is a palindrome $\}$:

$$
\begin{aligned}
& S \rightarrow 0 X 1 \mid 1 X 0 \\
& X \rightarrow 0 X 0|1 X 1| 0|1| \varepsilon
\end{aligned}
$$

Note: a palindrome is a string w where $w=w^{R}$. This is why it is important to include the rules $X \rightarrow 0 \mid 1$, since without them, we would only recognize strings of the form $w w^{R}$, i.e. the set of palindromes of even length.
4. Q: Let $G=(V, \Sigma, R, S)$ be the context-free grammar in which $V=\{A, B, S\}, \Sigma=\{0,1\}$,
S is the start variable, and R consists of the rules:

$$
\begin{aligned}
& S \rightarrow 0 B \mid 11 A \\
& A \rightarrow 0|0 S| B A A \\
& B \rightarrow 11|11 S| A B B
\end{aligned}
$$

A:

- By showing a sequence of productions, prove that $011011110 \in L(G)$:

$$
S \Rightarrow 0 B \Rightarrow 011 S \Rightarrow 0110 B \Rightarrow 011011 S \Rightarrow 01101111 A \Rightarrow 011011110
$$

- Can you argue the following assertion:"Every string $W \in L(G)$ has the property that the number of 1's in W is equal to twice the number of 0's"?
Yes. More generally, we argue as well by induction (on the length of a string in the language) that any string derived from A has one more 0 than 11's, and any string derived from B has one more 11 than 0's.
For S, the least number of productions to obtain a string in the language is 2 , and these two strings are 011 and 110, which both obey the desired property. Moreover, by induction $0 B$ and $11 A$ contain the same number of 0 's as 11 's, i.e. contain twice as many 1's as 0's.
For A, in the base case, 0 clearly has the desired property. By induction, since any string from S has the same number of 11 's as 0 's, then $0 S$ has one more 0 's than 11's. Similarly, by induction, there is $(1+1-1)=1$ more 0 's than 11's in $B A A$.
Finally, for B, in the base case, 11 clearly has the desired property. By induction, since any string from S has the same number of 11 's as 0 's, then $11 S$ has one more 11's than 0's. Similarly, by induction, there is $(1+1-1)=1$ more 11's than 0's in $A B B$.

5. Q: Convert the following CFGs (where $\Sigma=\{a, b\}$) to the Chomsky Normal Form:

A:
(a) $S \rightarrow S S ; S \rightarrow a b b S ; S \rightarrow S b b a ; S \rightarrow \varepsilon$
(1) Remove the start state from the right-hand side; make the new start state S_{1} :

$$
\begin{aligned}
S_{1} & \rightarrow S \\
S & \rightarrow S S|a b b S| S b b a \mid \varepsilon
\end{aligned}
$$

(2) Remove ε-rules:

$$
\begin{aligned}
S_{1} & \rightarrow S \mid \varepsilon \\
S & \rightarrow a b b|a b b S| b b a|S b b a| S S
\end{aligned}
$$

(3) Remove unit rules:

$$
\begin{gathered}
S_{1} \rightarrow a b b|a b b S| b b a|S b b a| S S \mid \varepsilon \\
S \rightarrow a b b|a b b S| b b a|S b b a| S S
\end{gathered}
$$

(4) Eliminate rules having more than 2 symbols on the right:

$$
\begin{aligned}
S_{1} & \rightarrow a A_{1}\left|a B_{1}\right| b C_{1}\left|S D_{1}\right| S S \mid \varepsilon \\
S & \rightarrow a A_{1}\left|a B_{1}\right| b C_{1}\left|S D_{1}\right| S S \\
A_{1} & \rightarrow b A_{2} \\
A_{2} & \rightarrow b \\
B_{1} & \rightarrow b B_{2} \\
B_{2} & \rightarrow A_{2} S \\
C_{1} & \rightarrow b C_{2} \\
C_{2} & \rightarrow a \\
D_{1} & \rightarrow b C_{2}
\end{aligned}
$$

(5) Eliminate rules of the form $A \rightarrow u_{1} u_{2}$ where u_{1} and u_{2} are not both variables:

$$
\begin{aligned}
S_{1} & \rightarrow C_{2} A_{1}\left|C_{2} B_{1}\right| A_{2} C_{1}\left|S D_{1}\right| S S \mid \varepsilon \\
S & \rightarrow C_{2} A_{1}\left|C_{2} B_{1}\right| A_{2} C_{1}\left|S D_{1}\right| S S \\
A_{1} & \rightarrow A_{2} A_{2} \\
A_{2} & \rightarrow b \\
B_{1} & \rightarrow A_{2} B_{2} \\
B_{2} & \rightarrow A_{2} S \\
C_{1} & \rightarrow A_{2} C_{2} \\
C_{2} & \rightarrow a \\
D_{1} & \rightarrow A_{2} C_{2}
\end{aligned}
$$

(b) $S \rightarrow a S b b ; S \rightarrow b b S a ; S \rightarrow \varepsilon$
(1) Remove the start state from the right-hand side; make the new start state S_{1} :

$$
\begin{aligned}
S_{1} & \rightarrow S \\
S & \rightarrow a S b b|b b S a| \varepsilon
\end{aligned}
$$

(2) Remove ε-rules:

$$
\begin{aligned}
S_{1} & \rightarrow S \mid \varepsilon \\
S & \rightarrow a b b|a S b b| b b a \mid b b S a
\end{aligned}
$$

(3) Remove unit rules:

$$
\begin{aligned}
S_{1} & \rightarrow a b b|a S b b| b b a|b b S a| \varepsilon \\
S & \rightarrow a b b|a S b b| b b a \mid b b S a
\end{aligned}
$$

(4) Eliminate rules having more than 2 symbols on the right:

$$
\begin{aligned}
S_{1} & \rightarrow a A_{1}\left|a B_{1}\right| b C_{1}\left|b D_{1}\right| \varepsilon \\
S & \rightarrow a A_{1}\left|a B_{1}\right| b C_{1} \mid b D_{1} \\
A_{1} & \rightarrow b A_{2} \\
A_{2} & \rightarrow b \\
B_{1} & \rightarrow S B_{2} \\
B_{2} & \rightarrow b A_{2} \\
C_{1} & \rightarrow b C_{2} \\
C_{2} & \rightarrow a \\
D_{1} & \rightarrow b D_{2} \\
D_{2} & \rightarrow S C_{2}
\end{aligned}
$$

(5) Eliminate rules of the form $A \rightarrow u_{1} u_{2}$ where u_{1} and u_{2} are not both variables:

$$
\begin{aligned}
S_{1} & \rightarrow C_{2} A_{1}\left|C_{2} B_{1}\right| A_{2} C_{1}\left|A_{2} D_{1}\right| \varepsilon \\
S & \rightarrow C_{2} A_{1}\left|C_{2} B_{1}\right| A_{2} C_{1} \mid A_{2} D_{1} \\
A_{1} & \rightarrow A_{2} A_{2} \\
A_{2} & \rightarrow b \\
B_{1} & \rightarrow S B_{2} \\
B_{2} & \rightarrow A_{2} A_{2} \\
C_{1} & \rightarrow A_{2} C_{2} \\
C_{2} & \rightarrow a \\
D_{1} & \rightarrow A_{2} D_{2} \\
D_{2} & \rightarrow S C_{2}
\end{aligned}
$$

6. Q: If L_{1} is the language generated by the grammar in Question 5 (a), and L_{2} is the language generated by the grammar in Question 5 (b), both of them not in the Chomsky Normal Form, create the grammars that generate:
A:

- $L_{1} \cup L_{2}$:

$$
\begin{aligned}
S & \rightarrow S_{1} \mid S_{2} \\
S_{1} & \rightarrow S_{1} S_{1}\left|a b b S_{1}\right| S_{1} b b a \mid \varepsilon \\
S_{2} & \rightarrow a S_{2} b b\left|b b S_{2} a\right| \varepsilon
\end{aligned}
$$

- $L_{1} \cdot L_{2}$:

$$
\begin{aligned}
S & \rightarrow S_{1} S_{2} \\
S_{1} & \rightarrow S_{1} S_{1}\left|a b b S_{1}\right| S_{1} b b a \mid \varepsilon \\
S_{2} & \rightarrow a S_{2} b b\left|b b S_{2} a\right| \varepsilon
\end{aligned}
$$

- L_{1}^{*} :

Nothing needs to be done. $L_{1}^{*}=L_{1}$, since $\varepsilon \in L_{1}$, and the rule $S \rightarrow S S$ is already included in the grammar, so any multiple of 0 or more strings produced by S is in the language.
7. Q: Find a CFG generating $L=\left\{1^{k} 0^{n} 1^{n} 0^{m} 1^{m}: m, n, k \geq 0\right\}$. Give straightforward arguments to show that your answer is right. You need not formally prove that your arguments are right.

A:

$$
\begin{aligned}
& S \rightarrow 1 S \mid A A \\
& A \rightarrow 0 A 1 \mid \varepsilon
\end{aligned}
$$

We first observe that the rule A produces all strings of the form $0^{n} 1^{n}$ for $n \geq 0$, which can be seen by induction, whereby $A \Rightarrow \varepsilon$, and $A \Rightarrow 0 A 1 \Rightarrow \ldots \Rightarrow 00^{n-1} 1^{n-1} 1=$ $0^{n} 1^{n}$. Finally, strings produced by S begin with any number of 1 's, and end with $A A$. In this way, we see that indeed the strings produced by this grammar are of the form $1^{k} 0^{n} 1^{n} 0^{m} 1^{m}$ for $m, n, k \geq 0$.
8. Q: Write the context free grammar that generates the language accepted by the DFA of Question 8 in Assignment 2 (depicted below).

A: According to the construction in Theorem 3.3.1 of the course notes, the following grammar generates the language accepted by the given DFA:

$$
\begin{aligned}
& R_{1} \rightarrow b R_{1}\left|a R_{2}\right| \varepsilon \\
& R_{2} \rightarrow a R_{2} \mid b R_{3} \\
& R_{3} \rightarrow b R_{3} \mid a R_{1}
\end{aligned}
$$

where R_{1} is the start variable.

