COMP 3803 - Assignment 4 Solutions

Solutions written in IXTEX
Last updated on April 6, 2015

1. Q: Prove, using the pumping lemma for CFLs, that the following are not context-free:
A:
o L ={a"b*"c™d* :m,n > 0}:
Suppose that L is context-free. Let p > 1 be the pumping length as given by
the pumping lemma for CFLs. Let s = a?b*d?’. Since s € L and |s| = 5p > p,
then by the pumping lemma we can write s = uvxyz, where:
— vyl = 1
— vyl < p;
— and uv'zy'z € L for every i > 0.
Then:
— Suppose that vay contains no d. Then, uv?zy?z contains more than 2p b’s,
or more than p a’s, so that uvzy?z & L.
— Suppose that vay contains no a. Then, uv?zy?*z contains more than 2p b’s,
or more than 2p d’s, so that uv?zy*z & L.
— The only other case is that vxy contains both an a and a d, but then vxy
must consist of at least 2p b’s, i.e. |[vxy| > 2p+2 > p, contradicting the fact
that |vxy| < p.
In every case, we derive a contradiction, so L cannot be context-free. O
o L= {d"bmc" : k = max{m,n}}:
Suppose that L is context-free. Let p > 1 be the pumping length as given by
the pumping lemma for CFLs. Let s = aPb’cP. Since s € L and |s| = 3p > p,
then by the pumping lemma we can write s = uvxryz, where:
= |oy[ = 1;
= Jvay| < p;
— and wv'xy'z € L for every ¢ > 0.
Then:
— Suppose that vy contains only b’s and ¢’s. Then, uv?zy?z has only p a’s,
but more than p b’s or more than p ¢’s, so that uv?zy?*z & L.



— Suppose that vxy contains only a’s and b’s. If vy contains some a’s, then
uxz has fewer than p a’s while still containing p ¢’s, so that uzz € L. If vy
contains no a’s — and thus contains only b’s — then uv?xy?z contains only p
a’s but more than p b’s, so that wv?xy?z & L.

In every case, we derive a contradiction, so L cannot be context-free. O

2. Q: Construct (deterministic or non-deterministic) pushdown automata that accept the

following languages:

A:

Note: in every case, any unspecified transition is implied to be a stationary loop that

rejects the input string.

o L ={cka™™ :k>0,n>m>0}:
We have states {q., qa, @}, where g is responsible for processing the symbol k.
Thus, q. is the starting state, and we have the following transitions

o [ ={a"b’"c™:m,n >0}:

q.c$ — q.R$
qea% — ¢ NS
q.J% — q.Ne

Ga0$ — g, R$S
GaaS — ¢ RSS
GqabS — NS
¢.0% — ¢, Ne
¢S — q,Ne

@bS — qRe
qu$ — quE
quS — qu€

We have states {qa, @, qc, q.}, where gy, is responsible for processing the symbol



k. Thus, q, is the starting state, and we have the following transitions:

Ga0$ — ¢ RS
q.b$ — @ N$
q.% — q,Ne

qbb$ — quS
qbbS — quSS
q@eS — q.NS

q.cS — ¢.Ne
q.cS = q.Re
q.% — q.Ne

o L = {ctwwf:w e {a,b}*}:
We have the states {q., q1,q2}, where q. is the start state responsible for pro-
cessing ¢’s; ¢ is the next state responsible for processing a string; and ¢s is the
state responsible for processing its reverse:

qe.c$ — q.R$

q.a$ — @ N$
q.b$ — 1 N$
q.0% — q.Ne

qra$ = ¢ RA
q1aA — ¢ RAA
¢1bA — ¢t RAB
¢1aB — qtRBA
¢bB — ¢nRBB
q1aA — N A
¢bB — ¢oNB

G20 A — g Re
QQbB — QQR€
0% — ¢oNe

3. Q: Construct a one-tape Turing machine that accepts the language L = {a*"0" : n > 0},
where ¥ = {a,b}. You have to give the informal description, describing the states

3



you are going to use, their meaning, and what kind of transitions it will have. This
will give you partial credit. But you have to also work out all the details of the
actual transitions. You can assume that the head of the machine is at the start of
the string.

The machine will execute computation in the following steps:

(1) Accept the string if it is empty.

(2) Locate the leftmost character, and delete it if it is an a.

(3) Locate its neighbouring a and delete it.

(4) Locate the rightmost character, and delete it if it is a b.

(5) Return to step (1).

If any of the above steps fails, we reject the input. It should be clear that the
accepted strings are of the desired form.

More specifically, we have the following states:

qo: starting state; expecting an a in the leftmost position, and delete it.
¢/ the neighbouring character is an a, and delete it.

qr: locating the rightmost character.

q»: expecting a b in the rightmost position, and delete it.

qr: locating the leftmost character.

Qaccept: accept state.
® (reject: TeJECt state.

The following transitions describe a Turing machine that computes according to the
algorithm described above (and as usual, every unmarked transition leads to greject):

qu0 — ¢,0OR
qalJ = Qaccept

¢.a = qrOR
qra — qraR
qu — quR
qRD — quL
@b — q UL
qra — qral

qu — quL
qLD — anR



4. Q: Construct a one-tape Turing machine that accepts the language L = {w : w has more
1’s than 0’s}, where ¥ = {0, 1}. You have to give the informal description, describing
the states you are going to use, their meaning, and what kind of transitions it will
have. This will give you partial credit. But you have to also work out all the details
of the actual transitions. You can assume that the head of the machine is at the
start of the string.

The machine will execute the computation in the following steps:

(1) Locate the leftmost unmarked 1 and mark it. If there is none, we reject.
(2) Return to the beginning of the string.

(3) Locate the leftmost unmarked 0 and mark it. If there is none, we accept.
(4) Return to the beginning of the string.

(5) Return to step (1).

It should be clear that the accepted strings are of the desired form.
More specifically, we have the following states:

e ¢;: staring state; locating the leftmost unmarked 1 and marking it.

® (pucr: returning to the beginning of the string to search for a 0.

qo: locating the leftmost unmarked 0 and marking it.

Qhaer: Teturning to the beginning of the string to search for a 1.

Qaccept: accept state.

Qreject: Teject state.

The following transitions describe a Turing machine that computes according to the



algorithm described above:

@10 — ¢10R
@11 = Gack+L
a+ — q+R
G0 = Greject

Pack0 = QoackOL
Qoackl = Qoack 1L
Qoackt = Qoack+L
Qoackd = @UR

900 = Qe+ L
gl — qlR
Qo+ — q+R
ol — Gaccept

ql/)acko — ql/)ackOL

ql/mck’l — ql/)ack’lL
qg)ack+ - qg)ack—i_L

5. Q: Construct a two-tape Turing machine that accepts the language L = {a*"0" : n > 0},
where ¥ = {a,b}. You have to give the informal description, describing the states
you are going to use, their meaning, and what kind of transitions it will have. But
you do not have to also work out all the details of the actual transitions. You can
assume that the head of the machine is at the start of the string. Observe that you
must use both tapes for reading and writing, and not just ignore the second tape
and resort to the one-tape solution of Question 3.

The idea is to use the second tape to predict what we should be seeing on the input
tape, as we read the string from left to right. Broadly speaking, the algorithm
proceeds as follows:

(1) Read two a’s in the first tape and write one b in the second tape. If two a’s are
not seen, reject.
(2) Repeat step (1) until a b is seen in the first tape.

(3) Read a b in the first tape and delete a b from the second tape. If an a is seen in
the first tape, reject.



(4)

If we have reached the end of the first tape, and we have deleted all b’s from the
second tape, then accept.

More specifically, the states will behave as follows:

Gstart: Starting state; if the first tape reads [, we accept. If it reads an a,
then switch to q,, and otherwise reject. Note that this state only exists for our
machine to accept the empty string.

qq: if the first tape reads an a, move the first tape to the right and switch to ¢/.
If the first tape reads a b, switch to g,.

q.: if the first tape reads an a, write a b on the second tape and move both tapes
to the right, and switch to g,. Otherwise, reject.

qp: if the first tape reads a b, move the first tape to the right and move the
second tape to the left. If both tapes read [, then accept. Otherwise, reject.

Qaccept: accept state.
Qreject: Teject state.



