
COMP 3803 - Assignment 4 Solutions

Solutions written in LATEX

Last updated on April 6, 2015

1. Q: Prove, using the pumping lemma for CFLs, that the following are not context-free:

A:

• L = {anb2ncmd2n : m,n ≥ 0}:
Suppose that L is context-free. Let p ≥ 1 be the pumping length as given by
the pumping lemma for CFLs. Let s = apb2pd2p. Since s ∈ L and |s| = 5p > p,
then by the pumping lemma we can write s = uvxyz, where:

– |vy| ≥ 1;

– |vxy| ≤ p;

– and uvixyiz ∈ L for every i ≥ 0.

Then:

– Suppose that vxy contains no d. Then, uv2xy2z contains more than 2p b’s,
or more than p a’s, so that uv2xy2z ̸∈ L.

– Suppose that vxy contains no a. Then, uv2xyzx contains more than 2p b’s,
or more than 2p d’s, so that uv2xy2z ̸∈ L.

– The only other case is that vxy contains both an a and a d, but then vxy
must consist of at least 2p b’s, i.e. |vxy| ≥ 2p+2 > p, contradicting the fact
that |vxy| ≤ p.

In every case, we derive a contradiction, so L cannot be context-free.

• L = {akbmcn : k = max{m,n}}:
Suppose that L is context-free. Let p ≥ 1 be the pumping length as given by
the pumping lemma for CFLs. Let s = apbpcp. Since s ∈ L and |s| = 3p > p,
then by the pumping lemma we can write s = uvxyz, where:

– |vy| ≥ 1;

– |vxy| ≤ p;

– and uvixyiz ∈ L for every i ≥ 0.

Then:

– Suppose that vxy contains only b’s and c’s. Then, uv2xy2z has only p a’s,
but more than p b’s or more than p c’s, so that uv2xy2z ̸∈ L.

1

– Suppose that vxy contains only a’s and b’s. If vy contains some a’s, then
uxz has fewer than p a’s while still containing p c’s, so that uxz ̸∈ L. If vy
contains no a’s – and thus contains only b’s – then uv2xy2z contains only p
a’s but more than p b’s, so that uv2xy2z ̸∈ L.

In every case, we derive a contradiction, so L cannot be context-free.

2. Q: Construct (deterministic or non-deterministic) pushdown automata that accept the
following languages:

A:

Note: in every case, any unspecified transition is implied to be a stationary loop that
rejects the input string.

• L = {ckanbm : k ≥ 0, n ≥ m ≥ 0}:
We have states {qc, qa, qb}, where qk is responsible for processing the symbol k.
Thus, qc is the starting state, and we have the following transitions

qcc$ → qcR$

qca$ → qaN$

qc�$ → qcNε

qaa$ → qaR$S

qaaS → qaRSS

qabS → qbNS

qa�$ → qaNε

qa�S → qaNε

qbbS → qbRε

qb�$ → qbNε

qb�S → qbNε

• L = {anb2mcm : m,n ≥ 0}:
We have states {qa, qb, qc, q′c}, where qk is responsible for processing the symbol

2

k. Thus, qa is the starting state, and we have the following transitions:

qaa$ → qaR$

qab$ → qbN$

qa�$ → qaNε

qbb$ → qbRS

qbbS → qbRSS

qbcS → qcNS

qccS → q′cNε

q′ccS → qcRε

qc�$ → qcNε

• L = {ckwwR : w ∈ {a, b}∗}:
We have the states {qc, q1, q2}, where qc is the start state responsible for pro-
cessing c’s; q1 is the next state responsible for processing a string; and q2 is the
state responsible for processing its reverse:

qcc$ → qcR$

qca$ → q1N$

qcb$ → q1N$

qc�$ → qcNε

q1a$ → q1RA

q1aA → q1RAA

q1bA → q1RAB

q1aB → q1RBA

q1bB → q1RBB

q1aA → q2NA

q1bB → q2NB

q2aA → q2Rε

q2bB → q2Rε

q2�$ → q2Nε

3. Q: Construct a one-tape Turing machine that accepts the language L = {a2nbn : n ≥ 0},
where Σ = {a, b}. You have to give the informal description, describing the states

3

you are going to use, their meaning, and what kind of transitions it will have. This
will give you partial credit. But you have to also work out all the details of the
actual transitions. You can assume that the head of the machine is at the start of
the string.

A:

The machine will execute computation in the following steps:

(1) Accept the string if it is empty.

(2) Locate the leftmost character, and delete it if it is an a.

(3) Locate its neighbouring a and delete it.

(4) Locate the rightmost character, and delete it if it is a b.

(5) Return to step (1).

If any of the above steps fails, we reject the input. It should be clear that the
accepted strings are of the desired form.

More specifically, we have the following states:

• qa: starting state; expecting an a in the leftmost position, and delete it.

• q′a: the neighbouring character is an a, and delete it.

• qR: locating the rightmost character.

• qb: expecting a b in the rightmost position, and delete it.

• qL: locating the leftmost character.

• qaccept: accept state.

• qreject: reject state.

The following transitions describe a Turing machine that computes according to the
algorithm described above (and as usual, every unmarked transition leads to qreject):

qaa → q′a�R

qa� → qaccept

q′aa → qR�R

qRa → qRaR

qRb → qRbR

qR� → qb�L

qbb → qL�L

qLa → qLaL

qLb → qLbL

qL� → qa�R

4

4. Q: Construct a one-tape Turing machine that accepts the language L = {w : w has more
1’s than 0’s}, where Σ = {0, 1}. You have to give the informal description, describing
the states you are going to use, their meaning, and what kind of transitions it will
have. This will give you partial credit. But you have to also work out all the details
of the actual transitions. You can assume that the head of the machine is at the
start of the string.

A:

The machine will execute the computation in the following steps:

(1) Locate the leftmost unmarked 1 and mark it. If there is none, we reject.

(2) Return to the beginning of the string.

(3) Locate the leftmost unmarked 0 and mark it. If there is none, we accept.

(4) Return to the beginning of the string.

(5) Return to step (1).

It should be clear that the accepted strings are of the desired form.

More specifically, we have the following states:

• q1: staring state; locating the leftmost unmarked 1 and marking it.

• qback: returning to the beginning of the string to search for a 0.

• q0: locating the leftmost unmarked 0 and marking it.

• q′back: returning to the beginning of the string to search for a 1.

• qaccept: accept state.

• qreject: reject state.

The following transitions describe a Turing machine that computes according to the

5

algorithm described above:

q10 → q10R

q11 → qback+L

q1+ → q1+R

q1� → qreject

qback0 → qback0L

qback1 → qback1L

qback+ → qback+L

qback� → q0�R

q00 → q′back+L

q01 → q01R

q0+ → q0+R

q0� → qaccept

q′back0 → q′back0L

q′back1 → q′back1L

q′back+ → q′back+L

q′back� → q1�R

5. Q: Construct a two-tape Turing machine that accepts the language L = {a2nbn : n ≥ 0},
where Σ = {a, b}. You have to give the informal description, describing the states
you are going to use, their meaning, and what kind of transitions it will have. But
you do not have to also work out all the details of the actual transitions. You can
assume that the head of the machine is at the start of the string. Observe that you
must use both tapes for reading and writing, and not just ignore the second tape
and resort to the one-tape solution of Question 3.

A:

The idea is to use the second tape to predict what we should be seeing on the input
tape, as we read the string from left to right. Broadly speaking, the algorithm
proceeds as follows:

(1) Read two a’s in the first tape and write one b in the second tape. If two a’s are
not seen, reject.

(2) Repeat step (1) until a b is seen in the first tape.

(3) Read a b in the first tape and delete a b from the second tape. If an a is seen in
the first tape, reject.

6

(4) If we have reached the end of the first tape, and we have deleted all b’s from the
second tape, then accept.

More specifically, the states will behave as follows:

• qstart: starting state; if the first tape reads �, we accept. If it reads an a,
then switch to qa, and otherwise reject. Note that this state only exists for our
machine to accept the empty string.

• qa: if the first tape reads an a, move the first tape to the right and switch to q′a.
If the first tape reads a b, switch to qb.

• q′a: if the first tape reads an a, write a b on the second tape and move both tapes
to the right, and switch to qa. Otherwise, reject.

• qb: if the first tape reads a b, move the first tape to the right and move the
second tape to the left. If both tapes read �, then accept. Otherwise, reject.

• qaccept: accept state.

• qreject: reject state.

7

