
COMP 3803 - Midterm Solutions

Solutions written in LATEX, diagrams drawn in ipe

February 26, 2015

1. (a) Q: Show by induction that n3 + 2n is divisible by 3 for all n ≥ 0.

A: For the base case, 03 + 2 · 0 = 0 is clearly divisible by 3.
Suppose that n3 + 2n is divisible by 3 for some n. Then:

(n+ 1)3 + 2(n+ 1) = n3 + 3n2 + 3n+ 1 + 2n+ 2

= (n3 + 2n) + 3(n2 + n+ 1)

By the induction hypothesis, n3 + 2n is divisible by 3. So by induction, we are
done.

(b) Q: Prove or disprove, using non-inductive arguments, a slightly more general claim that
n6 + 4n is divisible by 6 for all n ≥ 0.

A: The claim is not true. As a counterexample, let n = 1, so 16 + 4 · 1 = 5 which is not
divisible by 6.

2. Q: Give the state diagram of a non-deterministic finite automaton (NFA) without ε-transitions
that recongnizes the set L of all binary strings that have the following properties:

• contains 110 as a substring, or

• whose length is odd, or

• start with 01 and end with 10.

A: Note: dotted lines delimit each part of the union of machines, for clarity.
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3. (a) Q: Construct a deterministic finite automaton (DFA) accepting the following language:

{W : W ∈ {a, b, c}∗,W starts with bc, has a single c after that, ends with ab}

A:

b c c a

a, b b a

b
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c c
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(b) Q: What is the regular expression for the language?

A:
bc(a ∪ b)∗c(a ∪ b)∗ab

4. Q: Give an equivalent deterministic finite automaton (DFA) for the following NFA:

A B

C

b

a, b

a, ε

b

A:

The start state is {A}, and every state other than ∅ and {C} are accepting.
a b

∅ ∅ ∅
{A} {B} {B,C}
{B} ∅ ∅
{C} {B} {B,C}

{A,B} {B} {B,C}
{A,C} {B} {B,C}
{B,C} {B} {B,C}

{A,B,C} {B} {B,C}

From the above table, we can see that {C}, {A,B}, {A,C}, and {A,B,C} are unreach-
able, so we omit them from the following state diagram:
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5. (a) Q: Let A = {3n : n ∈ N, B ∈ {3n + 1 : n ∈ N}, and C = {3n − 1 : n ∈ N}, where N is
the set of natural numbers. Let D be the set of all non-negative odd numbers. Let
P = A ∪B ∪ C. What is the set P? Prove that the set P ×D is countable.

A: P is the set N \ {1}, i.e. the set of all natural numbers strictly greater than 1.
Each of the sets A, B, and C are subsets of N \ {1}, so:

P = A ∪B ∪ C ⊆ N \ {1}

We prove by induction that N \ {1} ⊆ P . First, 2 = 3 · 1 − 1 ∈ C ⊆ P , so 2 ∈ P
and the base case is completed. Suppose that some integer n ≥ 2 is in P . Then,
n = 3k + i for some i ∈ {−1, 0, 1}, so:

n+ 1 = 3k + (i+ 1)

If i+ 1 ∈ {0, 1}, we are done, since then n+ 1 ∈ P . Otherwise, i+ 1 = 2, but then:

n+ 1 = 3k + 2 = 3(k + 1)− 1 ∈ C

and once again, n+ 1 ∈ P . By induction, N \ {1} ⊆ P , so N \ {1} = P .
Since D is a subset of N, then D is countable. Clearly N\{1} is countable. Since the
cartesian product of two countable sets is countable, then P ×D is countable.

(b) Q: Present brief arguments to demonstrate that the set of all subsets of N is uncountable.
Your answer should be no more than 5 sentences.

A: We can represent every set S ⊆ N uniquely by an infinite bitstring whose ith bit is 0
if i ̸∈ S, and 1 if i ∈ S. For example:

∅ →000000 . . .

{1, 2} →110000 . . .

{2, 4, 6, . . .} →010101 . . .

In this way, we can use diagonalization to produce an unlisted subset of the natural
numbers in any such enumeration, so the set of all subsets of the natural numbers
must be uncountable.
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Remark. More is true! In fact, as you might notice from the above solution’s
eerie similarity to the usual diagonalization of [0, 1], the set of subsets (also
known as the power set) of N has the same cardinality as R. Indeed, each
subset of N corresponds to an infinite bitstring, which in turns corresponds
to a real number in [0, 1]. Moreover:

R =
∪
i∈Z

[i, i+ 1]

So R has the same cardinality as [0, 1], and thus the same cardinality as the
power set of N.
The above might sound obvious, but it really isn’t – not every uncountable
set has the same cardinality as R. In fact, the above question asks to prove
a simple application of Cantor’s theorem, which states that for any set S,
the power set of S is strictly larger than S. Among other things, this im-
mediately provides an explicit construction of (countably) infinitely many
different uncountable cardinalities (called beth numbers). So, what is the
cardinality of the set of all cardinalities?... Fun!

6. Q: Give regular expressions describing the following languages in which the alphabet Σ is
{0, 1}:

A:

(a) {W : W has length at least 3, and its third symbol is 1}:

ΣΣ1Σ∗

(b) {W : Every odd position of W is a 1}:

(1Σ)∗(1 ∪ ε)

7. Q: Develop the NFA (recognizer) without ε-transitions for each of the following regular
languages:

A:

(a) (10)∗(0 ∪ 1)(111)∗:

1

1

11

0

0, 1
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(b) (110)∗10 ∪ (00)∗:

1

1

1

1

0

0

0

0

0

1

8. Q: Let L1 and L2 be regular languages accepted by DFA M1 and M2 respectively. Let
L1R and L2R be the languages containing the reversed strings from L1 and L2. Do the
following:

A: (a) Formally describe the NFA that accepts L1R:
If M1 = (Q,Σ, δ, q, F ), then let M1R = (Q ∪ {q′},Σ, δ′, q′, F ′), where:

• F ′ = {q}, the original starting state of M1,

• q′ is a new starting state, and

•
δ′(r, a) =

{
F if r = q′, a = ε;

{s : s ∈ Q, δ(s, a) = r} if r ̸= q′.

The NFA M1R is the machine M1 with all transitions reversed, and with a new
starting state pointing to all potential final states of M1. M1R accepts L1R.

(b) Show, without ε-transitions, the NFA that accepts L∗
2:

Note: dashed lines denote discarded transitions.

M2
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(c) Show, without ε-transitions, the NFA that accepts L1R ∪ L2R:

M2R

M1R

(d) Show, without ε-transitions, the NFA that accepts L1R · L2R:

M1R M2R

9. Q: Set up the equations and solve for the regular expression of the language accepted by the
DFA given below. You will be given partial credit for just setting up the equations!

1

1

1

0

0

0

A B

C

A: We obtain, by inspection, the following system of equations:

LA = 1LB ∪ 0LC

LB = 0LB ∪ 1LC

LC = 0LC ∪ 1LA ∪ ε

From this, we obtain:
LC = 0∗(1LA ∪ ε) = 0∗1LA ∪ 0∗
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and:
LB = 0∗1LC = 0∗1(0∗1LA ∪ 0∗) = 0∗10∗1LA ∪ 0∗10∗

Substituting these expressions into LA, we get:

LA = 1(0∗10∗1LA ∪ 0∗10∗) ∪ 0(0∗1LA ∪ 0∗)

= (10∗10∗1 ∪ 00∗1)LA ∪ (10∗10∗ ∪ 00∗)

= (10∗10∗1 ∪ 00∗1)∗(10∗10∗ ∪ 00∗)

Since A is the starting state, then LA is the language recognized by the given machine.
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