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Games - Introduction 

• Question: Can machines outplay humans? 

 

• Captured imaginations for centuries 
– Appearance in myth and legend 

– Popular topic in fiction 

 

• Thanks to AI and search techniques, the dream 
has come true! 

 



History 

The Turk (1770) 

• “The Turk”: In 1770 

• A chess playing machine 

 

• Toured Europe  

• Facing well-known 
opponents 

– e.g. Napoleon, Ben Franklin 

 

• Of course: Revealed - fraud 

 



History 

• “The Turk” shows how fascinating this idea is 

 

• 1914: King vs Rook strategies by automaton 
 

• True AI game playing – Claude Shannon: 1950 
– Based on earlier work by Nash and Neumann 

 

• Shannon's algorithm still used 

• Mini-Max Search (we will return to it shortly) 

 



History 

• Shannon's 1950 paper focused on Chess 
– Chess remains very important to game playing research 

 

• At the time, seen as purely theoretical exercise 
 

• 1970s: First commercial Chess programs 
 

• 1980s: Chess programs playing at Expert level 
– Still some time until Grandmaster level... 

 



History 

Kasparov vs Deep Blue 

• 1997: IBM's Deep Blue 

• Defeats Garry Kasparov 

 

• First defeat of Grandmaster 
 

• Field: Branched out since 

• Poker, Go: Now important games 

• IBM Watson on Jeopardy 

 



Games vs. Search Problems 

• “Unpredictable” opponent  
– Specifying a move for every possible opponent reply 

 

• Time limits  
– Unlikely to find goal, must approximate 



Mini-Max Search 

• Search to find the correct move in a two player game 

 

• The optimal solution:  
– Exponential algorithm  

– Generate all possible paths  

– Only play those that lead to a winning final position 

 

• Realistic alternative to the Optimal 

 

• Use finite depth look-ahead with a heuristic function 

• Evaluate how good a given game state is  



Mini-Max 

• Extend Tree down to a given search depth  

 

• Top of tree is the Computer’s move 

– Wants move to ultimately be one step closer to a winning position 

– Wants move that maximizes own chance of winning 

 

• Next move is Opponent’s 

– Opponent assumed to perform a move that his best  

– Wants move that minimizes Computer’s chance of winning 



Game tree  
2-player, Deterministic, Turns 



Mini-Max 

• Perfect play for deterministic games 

• Idea: Choose move to position with highest Mini-Max value  
 = Best achievable payoff against best play 

• Example: 2-ply game: 

 



Mini-Max for Nim 

• Nim Game 
– Two players start with a pile of tokens 

– Legal move: Split (any) existing pile into two non-empty 
differently sized piles 

– Game ends when no pile can be unevenly split 

– Player who cannot make his move loses the game 

 

• Search strategy 
– Existing heuristic search methods do not work 



Mini-Max for Nim 

• Label nodes as MIN or MAX, alternating for each level 

• Define utility function (payoff function). 

• Do full search on tree  
– Expand all nodes until game is over for each branch 

• Label leaves according to outcome 

• Propagate result up the tree with: 
– M(n) = max( child nodes ) for a MAX node 

– m(n) = min( child nodes ) for a MIN node 

• Best next move for MAX is the one leading to the child 
with the highest value (and vice versa for MIN) 



Mini-Max for Nim 



Mini-Max Algorithm 

function MAX-VALUE(state, game) returns a utility value 
if CUTOFF-TEST(state,) then return EVAL(state) 
value := - ∞ 
for each s in SUCCESSORS(state) do 
 value := MAX(value, MIN-VALUE(s, game)) 
end 
return value 

function MIN-VALUE(state, game) returns a utility value 
if CUTOFF-TEST(state,) then return EVAL(state) 
value :=  ∞ 
for each s in SUCCESSORS(state) do 
 value := MIN(value, MAX-VALUE(s, game)) 
end 
return value 

function MINIMAX-DECISION(game) returns an operator 
for each op in OPERATORS[game] do 
 VALUE[op] := MIN-VALUE(APPLY(op, game), game) 
end 
return the op with the highest VALUE[op] 
 



Problems with Mini-Max 

• Horizon effect: Can’t see beyond depth 
– Due to exponential increase in tree size, only very limited 

depth feasible 

– Solution: Quiescence search. Start at the leaf nodes of the 
main search, and try to solve this problem.  

– In Chess, quiescence searches usually include all capture 
moves, so that tactical exchanges don't mess up the 
evaluation. In principle, quiescence searches should include 
any move which may destabilize the evaluation function--if 
there is such a move, the position is not quiescent. 

• May want to use look up tables  
– For end games 

– Opening moves (called Book Moves) 



Properties of Mini-Max 

• Complete?  
– Yes (if tree is finite) 

• Optimal?  
– Yes (against an optimal opponent) 

• Time complexity?  
– O(bm) 

• Space complexity?  
– O(bm) (depth-first exploration) 

• Chess: b ≈ 35, m ≈100 for “reasonable” games 
– Exact solution completely infeasible 

 



Branch and Bound: The α-β Algorithm 

• Branch and Bound: If current path (branch) is 
already worse then some other known path: 

– Stop expanding it (bound). 

 

• Alpha-Beta is a branch and bound technique for 
Mini-Max search 

 

• If you know that the level above won’t choose 
your branch because you have already found a 
value along one of your sub-branches that is too 
good, stop looking at other sub-branches that 
haven’t been looked at yet 



The α-β Algorithm 

• Instead of maintaining a single mini-max value , 
the α-β pruning algorithm, maintains two: α, β 

• Together provide a bound on the possible values 
of the mini-max tree at any given point.  

• At any given point, α: minimum the player can 
expect to receive 

• At any given point, β: maximum value the player 
can expect 



The α-β Algorithm 

• If it is ever the case that this bound is reversed or 
has range of 0 (β <= α), then better options exist 
for the player at other pre-explored nodes  

• As α is the minimum value we know we can get 

• Thus this node cannot be the mini-max value of 
the tree.  

• There is no point in exploring any more of this 
node's children 

• Potentially saving considerable computation time 
in a game with a large branching factor/depth 



Properties of α-β 

• Pruning does not affect final result 
 

• Good move ordering improves pruning  effectiveness 
 

• With “perfect ordering” time complexity = O(bm/2) 

– Doubles depth of search 
 

• α-β is a simple example of the value of reasoning 
about which computations are really relevant 



Why it is called α-β 

• α: Value of the best choice 
found so far at any choice 
point along the path for max 

• If v is worse than α 

– max will avoid it 

– prune that branch 

• Define β similarly for min 



Effects of α-β 



Example: α-β Pruning 



Example: α-β Pruning 



Example: α-β Pruning 



Example: α-β Pruning 



Example: α-β Pruning 



The α-β Algorithm 

• From Russell and Norvig 

 function MAX-VALUE(state, game, , ) returns a utility value 
 

if CUTOFF-TEST(state,) then return EVAL(state) 
for each s in SUCCESSORS(state) do 
  := MAX(, MIN-VALUE(s, game, ,)) 
 if ≥then return   
end 
return 
 
function MIN-VALUE(state, game, , ) returns a utility value 
 

if CUTOFF-TEST(state,) then return EVAL(state) 
for each s in SUCCESSORS(state) do 
  := MIN(, MAX-VALUE(s, game, ,)) 
 if ≤then return 
end 
return 

game = game description 

state = current state in game 

 = best score for MAX so far 
 = best score for MIN so far 



The α-β Algorithm 



The α-β Algorithm 



Changing Levels of Difficulty 

• Increase Depth of Search 

Improving Game Playing 

• Increase Depth of Search 

• Have better heuristic for game state evaluation 



Resource Limits 

• Suppose we have 100 secs, explore 104 nodes/sec 

– 106 nodes per move 

 

• Standard approach: 

– Cutoff test: Depth limit (perhaps add quiescence search) 

• Evaluation function:  

– Estimated desirability of position 



Evaluation Functions 

• Chess, typically linear weighted sum of features 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 

 

• Example: w1 = 9 with  

 f1(s) = (number of white queens) –  (number of black queens)  

 etc. 



Cutting-Off Search 

MinimaxCutoff is identical to MinimaxValue except 
1. Terminal? is replaced by Cutoff? 

2. Utility is replaced by Eval 

 

Does it work in practice? 

 bm = 106, b=35  m=4 

 

4-ply lookahead is a hopeless chess player! 
– 4-ply ≈ human novice 

– 8-ply ≈ typical PC, human master 

– 12-ply ≈ Deep Blue, Kasparov 



Quiescence search 

• Quiescence search: Study moves that are noisy 

• They appear good, but moves around them - bad 

• Investigate them with a localized leaf search 

• Attempt to identify delaying tactics and change 
the seemingly-good value of the node 

• A very natural extension of mini-max 

• Simply run search again at a leaf node until that 
leaf node becomes quiet 

• As with iterative deepening, running time of the 
algorithm won’t increase by more than a constant 



Real Deterministic Games 

• Checkers: Chinook ended 40-year-reign of 
human world champion Marion Tinsley in 1994. 

– Used a precomputed endgame database 

– Defining perfect play for all positions involving 8 or fewer 
pieces on the board - a total of 444 billion positions. 

 

• Chess: Deep Blue defeated human world 
champion Kasparov in a six-game match in 1997. 

– Deep Blue searches 200 million positions per second 

– Uses very sophisticated evaluation 

– Undisclosed methods for extending some lines of search up 
to 40 ply. 



Move Ordering 

• Best possible pruning is achieved if the best 
move is searched first at each level of the tree 

• Problem: If we knew the best move, we would not 
need to search! 

• Thus, we employ move ordering heuristics, which 
search the best move first 

• Example: In Chess, search capturing moves 
before non-capturing moves 

• What we want: domain independent techniques 



Example: Poor Move Ordering 



Example: Good Move Ordering 



Principal Variation Move 

• As it is a search algorithm, can apply Iterative 
Deepening to Mini-Max 

• At each level, we thus find a move path we 
expect us and the opponent to take 

• At the next stage, search it first! 

– Called Principal Variation move 

• Even though Iterative Deepening takes some 
time, PV-move can greatly improve overall 
performance! 



Other Heuristics 

• Killer Moves: Remember move that produced a 
cut on this level of the tree 

– If we encounter it again, search it first! 

– Normally remember two moves per level 

 

• History Heuristic: Same as Killer Moves, want 
to remember moves that produce cuts 

– Want to use info on all levels of tree 

– Hold array of counters, increment based on 
level cut occurred at 

– Details outside scope of this talk 



Real Deterministic Games 

• Othello: Human champions refuse to compete 
against computers, who are too good. 

 



Things to Remember: Games 

• Games are fun to work on! 

• They illustrate several important points about AI 

• Perfection is unattainable  

• Must approximate paths and solutions 

• Good idea to think about what to think about 



Two Player to Multi-Player Games 

• Mini-Max: Originally envisioned for Chess 
– Two player, deterministic, perfect information game 

 

• What if we want to play a multi-player game? 
– Instead of two players, we have N players, where N > 2 

– Examples: Chinese Checkers, Poker 

 

• New challenges, requiring new techniques! 



Qualities of Multi-Player Games 

• In two player zero sum games, your gain is 
reflected in equal loss for opponent 

– No longer true for multi-player game 

– Loss spread between multiple opponents 

 

• Coalitions may arise during play 

 

• More opponent turns occur between perspectives 



Extending Mini-Max to Multi-
Player Games 

• Problem: Mini-Max operates using a single value 
–  Worked for two player games, as opponent's gain is our loss 

 

• Single score very valuable – Allows pruning 
– Would like to keep pruning to speed up the search 

 

• Simple solution: All opponents minimize our score 
– So, MAX-MIN-MIN, MAX-MIN-MIN-MIN, etc 

 

• Called the Paranoid Algorithm  



Paranoid Algorithm 

Sample Paranoid Tree (Red MAX, Blue MIN) 



Paranoid Algorithm 

function integer paranoid(node, depth): 
 if node is terminal or depth <= 0 then 
  return heuristic value of node 
 else 
  if node is max then  
   val = −∞ 
   for all child of node do 
    val = max(val, paranoid(child, depth − 1) 
   end for 
  else 
   val = ∞ 
   for all child of node do 
    val = min(val, paranoid(child, depth − 1) 
   end for 
  end if 
  return val 
 end if 



Paranoid Algorithm 

• Algorithm exact same as Mini-Max in many 
implementations 

• Pros 
– Easy to implement and understand 

– Subject to α-β pruning on MAX/MIN borders 

– Not for phases between MIN nodes 

 

• Cons  
– Views all opponents as a coalition – leads to bad play 

– Limited look-ahead for perspective player 

– Need to have multiple MIN phases in a row 



Max-N Algorithm 

• 1986: Luckhardt and Irani 

• Addresses coalition problem of Paranoid 

• Keeps tuple of scores, not one value 

• Assumption: Players maximize their own score 
– No consideration for other players 

 

• Heuristic returns value for each player 
– i.e. [6, 3, 8] for three-player game 

 

• Nth player maximizes Nth value 



Max-N Algorithm 

Sample Max-N Tree 



Max-N Algorithm 

function integer[] max-n(node, depth): 
 if node is terminal or depth <= 0 then 
  return heuristic value of node 
 else  
  val = −∞ 
  tuple = [] 
  for all child of node do 
   val = max(val, max-n(child; depth − 1)[node.player]) 
   if val changed 
    tuple = max-n(child; depth-1) 
   end if 
  end for 
  return tuple  
 end if 



Max-N Algorithm 

• In terms of raw Mini-Max, very simple extension 

• Pros 
– Players “look out for number one” 

– More realistic play 

– Perspective player can see more opportunities 

– Reason: Possibilities are not excluded as readily 

 

• Cons  
– Pruning is very complicated, and not as good 

– Can be worse than Paranoid due to decreased search depth 



Best-Reply Search 

• Relatively new: 2011 (Schadd and Winands) 

• All opponents considered to be one player 
– They only get ONE turn between them 

 

• Only opponent with best move is thought to act 

• Return to MAX-MIN-MAX-MIN... 

• Essentially a return to Mini-Max algorithm 

• With a very powerful opponent!! 



Best-Reply Search 

Sample BRS Tree (one level) 



Best-Reply Search 

function integer best-reply(node, depth): 
 if node is terminal or depth <= 0 then 
  return heuristic value of node 
 else 
  if node is max then  
   val = −∞ 
   for all child of node do 
    val = max(val, best-reply(child; depth − 1) 
   end for 
  else 
   val = ∞ 
   for all opponents do 
    for all opponent’s child at node do 
     val = min(val; best-reply(child; 

depth − 1) 
    end for 
   end for 
  end if 
 end if 



Best-Reply Search 

• Attempt to get “best of both worlds” 

• Pros 
– Balance between coalition and free-for-all 

– Allows α-β pruning 

– Significant lookahead for perspective player 

 

• Cons  
– Illegal game states analyzed 

– Not applicable to some games  

– This is the domain of some current research (2015) 



• Other, completely unrelated field 

• Concerned with record access frequency 

• Problem:  
• Elements in data structure accessed with different frequency 

• Solution:  
• Change the structure of the data structure as elements queried 

• Can use list, tree or others 

Adaptive Data Structures 



Order of access: 3, 1, 1, 4, … 

ADS – Move to Front Rule 



Order of access: R3, R1, R1, … 

ADS – Transposition Rule 



• Our contribution, usable with the BRS 

• ADS operations are constant, and small 

• We use an ADS that contains opponents 

• When an opponent is found to have the most 
minimizing move, we query the ADS 

• ADS moves over time to relative opponent threats 

• When grouping moves, do it in the order of the ADS 

• Improves move ordering, leading to better pruning! 

The Threat-ADS Heuristic 



BRS with Threat-ADS (one level) 

The Threat-ADS Heuristic 



function integer brs_threat_ads(node, depth): 
 if node is terminal or depth <= 0 then 
  return heuristic value of node 
 else 
  if node is max then  
   val = −∞ 
   for all child of node do 
    val = max(val, best-reply(child; depth − 1) 
   end for 
  else 
   val = ∞ 
   for all opponents in ADS do 
    for all opponent’s child at node do 
     val = min(val; best-reply(child; depth − 1) 
    end for 
   end for 
   ADS.update(val.opponent) 
  end if 
 end if 

BRS with Threat-ADS 



• Game needed to test Threat-ADS heuristic 

• Needs: 

– BRS must be applicable 

– Game should be simple to implement 

• Use established games Focus and Chinese Checkers 

• Also develop the Virus Game 

Experimental Framework 



• Turn based game with N players 

• Played on 2D board 

• Goal is to eliminate all other players 

• Turn: Player “infects” a square they are adjacent to 

• All nearby squares, according to a configured 
pattern, are given to that player 

 

Virus Game 



Virus Game 



• One player: BRS with Threat-ADS 

• Others: Random (Interested in tree pruning) 

• Take Node Count over first few turns of the game 

– Count each node expanded, but not those pruned 

• Average over 50 games 

• Run for each of three games mentioned 

• Run over a variety of configurations 

• Varying number of players 

• Varying starting state 

Experimental Configuration 



Game Threat-ADS? Avg. Node Count 

Virus Game No 264,000 

Virus Game Yes 237,000 

Focus No 6,859,000 

Focus Yes 6,443,000 

Chinese Checkers No 3,485,000 

Chinese Checkers Yes 3,070,000 

Results (Initial Board State) 



Game Threat-ADS? Avg. Node Count 

Virus Game No 307,000 

Virus Game Yes 275,000 

Focus No 14,460,000 

Focus Yes 13,050,000 

Chinese Checkers No 8,170,000 

Chinese Checkers Yes 7,680,000 

Results (Midgame Board State) 



Monte-Carlo Methods 

• Entirely different way of looking at game playing 
– Applicable to two player and multi-player games 

 

• No game heuristics required! 

• Driven by random game playing 
– Strong when no good heuristic is available 

– Big example in research is Go 

 

• Very simple example: 

– Play 50 random games for each move 
– Pick one with highest winrate 



Monte-Carlo Tree Search 

• Simple example above  

• Works for easy games 

• Look-ahead is useful 

• Apply random game playing to game tree search 

• Navigate: 

• From root to unvisited node 

• Then play random game(s) 

• Path guided by exploration/exploitation balance 

• At end of time, pick most promising move 

• Very powerful: Relatively new compared to Mini-Max 



UCT Algorithm 

• Dominant Monte-Carlo Tree Search technique (2015) 

• Starting from root: 
– If there is an unvisited child, pick it 

– Otherwise, pick child that maximizes UCTValue 

  UCTVal = winrate + sqrt(ln(parent.visits)/visits) 

– Repeat until an unvisited child is found 

• Propagate winrate back up to root 

• Repeat until time is up 

• Pick move that has highest winrate 



UCT Algorithm 

function integer uct(node, depth): 
 for time-steps do 
  position = root 
  while position is explored 
   val = −∞ 
   for child of position 
    !– Unexplored node check here--! 
    val = max(val, UCTValue(child)) 
    position = val.node 
   end for 
  end while 
   
  Play random game(s) at child 
  while position is not root 
   update win-rate for player at node 
   position = position.parent 
  end while 
   
 end for 



Multi-Player UCT Algorithm 

• Very easy to extend  
– We do not have to maintain heuristic values  

– UCT handles N-player games in its base form 

 

• For the player making the move 
– Simply record winrate at each node  

– Assume player will pick move most likely to lead to win  

 

• No change from previous algorithm 



More on UCT Value 

• UCTValue has two parts 

• Winrate is self-explanatory 

• Value between 0.0 and 1.0 indicating proportion of wins 

• Second part:  sqrt(ln(parent.visits)/visits) 

• Specifics not important, but also between 0.0 and 1.0 

• Goes up the less this child has been explored in 
relation to its parent 

• Achieves exploration/exploitation balance! 

• Sometimes constants usually added to tweak this 



Applications of UCT 

• Best performance available for Go 

– Top player is currently Zen 

– Defeated 9-dan player with three stone handicap 

 

• Applied to wide range of games 

– Poker 

– Settlers of Catan 

– Magic: The Gathering 


