
Intelligent Game Playing

 Instructor: B. John Oommen

Chancellor’s Professor

Fellow : IEEE ; Fellow : IAPR

School of Computer Science, Carleton University, Canada

The primary source of these notes are the slides of Professor Hwee Tou Ng

from Singapore. The Multi-Player Game section was due to Mr. Spencer Polk.

I sincerely thank them for this.

Games - Introduction

• Question: Can machines outplay humans?

• Captured imaginations for centuries
– Appearance in myth and legend

– Popular topic in fiction

• Thanks to AI and search techniques, the dream
has come true!

History

The Turk (1770)

• “The Turk”: In 1770

• A chess playing machine

• Toured Europe

• Facing well-known
opponents

– e.g. Napoleon, Ben Franklin

• Of course: Revealed - fraud

History

• “The Turk” shows how fascinating this idea is

• 1914: King vs Rook strategies by automaton

• True AI game playing – Claude Shannon: 1950
– Based on earlier work by Nash and Neumann

• Shannon's algorithm still used

• Mini-Max Search (we will return to it shortly)

History

• Shannon's 1950 paper focused on Chess
– Chess remains very important to game playing research

• At the time, seen as purely theoretical exercise

• 1970s: First commercial Chess programs

• 1980s: Chess programs playing at Expert level
– Still some time until Grandmaster level...

History

Kasparov vs Deep Blue

• 1997: IBM's Deep Blue

• Defeats Garry Kasparov

• First defeat of Grandmaster

• Field: Branched out since

• Poker, Go: Now important games

• IBM Watson on Jeopardy

Games vs. Search Problems

• “Unpredictable” opponent
– Specifying a move for every possible opponent reply

• Time limits
– Unlikely to find goal, must approximate

Mini-Max Search

• Search to find the correct move in a two player game

• The optimal solution:
– Exponential algorithm

– Generate all possible paths

– Only play those that lead to a winning final position

• Realistic alternative to the Optimal

• Use finite depth look-ahead with a heuristic function

• Evaluate how good a given game state is

Mini-Max

• Extend Tree down to a given search depth

• Top of tree is the Computer’s move

– Wants move to ultimately be one step closer to a winning position

– Wants move that maximizes own chance of winning

• Next move is Opponent’s

– Opponent assumed to perform a move that his best

– Wants move that minimizes Computer’s chance of winning

Game tree
2-player, Deterministic, Turns

Mini-Max

• Perfect play for deterministic games

• Idea: Choose move to position with highest Mini-Max value
 = Best achievable payoff against best play

• Example: 2-ply game:

Mini-Max for Nim

• Nim Game
– Two players start with a pile of tokens

– Legal move: Split (any) existing pile into two non-empty
differently sized piles

– Game ends when no pile can be unevenly split

– Player who cannot make his move loses the game

• Search strategy
– Existing heuristic search methods do not work

Mini-Max for Nim

• Label nodes as MIN or MAX, alternating for each level

• Define utility function (payoff function).

• Do full search on tree
– Expand all nodes until game is over for each branch

• Label leaves according to outcome

• Propagate result up the tree with:
– M(n) = max(child nodes) for a MAX node

– m(n) = min(child nodes) for a MIN node

• Best next move for MAX is the one leading to the child
with the highest value (and vice versa for MIN)

Mini-Max for Nim

Mini-Max Algorithm

function MAX-VALUE(state, game) returns a utility value
if CUTOFF-TEST(state,) then return EVAL(state)
value := - ∞
for each s in SUCCESSORS(state) do
 value := MAX(value, MIN-VALUE(s, game))
end
return value

function MIN-VALUE(state, game) returns a utility value
if CUTOFF-TEST(state,) then return EVAL(state)
value := ∞
for each s in SUCCESSORS(state) do
 value := MIN(value, MAX-VALUE(s, game))
end
return value

function MINIMAX-DECISION(game) returns an operator
for each op in OPERATORS[game] do
 VALUE[op] := MIN-VALUE(APPLY(op, game), game)
end
return the op with the highest VALUE[op]

Problems with Mini-Max

• Horizon effect: Can’t see beyond depth
– Due to exponential increase in tree size, only very limited

depth feasible

– Solution: Quiescence search. Start at the leaf nodes of the
main search, and try to solve this problem.

– In Chess, quiescence searches usually include all capture
moves, so that tactical exchanges don't mess up the
evaluation. In principle, quiescence searches should include
any move which may destabilize the evaluation function--if
there is such a move, the position is not quiescent.

• May want to use look up tables
– For end games

– Opening moves (called Book Moves)

Properties of Mini-Max

• Complete?
– Yes (if tree is finite)

• Optimal?
– Yes (against an optimal opponent)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm) (depth-first exploration)

• Chess: b ≈ 35, m ≈100 for “reasonable” games
– Exact solution completely infeasible

Branch and Bound: The α-β Algorithm

• Branch and Bound: If current path (branch) is
already worse then some other known path:

– Stop expanding it (bound).

• Alpha-Beta is a branch and bound technique for
Mini-Max search

• If you know that the level above won’t choose
your branch because you have already found a
value along one of your sub-branches that is too
good, stop looking at other sub-branches that
haven’t been looked at yet

The α-β Algorithm

• Instead of maintaining a single mini-max value ,
the α-β pruning algorithm, maintains two: α, β

• Together provide a bound on the possible values
of the mini-max tree at any given point.

• At any given point, α: minimum the player can
expect to receive

• At any given point, β: maximum value the player
can expect

The α-β Algorithm

• If it is ever the case that this bound is reversed or
has range of 0 (β <= α), then better options exist
for the player at other pre-explored nodes

• As α is the minimum value we know we can get

• Thus this node cannot be the mini-max value of
the tree.

• There is no point in exploring any more of this
node's children

• Potentially saving considerable computation time
in a game with a large branching factor/depth

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves pruning effectiveness

• With “perfect ordering” time complexity = O(bm/2)

– Doubles depth of search

• α-β is a simple example of the value of reasoning
about which computations are really relevant

Why it is called α-β

• α: Value of the best choice
found so far at any choice
point along the path for max

• If v is worse than α

– max will avoid it

– prune that branch

• Define β similarly for min

Effects of α-β

Example: α-β Pruning

Example: α-β Pruning

Example: α-β Pruning

Example: α-β Pruning

Example: α-β Pruning

The α-β Algorithm

• From Russell and Norvig

 function MAX-VALUE(state, game, ,) returns a utility value

if CUTOFF-TEST(state,) then return EVAL(state)
for each s in SUCCESSORS(state) do
 := MAX(, MIN-VALUE(s, game, ,))
 if ≥then return
end
return

function MIN-VALUE(state, game, ,) returns a utility value

if CUTOFF-TEST(state,) then return EVAL(state)
for each s in SUCCESSORS(state) do
 := MIN(, MAX-VALUE(s, game, ,))
 if ≤then return
end
return

game = game description

state = current state in game

 = best score for MAX so far
 = best score for MIN so far

The α-β Algorithm

The α-β Algorithm

Changing Levels of Difficulty

• Increase Depth of Search

Improving Game Playing

• Increase Depth of Search

• Have better heuristic for game state evaluation

Resource Limits

• Suppose we have 100 secs, explore 104 nodes/sec

– 106 nodes per move

• Standard approach:

– Cutoff test: Depth limit (perhaps add quiescence search)

• Evaluation function:

– Estimated desirability of position

Evaluation Functions

• Chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• Example: w1 = 9 with

 f1(s) = (number of white queens) – (number of black queens)

 etc.

Cutting-Off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

 bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human master

– 12-ply ≈ Deep Blue, Kasparov

Quiescence search

• Quiescence search: Study moves that are noisy

• They appear good, but moves around them - bad

• Investigate them with a localized leaf search

• Attempt to identify delaying tactics and change
the seemingly-good value of the node

• A very natural extension of mini-max

• Simply run search again at a leaf node until that
leaf node becomes quiet

• As with iterative deepening, running time of the
algorithm won’t increase by more than a constant

Real Deterministic Games

• Checkers: Chinook ended 40-year-reign of
human world champion Marion Tinsley in 1994.

– Used a precomputed endgame database

– Defining perfect play for all positions involving 8 or fewer
pieces on the board - a total of 444 billion positions.

• Chess: Deep Blue defeated human world
champion Kasparov in a six-game match in 1997.

– Deep Blue searches 200 million positions per second

– Uses very sophisticated evaluation

– Undisclosed methods for extending some lines of search up
to 40 ply.

Move Ordering

• Best possible pruning is achieved if the best
move is searched first at each level of the tree

• Problem: If we knew the best move, we would not
need to search!

• Thus, we employ move ordering heuristics, which
search the best move first

• Example: In Chess, search capturing moves
before non-capturing moves

• What we want: domain independent techniques

Example: Poor Move Ordering

Example: Good Move Ordering

Principal Variation Move

• As it is a search algorithm, can apply Iterative
Deepening to Mini-Max

• At each level, we thus find a move path we
expect us and the opponent to take

• At the next stage, search it first!

– Called Principal Variation move

• Even though Iterative Deepening takes some
time, PV-move can greatly improve overall
performance!

Other Heuristics

• Killer Moves: Remember move that produced a
cut on this level of the tree

– If we encounter it again, search it first!

– Normally remember two moves per level

• History Heuristic: Same as Killer Moves, want
to remember moves that produce cuts

– Want to use info on all levels of tree

– Hold array of counters, increment based on
level cut occurred at

– Details outside scope of this talk

Real Deterministic Games

• Othello: Human champions refuse to compete
against computers, who are too good.

Things to Remember: Games

• Games are fun to work on!

• They illustrate several important points about AI

• Perfection is unattainable

• Must approximate paths and solutions

• Good idea to think about what to think about

Two Player to Multi-Player Games

• Mini-Max: Originally envisioned for Chess
– Two player, deterministic, perfect information game

• What if we want to play a multi-player game?
– Instead of two players, we have N players, where N > 2

– Examples: Chinese Checkers, Poker

• New challenges, requiring new techniques!

Qualities of Multi-Player Games

• In two player zero sum games, your gain is
reflected in equal loss for opponent

– No longer true for multi-player game

– Loss spread between multiple opponents

• Coalitions may arise during play

• More opponent turns occur between perspectives

Extending Mini-Max to Multi-
Player Games

• Problem: Mini-Max operates using a single value
– Worked for two player games, as opponent's gain is our loss

• Single score very valuable – Allows pruning
– Would like to keep pruning to speed up the search

• Simple solution: All opponents minimize our score
– So, MAX-MIN-MIN, MAX-MIN-MIN-MIN, etc

• Called the Paranoid Algorithm

Paranoid Algorithm

Sample Paranoid Tree (Red MAX, Blue MIN)

Paranoid Algorithm

function integer paranoid(node, depth):
 if node is terminal or depth <= 0 then
 return heuristic value of node
 else
 if node is max then
 val = −∞
 for all child of node do
 val = max(val, paranoid(child, depth − 1)
 end for
 else
 val = ∞
 for all child of node do
 val = min(val, paranoid(child, depth − 1)
 end for
 end if
 return val
 end if

Paranoid Algorithm

• Algorithm exact same as Mini-Max in many
implementations

• Pros
– Easy to implement and understand

– Subject to α-β pruning on MAX/MIN borders

– Not for phases between MIN nodes

• Cons
– Views all opponents as a coalition – leads to bad play

– Limited look-ahead for perspective player

– Need to have multiple MIN phases in a row

Max-N Algorithm

• 1986: Luckhardt and Irani

• Addresses coalition problem of Paranoid

• Keeps tuple of scores, not one value

• Assumption: Players maximize their own score
– No consideration for other players

• Heuristic returns value for each player
– i.e. [6, 3, 8] for three-player game

• Nth player maximizes Nth value

Max-N Algorithm

Sample Max-N Tree

Max-N Algorithm

function integer[] max-n(node, depth):
 if node is terminal or depth <= 0 then
 return heuristic value of node
 else
 val = −∞
 tuple = []
 for all child of node do
 val = max(val, max-n(child; depth − 1)[node.player])
 if val changed
 tuple = max-n(child; depth-1)
 end if
 end for
 return tuple
 end if

Max-N Algorithm

• In terms of raw Mini-Max, very simple extension

• Pros
– Players “look out for number one”

– More realistic play

– Perspective player can see more opportunities

– Reason: Possibilities are not excluded as readily

• Cons
– Pruning is very complicated, and not as good

– Can be worse than Paranoid due to decreased search depth

Best-Reply Search

• Relatively new: 2011 (Schadd and Winands)

• All opponents considered to be one player
– They only get ONE turn between them

• Only opponent with best move is thought to act

• Return to MAX-MIN-MAX-MIN...

• Essentially a return to Mini-Max algorithm

• With a very powerful opponent!!

Best-Reply Search

Sample BRS Tree (one level)

Best-Reply Search

function integer best-reply(node, depth):
 if node is terminal or depth <= 0 then
 return heuristic value of node
 else
 if node is max then
 val = −∞
 for all child of node do
 val = max(val, best-reply(child; depth − 1)
 end for
 else
 val = ∞
 for all opponents do
 for all opponent’s child at node do
 val = min(val; best-reply(child;

depth − 1)
 end for
 end for
 end if
 end if

Best-Reply Search

• Attempt to get “best of both worlds”

• Pros
– Balance between coalition and free-for-all

– Allows α-β pruning

– Significant lookahead for perspective player

• Cons
– Illegal game states analyzed

– Not applicable to some games

– This is the domain of some current research (2015)

• Other, completely unrelated field

• Concerned with record access frequency

• Problem:
• Elements in data structure accessed with different frequency

• Solution:
• Change the structure of the data structure as elements queried

• Can use list, tree or others

Adaptive Data Structures

Order of access: 3, 1, 1, 4, …

ADS – Move to Front Rule

Order of access: R3, R1, R1, …

ADS – Transposition Rule

• Our contribution, usable with the BRS

• ADS operations are constant, and small

• We use an ADS that contains opponents

• When an opponent is found to have the most
minimizing move, we query the ADS

• ADS moves over time to relative opponent threats

• When grouping moves, do it in the order of the ADS

• Improves move ordering, leading to better pruning!

The Threat-ADS Heuristic

BRS with Threat-ADS (one level)

The Threat-ADS Heuristic

function integer brs_threat_ads(node, depth):
 if node is terminal or depth <= 0 then
 return heuristic value of node
 else
 if node is max then
 val = −∞
 for all child of node do
 val = max(val, best-reply(child; depth − 1)
 end for
 else
 val = ∞
 for all opponents in ADS do
 for all opponent’s child at node do
 val = min(val; best-reply(child; depth − 1)
 end for
 end for
 ADS.update(val.opponent)
 end if
 end if

BRS with Threat-ADS

• Game needed to test Threat-ADS heuristic

• Needs:

– BRS must be applicable

– Game should be simple to implement

• Use established games Focus and Chinese Checkers

• Also develop the Virus Game

Experimental Framework

• Turn based game with N players

• Played on 2D board

• Goal is to eliminate all other players

• Turn: Player “infects” a square they are adjacent to

• All nearby squares, according to a configured
pattern, are given to that player

Virus Game

Virus Game

• One player: BRS with Threat-ADS

• Others: Random (Interested in tree pruning)

• Take Node Count over first few turns of the game

– Count each node expanded, but not those pruned

• Average over 50 games

• Run for each of three games mentioned

• Run over a variety of configurations

• Varying number of players

• Varying starting state

Experimental Configuration

Game Threat-ADS? Avg. Node Count

Virus Game No 264,000

Virus Game Yes 237,000

Focus No 6,859,000

Focus Yes 6,443,000

Chinese Checkers No 3,485,000

Chinese Checkers Yes 3,070,000

Results (Initial Board State)

Game Threat-ADS? Avg. Node Count

Virus Game No 307,000

Virus Game Yes 275,000

Focus No 14,460,000

Focus Yes 13,050,000

Chinese Checkers No 8,170,000

Chinese Checkers Yes 7,680,000

Results (Midgame Board State)

Monte-Carlo Methods

• Entirely different way of looking at game playing
– Applicable to two player and multi-player games

• No game heuristics required!

• Driven by random game playing
– Strong when no good heuristic is available

– Big example in research is Go

• Very simple example:

– Play 50 random games for each move
– Pick one with highest winrate

Monte-Carlo Tree Search

• Simple example above

• Works for easy games

• Look-ahead is useful

• Apply random game playing to game tree search

• Navigate:

• From root to unvisited node

• Then play random game(s)

• Path guided by exploration/exploitation balance

• At end of time, pick most promising move

• Very powerful: Relatively new compared to Mini-Max

UCT Algorithm

• Dominant Monte-Carlo Tree Search technique (2015)

• Starting from root:
– If there is an unvisited child, pick it

– Otherwise, pick child that maximizes UCTValue

 UCTVal = winrate + sqrt(ln(parent.visits)/visits)

– Repeat until an unvisited child is found

• Propagate winrate back up to root

• Repeat until time is up

• Pick move that has highest winrate

UCT Algorithm

function integer uct(node, depth):
 for time-steps do
 position = root
 while position is explored
 val = −∞
 for child of position
 !– Unexplored node check here--!
 val = max(val, UCTValue(child))
 position = val.node
 end for
 end while

 Play random game(s) at child
 while position is not root
 update win-rate for player at node
 position = position.parent
 end while

 end for

Multi-Player UCT Algorithm

• Very easy to extend
– We do not have to maintain heuristic values

– UCT handles N-player games in its base form

• For the player making the move
– Simply record winrate at each node

– Assume player will pick move most likely to lead to win

• No change from previous algorithm

More on UCT Value

• UCTValue has two parts

• Winrate is self-explanatory

• Value between 0.0 and 1.0 indicating proportion of wins

• Second part: sqrt(ln(parent.visits)/visits)

• Specifics not important, but also between 0.0 and 1.0

• Goes up the less this child has been explored in
relation to its parent

• Achieves exploration/exploitation balance!

• Sometimes constants usually added to tweak this

Applications of UCT

• Best performance available for Go

– Top player is currently Zen

– Defeated 9-dan player with three stone handicap

• Applied to wide range of games

– Poker

– Settlers of Catan

– Magic: The Gathering

