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Heuristic Search 

• Problem with DFS and BFS: No way to guide the search 

• Solution can be anywhere in tree.   

• In the worst case all possible states will be traversed 
 

• One “solution” to this problem 
– Probe the search space  

– Where is the final state likely to be 

• This of course will be problem specific 

• A function is usually created that evaluates:  
– How good the current solution is 

– This function is used to help guide the search process 
 

• This guided search called a Heuristic Search 



A Heuristic 

• Derived from the Greek: heuriskein: “to find”; “to discover” 

• Has been used (and is sometimes still used) to mean:  
– “A process that may solve a given problem, but offers no guarantees of 

doing so” Newall, Shaw, & Simon 1963 

• Heuristics can also be thought of as a “Rule of Thumb” 

• Can refer to any technique that improves average-case 
but not necessarily worst-case performance 

• Here: A function that provides an estimate of solution cost 



Advantage of Heuristics 



Advantage of Heuristics: 
Reduced State Space 



Performance of Heuristics 

• Performance of several heuristics… 

 



Possible Heuristics 

• Count the tiles out of place: 
– State with fewest tiles out of place is 

closer to the desired goal 

• Distance Summation:  
– Sum all the distance by which the tiles 

are out of place 

– State with the shortest distance is 
closer to the desired goal 

• Count reversal Tiles:  
– If two tiles are next to each other, and 

the goal requires their position to be 
swapped. The heuristic takes this into 
account by evaluating the expression 
(2 * number of direct tiles reversal) 

 



Best-first Search 

• Idea: use an evaluation function f(n) for each node 
– Estimate of “desirability” 

– Expand most desirable unexpanded node 

 

• Implementation: 

 Order the nodes in fringe in decreasing order of desirability 

 

 

• Special cases: 
– Greedy best-first search 

– A* search 



Best-first Search 

• Combine BFS and DFS using a heuristic function 

• Expand the branch that has the best evaluation 
under the heuristic function 

• Similar to hill climbing (move in the best direction) 

• But can go back to “discarded” branches 



Best-first Search Algorithm 

• Initialize OPEN to initial state, CLOSED to Empty list 

• Until a Goal is found or no nodes left in Open do: 
– Pick the best node in OPEN 

– Generate its successors, place node in CLOSED  

– For each successor do: 

 If not previously generated (not found in OPEN or CLOSED) 
• Evaluate 

• Add to OPEN  

 

OPEN:  Generated nodes who’s children have not been evaluated yet 

» Implemented as a priority queue (heap structure) 

CLOSED:  Nodes that have been examined  

» Used to see if a node has been visited if searching a graph instead of a tree 

» Same as in DFS and BFS 
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Greedy Best-first Search 

• Evaluation function f(n) = h(n) (heuristic) 

• An estimate of cost from n to goal 

• hSLD(n) = straight-line distance from n to Bucharest 

 

• Greedy Best-first Search expands the node that 
appears to be closest to goal 



Romania: Step Costs in Km 



Example: Greedy Best-first Search 



Example: Greedy Best-first Search 



Example: Greedy Best-first Search 



Example: Greedy Best-first Search 



Properties: Greedy Best-first Search 

• Complete? 
– No – can get stuck in loops 

– Iasi  Neamt  Iasi  Neamt   

• Time?  
– O(bm) 

– But a good heuristic can a give dramatic improvement 

• Space?  
– O(bm) 

– Keeps all nodes in memory 

• Optimal?  
– No 



A* Search 

• A modification of the Best-first Search 

• Used when searching for the Optimal path 

• Idea: Avoid expanding paths that are “expensive” 

• The heuristic function f(S) is broken into two parts:  

• Evaluation function f(n) = g(n) + h(n) 
– g(n) = Cost so far to reach n 

– h(n) = Estimated cost from n to goal 

– f(n) = Estimated total cost of path through n to goal 



How A* Works 



How A* Works 



A* Algorithm 

• Initialize OPEN to initial state 

• Until a Goal is found or no nodes left in OPEN do: 

– Pick the best node in OPEN  

– Generate its successors (recording the successors in a list);  

– Place in CLOSED 

– For each successor do: 

 If not previously generated (not found in OPEN or CLOSED) 

• Evaluate, add to OPEN , and record its parent 

 If previously generated ( found in OPEN or CLOSED), and if the new path is 
better then the previous one  

• Change parent pointer that was recorded in the found node 

 If parent changed 

• Update the cost of getting to this node  

• Update the cost of getting to the children  

– Do this by recursively “regenerating” the successors using the list of 
successors that had been recorded in the found node 

• Make sure the priority queue is reordered accordingly 



Properties of A* 

• Becomes simple Best-first Search if g(S) = 0 for every S 

 

• When a child state is formed 
– g(S) can be incremented by 1 

– Or be weighted based on the production system operator generated the state 

 

• Is Breadth-first Search if g += 1 per generation and h=0 always 

 



Properties of A* 

• If h is the perfect estimator of the distance to the Goal (say, H) 
– A* will immediately find and traverse the optimal path to the solution  

– Will need NO backtracking 

 

• If h never overestimates H 
– A* will find an optimal path to the solution (if it exists) 

– Problem lies in finding such an h 



h Under/Over Estimates H 

Goal is G 

h Underestimates H h Overestimates H 

A 

B (3+1) C (4+1) 

F (1+3) 

E (2+2) 
Expand Next 

G 

D (5+1) 

G 

..
. 

A 

B (5+1) D (7+1) C (6+1) 

F (3+3) 

E (4+2) G 

G 

Returned, but longer path 



Importance of Heuristic Function 

• If we have the exact Heuristic Function H 
– The search gets solved optimally 

 

• Exact H is usually very hard to find  
– In many cases it would be a solution to an NP problem in polytime 

– Which is probably not possible to compute in less time than it would take to 
do the exponential sized search 

 

• Next best: Guarantee h underestimates distance to the Soln. 
– A minimum path to the Goal is then guaranteed 



Heuristic Function vs. Search Time 

• The better the heuristic, the less searching  
– Improves the average time complexity 

 

• However, to compute such a heuristic  
– Can figure out a good algorithm 

– Usually costs computation cycles  

– This could be used to process more nodes in the search 

– Trade-off between complex heuristics vs. more search done 



Example: A* Search 



Example: A* Search 



Example: A* Search 



Example: A* Search 



Example: A* Search 



Example: A* Search 



Other Example: A* Search 

• Please see the other Powerpoint in the folder... 



Admissible Heuristics 

• A heuristic h(n) is Admissible if for every node n, h(n) ≤ h*(n), 
where h*(n) is the true cost to reach the goal state from n. 

 

• An admissible heuristic never overestimates the cost to reach the 
goal, i.e., it is optimistic 

 

• Example: hSLD(n) (never overestimates the actual road distance) 

 

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal 



Proof: Optimality of A* 

• Suppose some suboptimal goal G2 has been generated and is in the fringe.  

• Let n be an unexpanded node in the fringe such that n is on a shortest path to an 
optimal goal G. 

 

 

 

 

 

• f(G2)  = g(G2)  Since h(G2) = 0  

• g(G2) > g(G)   Since G2 is suboptimal  (2) 

• f(G)   = g(G)  Since h(G) = 0  (3) 

• f(G2)  = g(G2) > g(G) (from (2)) = f(G) (from (3)) 

• f(G2)  > f(G)  From above  



Proof: Optimality of A* 

• Suppose some suboptimal goal G2 has been generated and is in the fringe.  

• Let n be an unexpanded node in the fringe such that n is on a shortest path to an 
optimal goal G. 

 

 

 

 

 

 

• f(G2)  > f(G)   From above  

• h(n)  ≤ h*(n)  Since h is admissible 

• g(n) + h(n) ≤ g(n) + h*(n)  

• f(n)   ≤ f(G) 

Hence f(G2) > f(n).    Thus A* will never select G2 for expansion 
 



Consistent Heuristics 

• A heuristic is consistent if for every node n, every successor n' of n 
generated by any action a,  

 

 h(n) ≤ c(n,a,n') + h(n')   (4) 

 

• If h is consistent, we have 

  f(n')  = g(n') + h(n')  

        = g(n) + c(n,a,n') + h(n')  (By (4)) 

        ≥ g(n) + h(n)  

        = f(n) 

• i.e., f(n) is non-decreasing along any path. 

 

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal. 

• Essentially since: At the very end – h(G) = 0.  



Optimality of A* 

• A* expands nodes in order of increasing f value 

• Gradually adds "f-contours" of nodes  

• Contour i has all nodes with f=fi, where fi < fi+1 



Properties of A* 

• Complete?  
– Yes (unless there are infinitely many nodes with f ≤ f(G) ) 

• Time?  
– Exponential 

• Space?  
– Keeps all nodes in memory 

• Optimal?  
– Yes 



Admissible Heuristics 

The 8-puzzle: 

• h1(n) = number of misplaced tiles 

• h2(n) = total Manhattan distance 

(i.e., No. of squares from desired location of each tile) 

 

 

 

 

 

 

 

 

• h1(S) = ? 8 

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18  



Dominance 

• If h2(n) ≥ h1(n) for all n (both admissible) 

• then h2 dominates h1  

• h2 is better for search 

 

• Typical search costs (average number of nodes expanded): 

 

• d=12 IDS = 3,644,035 nodes 
 A*(h1) = 227 nodes  
 A*(h2) = 73 nodes  

• d=24  IDS = too many nodes 
 A*(h1) = 39,135 nodes  
 A*(h2) = 1,641 nodes  



Relaxed Problems 

• A problem with fewer restrictions on the actions is called a 
relaxed problem 

 

• The cost of an optimal solution to a relaxed problem is an 
admissible heuristic for the original problem 

 

• If the rules of the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution 

 

• If the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest solution 



Beam Search 

• Same as BestFS and A* with one difference 

 

• Instead of keeping the list OPEN unbounded in 
size, Beam Search fixes the size of OPEN  

 

• OPEN only contains the best K evaluated nodes 



Beam Search 

• If new node considered is not better then any in 
OPEN, and OPEN is full, new node is not added 

 

• If new node is to be inserted in the middle of the 
priority queue, and OPEN is full, drop the node at 
the end of OPEN (the one with the least priority) 



Local Beam Search 

• Keep track of k states rather than just one 

 

• Start with k randomly generated states 

 

• At each iteration, all the successors of all k states 
are generated 

 

• If any one is a goal state, stop; else select the k 
best successors from the complete list & repeat. 



Local Search Algorithms 

• In many optimization problems, the path to the goal is 
irrelevant; the goal state itself is the solution 

 

• State space = set of “complete” configurations 

• Find configuration satisfying constraints, e.g., n-queens 

 

• In such cases, we can use local search algorithms 

• keep a single “current” state, try to improve it 



Hill Climbing Search 

• “Like climbing Everest in thick fog with amnesia” 

 



Example: n-queens 

• Put n queens on an n × n board 

• No two queens on the same row, column, or diagonal 



Example: 8-queens 

• h = No. of pairs of queens that are attacking each other, either directly or indirectly  

• h = 17 for the above state 



Hill-climbing Search: 8-queens problem 

• A local minimum with h = 1 



Hill Climbing Search 

Simple-Hill-Climber (S) 

• Evaluate S;   If Goal state return and quit 

• Loop until a solution is found  or  no neighbors left 

– Look at next neighbor NN 

– Evaluate NN 

 If NN is Goal return and quit 

 If NN is better than S,  S := NN   

Reset neighbors 
 



Hill Climbing Search 

Steepest-Ascent-HC (S) 

• Evaluate S;   If Goal state return and quit 

• SUCC := S 

• Loop until a solution is found  or  no neighbors left 

–   For all neighbors (NN)  of S 

 Evaluate NN 

 If NN is Goal then return NN and quit 

 If NN is better than SUCC  then  SUCC := NN 

– If SUCC is better than S  then   

 S := SUCC 

Reset neighbors 



Hill Climbing Continued 

Stochastic-Hill-Climber (S) 

• Evaluate S;   If Goal state return and quit 

• Loop until a solution is found  or  no neighbors left 
– Look at some random neighbor RN 

– Evaluate RN 

 If RN is Goal return and quit 

 If RN is better than S 
• S := RN  

• Reset neighbors 



Hill Climbing Search 

Problem: Local maxima or plateau… 

 



Problems with Hill Climbing 

• Hill Climbing will get stuck at local maxima in the space 

• Can get stuck on a “plateau” 

 

Solutions 

• Backtrack to earlier node and force it to go in a new direction 

• Take a big jump to somewhere else in search space 

• Simulated Annealing (Will study this next) 

• Genetic Algorithms 



Simulated Annealing Search 

• Simulate the annealing process of creating metal alloys 

• Start off hot, and cool down slowly which allows the various 
metals to crystallize into a global uniform structure 

• If cooled too fast the metals crystallize in pockets 

• If cooled too slowly, a uniform crystallization but wastes time 

 



Simulated Annealing Search 

• Use this idea to try to find global minimum  

• Now finding minimum instead of maximum -- but it’s the same 

• Wander from the hill-climbing while system still hot 

• Reduce to hill climbing as system cools 



Properties: Simulated Annealing 

• One can prove:  
– If T decreases slowly enough, then simulated annealing search 

will find a global optimum with probability approaching unity 

 

• Widely used in VLSI layout, airline scheduling, etc 



Details: Simulated Annealing 

• The probability to move to a higher energy state in physics is 

 

 

 where k is the Boltzman constant 

• Similarly, in SA (when finding the minimum), the probability to move to a 

state with a higher (worse) heuristic is: 

 

   where  

 E = (value of current state) - (value of new state) 

    T(t) is the temperature schedule (a function of time t)  
– Temperature monotonically decreases with time,  

– Eventually T reaches 0 when the system becomes simple “hill descending” 

p 
1

e
E kT

p 
1

e
E T ( t)



SA Details When Maximizing 

• The probability to move to a state with a lower (worse) heuristic 
function evaluation in SA is 

p = e E/T 

   where  

 E = (value of new state) - (value of current state) 

   (The negation of the E used when minimizing)  

 

 T(t) is the temperature schedule (a function of time t)  
– Temperature monotonically decreases with time  

– Eventually T reaches 0 when the system becomes simple  “hill climbing” 



Simulated Annealing Algorithm 

Simulated-Annealing (problem, schedule)  From Russell and Norvig 

 Current :=  Initial-State(Problem) 

 for t := 1 to  do 

  T := schedule(t) 

  If T = 0 then return Current 

  Next := a randomly selected successor of Current 

  E := Value(Next) - Value(Current) 

  If E > 0 then 

   “Always go to a better solution” 

   Current := Next 

  Else 

   “Leave a better solution for a worse one with prob. e E/T ” 

   Current := Next only with probability e E/T 

 



SA: Meta Heuristics 

• If the solution is better:  
– Always move to it 

• If the solution is worse but the slope up is shallow: 
– Try it out 

• If the solution is worse but the slope is steep:  
– Don’t try it out as readily (with an exponentially decreasing probability) 

• As time goes on, don’t try worse solutions as frequently 
– Again with an exponentially decreasing probability 



SA Effects 

• At the beginning of the process (when T(t) is large) 
– The probability of moving to poorer states, or moving along a plateau is large. 

– So the space can be well searched 

– Local minimums can be passed over 

– Ignore steep ascents  

 This implies that you are in a deep valley, which is assumed to be good 

 

• As time increases 
– The search gets trapped in one valley and gets stuck as T(t) becomes small 

– The probability of getting out of the Valley is too small.   

 

• At this time 
– SA becomes “hill descending”  

– Descends to the bottom of that valley - hopefully the global minimum 



Genetic Algorithms 

• A successor state is generated by combining two parent states 

 

• Start with k randomly generated states (population) 

 

• A state is represented as a string over a finite alphabet (often a 
string of 0s and 1s) 

 

• Evaluation function (fitness function). Higher values for better 
states. 

 

• Produce the next generation of states by selection, crossover, and 
mutation 



Genetic Algorithms 

 

 

 

 
 

 

• Fitness function: Number of non-attacking pairs of queens  

  (min = 0, max = 8 × 7/2 = 28) 

• 24/(24+23+20+11) = 31% 

• 23/(24+23+20+11) = 29% etc 



Genetic Algorithms 



OR Graphs vs. AND-OR Graphs 

• In the previous search techniques, Solution can be 
found down any path independent of any other path 

 

• This is called an OR graph 

 

• However, there may be sub-goals that must all be 
solved for a solution to be found 

– Each sub-goal is its own sub-tree 

– All sub-trees must have its own end state found if the path is to be 
considered satisfied 

• This is called an AND-OR graph 
 



Example of an AND-OR Graph 

•  Getting software to accomplish a task 

Buy Software 

Obtain Software 

Get Money 

Pirate Software Get Disk 

Write Software 

Compile 

Debug 



Problem Reduction Algorithm 

• Initialize the graph to the starting node 

• Until the starting node is labeled SOLVED or its cost > FUTILITY do: 

– Start at initial node and traverse best path 

 Accumulate set of nodes on path not expanded or labeled SOLVED 

– Pick an unexpanded node and expand 

 If no successors, node cost = FUTILITY 

 Add successors to graph after computing the heuristic f for each 

 If f = 0 for any node mark node as SOLVED 

– Propagate change back through path 

 If child is an OR child and is SOLVED mark parent as SOLVED 

 If AND children are all solved, mark parent as SOLVED 

Change the estimate of f as determined by children 

 As we back up the tree, change current best path associated with 
each node (on the original best path) if updated f values warrant it 



Example of Problem Reduction (AO*) 

A (5) 

A (4,0) 

B (3) D (10) 

E (4) F (4) 

C (4) 

(9) 
(11) 

(10) 

A 

B (3) D (5) C (4) 

(9) 
(6) 

(6) 

When you calculate costs, remember to use the cost PLUS the depth 



Example of Problem Reduction (AO*) 

A (4,0) 

H (7) G (5) 

B (6) D (10) 

E (4) F (4) 

C (4) 

(12) 
(11) 

(10) 



Interacting Sub-goals 

A 

D 

C E 
5 2 



Branch and Bound 

• If we know that current path (branch) is already 
worse than some other known path:  

– Stop Expanding It (Bound). 

 

• Have already encountered Branch and Bound:  
– A* stops expanding a branch if its heuristic value h becomes 

larger than some other branch 

 



Constraint Satisfaction Problems 
and Branch and Bound 

• Problems where there are natural constraints on the 
system (fixed resources, impossibility conditions, etc.) 

 

• Constraints: Handled by Branch and Bound technique 
– Branch out in your normal search pattern 

– Stop expanding a branch if it fails a constraint (backtracking may 
occur when that happens) 

 

• Trivial example:  Missionaries and Cannibals 
– Do not continue to search along a branch if the Cannibals have just 

eaten some (or all) of the Missionaries 



Games vs. Search Problems 

• “Unpredictable” opponent  
– Specifying a move for every possible opponent reply 

 

• Time limits  
– Unlikely to find goal, must approximate 



Mini-Max Search 

• Search to find the correct move in a two player game 

• Since 1950’s: Has been the foundational scheme 

• The optimal solution:  
– Exponential algorithm  

– Generate all possible paths  

– Only play those that lead to a winning final position 

 

• Realistic alternative to the Optimal 

 

• Use finite depth look-ahead with a heuristic function 
for evaluating how good a given game state is  



Mini-Max 

• Extend Tree down to a given search depth  

 

• Top of tree is the Computer’s move 

– Wants move to ultimately be one step closer to a winning position 

– Wants move that maximizes own chance of winning 

 

• Next move is Opponent’s 

– Opponent assumed to perform a move that his best  

– Wants move that minimizes Computer’s chance of winning 



Game tree  
2-player, Deterministic, Turns 



Mini-Max 

• Perfect play for deterministic games 

• Idea: Choose move to position with highest Mini-Max value  
 = Best achievable payoff against best play 

• Example: 2-ply game: 

 



Mini-Max for Nim 

• Game of Nim 
– Two players start with a pile of tokens 

– Legal move: Split (any) existing pile into two non-empty 
differently sized piles 

– Game ends when no pile can be unevenly split 

– Player who cannot make his move loses the game 

 

• Search strategy 
– Existing heuristic search methods not needed 

– Search the whole tree 



Mini-Max for Nim 

• Label nodes as MIN or MAX, alternating for each level 

• Define utility function (payoff function). 

• Do full search on tree  
– Expand all nodes until game is over for each branch 

• Label leaves according to outcome 

• Propagate result up the tree with: 
– M(n) = max( child nodes ) for a MAX node 

– m(n) = min( child nodes ) for a MIN node 

• Best next move for MAX is the one leading to the child 
with the highest value (and vice versa for MIN) 



Mini-Max for Nim 



Mini-Max Algorithm 

• Operator: The same as “move” to be made 

• Utility: The value of the heuristic at that juncture 

• EVAL: Computes this heuristic value 

• Cutoff: Either Game is Done or Search Deep Enough 

• Successors: Possible moves at the next level 

• Max and Min algorithms are almost identical 

• MINIMAX-DECISION: The actual decision that is made 



Mini-Max Algorithm 

function MAX-VALUE(state, game) returns a utility value 
 if CUTOFF-TEST(state) then return EVAL(state) 
 value := - ∞ 
 for each s in SUCCESSORS(state) do 
  value := MAX(value, MIN-VALUE(s, game)) 
 end 
 return value 

function MIN-VALUE(state, game) returns a utility value 
 if CUTOFF-TEST(state) then return EVAL(state) 
 value :=  ∞ 
 for each s in SUCCESSORS(state) do 
  value := MIN(value, MAX-VALUE(s, game)) 
 end 
 return value 

function MINIMAX-DECISION(game) returns an operator 
 for each op in OPERATORS[game] do 
  VALUE[op] := MIN-VALUE(APPLY(op, game), game) 
 end 
 return the op with the highest VALUE[op] 
 



Problems with Mini-Max 

• Horizon Effect: Finite Depth; Can’t see beyond 
– Exponential increase in tree size, only very limited depth feasible 

– Solution: Quiescence search (a state of quietness or inactivity) 

» Start at the leaf nodes of the main search 

» Try to solve this problem 

» Is there something “obvious” we are missing? 

» One option is good but all other options look bad??? 

– In Chess: Quiescence searches usually include all capture moves 

» Tactical exchanges don't mess up the evaluation (PXB; QXB) 

» Quiescence searches: Look for moves which destabilize the 
evaluation function 

» If there is such a move: The position is not quiescent 



Problems with Mini-Max 

 

• May want to use look up tables  
– For end games 

– Opening moves (called Book Moves) 



Properties of Mini-Max 

• Complete?  
– Yes (if tree is finite) 

• Optimal?  
– Yes (against an optimal opponent) 

• Time complexity?  
– O(bm) 

• Space complexity?  
– O(bm) (depth-first exploration) 

• Chess: b ≈ 35, m ≈100 for “reasonable” games 
– Exact solution completely infeasible 

– Shannon: Search space as large as 1042 



Branch and Bound: The α-β Algorithm 

• Branch and Bound:  
– If current path (branch) is worse then some other known path: 

– Stop expanding it (bound). 

 

• Alpha-Beta: 
– A branch and bound technique for Mini-Max search 

– Know that the level above won’t choose your branch  

» Because you have already found a value along one of 
your sub-branches that is too good 

» Stop looking at other sub-branches that haven’t been 
looked at yet 



The α-β Algorithm 

• Instead of maintaining a single mini-max value  
– The α-β pruning algorithm, maintains two: α, β 

 

• Together:  
– Provide a bound on the possible values of the mini-max tree 

 

• At any given point, α: minimum the player can expect 

• At any given point, β: maximum the  

• Guarantee: I can always get between α and β 



The α-β Algorithm 

• If ever (β <= α): Bound is reversed or range of 0  
– Better options exist for the player at other pre-explored nodes  

• As α is the minimum value we know we can get 
– This node cannot be the mini-max value of the tree.  

– No point in exploring any more of this node's children 

• Potentially save considerable computation time  

• Fantastic when large branching factor/depth 



Properties of α-β 

• Pruning does not affect final result (The Mini-max soln.) 
 

• Good move ordering improves pruning  effectiveness 
 

• With “perfect ordering” time complexity = O(bm/2) 

– Doubles depth of search 
 

• α-β Search 
– A simple example of the value of reasoning  

– Which computations are really relevant 



Why it is called α-β 

• α: Value of the best choice 
found so far at any choice 
point along the path for max 

• If v is worse than α 

– max will avoid it 

– prune that branch 

• Define β similarly for min 

 



Effects of α-β 



Example: α-β Pruning 



Example: α-β Pruning 



Example: α-β Pruning 



Example: α-β Pruning 



Example: α-β Pruning 



The α-β Algorithm 

• From Russell and Norvig 

• Only Change from Mini-Max: The lines in Green 

 function MAX-VALUE(state, game, , ) returns a utility value 
 

 if CUTOFF-TEST(state,) then return EVAL(state) 
 for each s in SUCCESSORS(state) do 
   := MAX(, MIN-VALUE(s, game, , )) 
  if  ≥  then return  /*Only line that is different*/ 
 end 
 return  
 
function MIN-VALUE(state, game, , ) returns a utility value 
 

 if CUTOFF-TEST(state) then return EVAL(state) 
 for each s in SUCCESSORS(state) do 
   := MIN(, MAX-VALUE(s, game, , )) 
  if  ≤  then return  /*Only line that is different*/ 
 end 
 return  

game = game description 

state = current state in game 

 

 = best score for MAX so far 
 = best score for MIN so far 



The α-β Algorithm 



The α-β Algorithm 



Changing Levels of Difficulty 

• Increase Depth of Search 

Improving Game Playing 

• Increase Depth of Search 

• Have better heuristic for game state evaluation 



Resource Limits 

• Suppose we have 100 secs, explore 104 nodes/sec 

– 106 nodes per move 

 

• Standard approach: 

– Cutoff test: Depth limit (perhaps add quiescence search) 

• Evaluation function:  

– Estimated desirability of position 



Quiescence search 

• Quiescence search: Study moves that are noisy 

• They appear good, but moves around them - bad 

• Investigate them with a localized leaf search 

• Attempt to identify delaying tactics and change 
the seemingly-good value of the node 

• A very natural extension of Mini-Max 

• Simply run search again at a leaf node until that 
leaf node becomes quiet 

• As with iterative deepening, running time of the 
algorithm won’t increase by more than a constant 



Evaluation Functions 

• Chess, typically linear weighted sum of features 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 

 

• Example: w1 = 9 with  

 f1(s) = (number of white queens) –  (number of black queens)  

 etc. 



Cutting-Off Search 

MinimaxCutoff is identical to MinimaxValue except 
1. Terminal? is replaced by Cutoff? (Have I reached a Cutoff Point) 

2. Utility is replaced by Eval 

 

Does it work in practice? 

 bm = 106, b=35  m=4 

 

4-ply lookahead is a hopeless Chess player! 
– 4-ply ≈ human novice 

– 8-ply ≈ typical PC, human master 

– 12-ply ≈ Deep Blue, Kasparov 



Real Deterministic Games 

• Checkers: Chinook ended 40-year-reign of 
human world champion Marion Tinsley in 1994. 

– Used a precomputed endgame database 

– Defining perfect play for all positions involving 8 or fewer 
pieces on the board - a total of 444 billion positions. 

 

• Chess: Deep Blue defeated human world 
champion Kasparov in a six-game match in 1997. 

– Deep Blue searches 200 million positions per second 

– Uses very sophisticated evaluation 

– Undisclosed methods for extending some lines of search up 
to 40 ply. 



Real Deterministic Games 

• Othello: Human champions refuse to compete 
against computers, who are too good. 

 



Things to Remember: Games 

• Games are fun to work on! 

• They illustrate several important points about AI 

• Perfection is unattainable  

• Must approximate paths and solutions 

• Good idea to think about what to think about 


