Artificial Intelligence An Introduction¹

Instructor: Dr. B. John Oommen

Chancellor's Professor

Fellow: IEEE; Fellow: IAPR

School of Computer Science, Carleton University, Canada.

¹The primary source of these notes are the slides of Professor Hwee Tou Ng from Singapore. I sincerely thank him for this.

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ...
- Turing (1930's)
 - Turing Machine (TM)
 - Turing Test "Operationalizing" Intelligence
 - Machine's ability to demonstrate intelligence
 - Human Judge "converses" with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine Passes the test
- The Test itself

Turing-Church Thesis:

If a problem is not solvable by a TM, it is not solvable by

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ..
- Turing (1930's)
 - Turing Machine (TM)
 - Turing Test "Operationalizing" Intelligence
 - Machine's ability to demonstrate intelligence
 - Human Judge "converses" with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine Passes the test
- The Test itself

Turing-Church Thesis:
If a problem is not solvable by a TM, it is not solvable by people either

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ...
- Turing (1930's)
 - Turing Machine (TM)
 - Turing Test "Operationalizing" Intelligence
 - Machine's ability to demonstrate intelligence
 - Human Judge "converses" with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine Passes the test
- The Test itself

Turing-Church Thesis:

If a problem is not solvable by a TM, it is not solvable by people either

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ...
- Turing (1930's)
 - Turing Machine (TM)
 - Turing Test "Operationalizing" Intelligence
 - Machine's ability to demonstrate intelligence
 - Human Judge "converses" with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine Passes the test
- The Test itself

Turing-Church Thesis:

If a problem is not solvable by a TM, it is not solvable by people either

- 1940s: McCulloch-Pitts, Wiener, Ashby
 - Neuron models
 - Cybernetics Feedback
 - Teleological behavior
 - Study of design and purpose
 - All things to be designed for or directed toward a final result
 - There is an inherent purpose or final cause for all that exists
 - Homeostat
 - Device built by Ashby in 1948
 - Adaptive ultrastable system from four bomb control units
 - Had inputs and feedback
 - Used magnetically-driven water-filled potentiometers
 - Stabilizes effects of disturbances introduced into the system
 - Time: "Closest thing to a synthetic brain... designed by man"

- 1940s: McCulloch-Pitts, Wiener, Ashby
 - Neuron models
 - Cybernetics Feedback
 - Teleological behavior
 - Study of design and purpose
 - All things to be designed for or directed toward a final result
 - There is an inherent purpose or final cause for all that exists
 - Homeostat
 - Device built by Ashby in 1948
 - Adaptive ultrastable system from four bomb control units
 - Had inputs and feedback
 - Used magnetically-driven water-filled potentiometers
 - Stabilizes effects of disturbances introduced into the system
 - Time: "Closest thing to a synthetic brain... designed by man"

1940s: McCulloch-Pitts, Wiener, Ashby

- Neuron models
- Cybernetics Feedback
- Teleological behavior
 - Study of design and purpose
 - All things to be designed for or directed toward a final result
 - There is an inherent purpose or final cause for all that exists

Homeostat

- Device built by Ashby in 1948
- Adaptive ultrastable system from four bomb control units
- Had inputs and feedback
- Used magnetically-driven water-filled potentiometers
- Stabilizes effects of disturbances introduced into the system
- Time: "Closest thing to a synthetic brain... designed by man"

- 1940s: Walter, von Neumann
 - Machina Speculatrix (Elmer 1948, and Elsie 1949)
 - First electronic autonomous robots
 - Rich connections between a small number of brain cells -Very complex behaviors
 - Described as tortoises due to their shape and slow motion
 - "Taught us" about the secrets of organization and life
 - Three-wheeled tortoise robots
 - Could find their way to a recharging station
 - Self-reproducing automata
 - Self-replication: Process by which a thing copies of itself
 - Self-reproductive systems:Produce copies of themselves
 - Primitives: From metal bar and wire
 - Self-assembling systems
 - Assemble copies of themselves from finished parts
 - Self-reproducing "computer programs"

- 1940s: Walter, von Neumann
 - Machina Speculatrix (Elmer 1948, and Elsie 1949)
 - First electronic autonomous robots
 - Rich connections between a small number of brain cells -Very complex behaviors
 - Described as tortoises due to their shape and slow motion
 - "Taught us" about the secrets of organization and life
 - Three-wheeled tortoise robots
 - Could find their way to a recharging station
 - Self-reproducing automata
 - Self-replication: Process by which a thing copies of itself
 - Self-reproductive systems:Produce copies of themselves
 - Primitives: From metal bar and wire
 - Self-assembling systems
 - Assemble copies of themselves from finished parts
 - Self-reproducing "computer programs"

- 1950s: Simon, Newell, McCarthy, Minsky: "Al" (1956)
 - Fundamentals of Classification
 - Neural networks
 - Perceptron

- 1960s: Lisp, Adaline, Fuzzy sets (Zadeh 65)
- 1960s: General Problem Solver (GPS), Logic Theory
- 1970s: Backpropogation, Fuzzy Controllers
- 1970s: Knowledge Engineering, Genetic Algorithms (GA)
- 1970s: Production systems, Expert systems
- 1970s: Natural Language Processing (NLP)
- SHRDLU
 - SHRDLU was an early NLP developed by Winograd at MIT
 - Micro Planner and Lisp programming language on a PDP-6
 - SHRDLU was derived from ETAOIN SHRDLU
 - Arrangement of the alpha keys on a Linotype machine in descending frequency order

- 1960s: Lisp, Adaline, Fuzzy sets (Zadeh 65)
- 1960s: General Problem Solver (GPS), Logic Theory
- 1970s: Backpropogation, Fuzzy Controllers
- 1970s: Knowledge Engineering, Genetic Algorithms (GA)
- 1970s: Production systems, Expert systems
- 1970s: Natural Language Processing (NLP)
- SHRDLU
 - SHRDLU was an early NLP developed by Winograd at MIT
 - Micro Planner and Lisp programming language on a PDP-6
 - SHRDLU was derived from ETAOIN SHRDLU
 - Arrangement of the alpha keys on a Linotype machine in descending frequency order

History of Al: 1970's & 1980's

- 1970s: Theorem proving, Planning
- 1980s: NN / Connectionist boom, Boltzmann Machine
- 1980s: Knowledge Representation (KR)
- 1980s: More semantics in NLP (Conceptual Dependency)
- 1980s: Symbolic Machine Learning (ML)

More NN

- Subsumption Architecture (Brooks)
 - Decompose complicated intelligent behaviour
 - Many "simple" behaviour modules organized into layers
 - Each layer implements a particular goal
 - Higher layers are increasingly abstract
 - A robot's layers:
 - Lowest layer could be "avoid an object"
 - On top of it would be the layer "wender around"
 Milish in the layer seed as "seed as the seed of "
 - Which in turn lies under "explore the world"
 - Uses a bottom-up design

8/29

- More NN
- Subsumption Architecture (Brooks)
 - Decompose complicated intelligent behaviour
 - Many "simple" behaviour modules organized into layers
 - Each layer implements a particular goal
 - Higher layers are increasingly abstract
 - A robot's layers:
 - Lowest layer could be "avoid an object"
 - On top of it would be the layer "wander around"
 - Which in turn lies under "explore the world"
 - Uses a bottom-up design

- Reinforcement Learning
- Bayesian Belief Nets
- Data Mining
- More NN, More GA, GP, Artificial-Life
- More GAs, Genetic Programming (GP), Artificial-Life
- "Bottom-up or behavior-based Al" vs "Top-down Al"
- "Emergent Computing", Swarm Intelligence
- Self-Organization...

- Reinforcement Learning
- Bayesian Belief Nets
- Data Mining
- More NN, More GA, GP, Artificial-Life
- More GAs, Genetic Programming (GP), Artificial-Life
- "Bottom-up or behavior-based AI" vs "Top-down AI"
- "Emergent Computing", Swarm Intelligence
- Self-Organization...

What is Intelligence

- Intelligence is:
 - Intellectual (?) behavior that we admire
 - But don't understand
 - Intelligence is manifested in behavior
 - Closely related to surviving in a complex world
 - Or ...

"2" kinds of AI (or 3 or 4)

- Engineering vs "Cognitive Science"
 - Making usefully smart machines, somehow:
 - Expert systems; Deep Blue; some Data Mining
 - Understanding how minds work
 - Al to express and test psychological/linguistic etc. theories

Kinds of Al

- Classical/Top-down / Symbolic vs Behavior-based / Bottom-up / Subsymbolic Mind vs Brain
 - "Physical symbol system hypothesis"
 - Hi-level approach is brittle
 - Bottom-up approach often unimpressive
- Scruffies vs Neats

Kinds of Al

- Classical/Top-down / Symbolic vs Behavior-based / Bottom-up / Subsymbolic Mind vs Brain
 - "Physical symbol system hypothesis"
 - Hi-level approach is brittle
 - Bottom-up approach often unimpressive
- Scruffies vs Neats

Kinds of Al

- Weak Al vs Strong Al
 - Chinese Room argument (John Searle)
 - No such things as Al...
 - An experiment: Someone who knows only English
 - Sits alone in a room following English instructions for manipulating strings of Chinese characters
 - To those outside the room it appears as if someone in the room understands Chinese.
 - Shows that while computers may appear to converse in natural language, they cannot – even in principle.
 - Searle argues that computers merely use syntactic rules to manipulate symbol strings
 - Have no understanding of meaning or semantics.

Al: All about Tradeoffs

Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time

14/29

Al: All about Tradeoffs

Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time

Al: All about Tradeoffs

Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time

Al: All about Tradeoffs

Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time

14/29

Al: All about Tradeoffs

Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time

Al: All about Tradeoffs

Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time

14/29

Al must be Scruffy ...

- Neatness is impossible in complex domains
- Complex domains: Structure that requires solutions
- Found by exploring branching paths in a search space
 - No. of branches is exponential function of path depth
- Any intelligent agent needs to find tricks and shortcuts
- Even in formally specified domains!
- Unless: Infinitely large and fast computers
- Good shortcuts cannot be worked out in advance
- They are not perfect even in mathematics
- Shortcuts & laziness: Go hand in hand...
- Key to intelligence (Gauss 1..100)

Al must be Scruffy...

- Neatness is impossible in complex domains
- Complex domains: Structure that requires solutions
- Found by exploring branching paths in a search space
 - No. of branches is exponential function of path depth
- Any intelligent agent needs to find tricks and shortcuts
- Even in formally specified domains!
- Unless: Infinitely large and fast computers
- Good shortcuts cannot be worked out in advance
- They are not perfect even in mathematics
- Shortcuts & laziness: Go hand in hand..
- Key to intelligence (Gauss 1..100)

Al must be Scruffy ...

- Neatness is impossible in complex domains
- Complex domains: Structure that requires solutions
- Found by exploring branching paths in a search space
 - No. of branches is exponential function of path depth
- Any intelligent agent needs to find tricks and shortcuts
- Even in formally specified domains!
- Unless: Infinitely large and fast computers
- Good shortcuts cannot be worked out in advance
- They are not perfect even in mathematics
- Shortcuts & laziness: Go hand in hand...
- Key to intelligence (Gauss 1..100)

The Real World is even Harder

- Lack of complete initial information
- Range of things to do is large (branching factor!)
- Search spaces are huge
- Things happen fast
- There are deadlines
- Rapidly accessible and executable heuristics
- Must be learned by trial and error (for example)
- Such heuristic rules are bound to be fallible
 - Overgeneralization
 - Poor observations, weak sensors
 - Errors in measurement
 - Inadequate concepts
 - Noise, environmental variance etc...

The Real World is even Harder

- Lack of complete initial information
- Range of things to do is large (branching factor!)
- Search spaces are huge
- Things happen fast
- There are deadlines
- Rapidly accessible and executable heuristics
- Must be learned by trial and error (for example)
- Such heuristic rules are bound to be fallible
 - Overgeneralization
 - Poor observations, weak sensors
 - Errors in measurement
 - Inadequate concepts
 - Noise, environmental variance etc...

The Real World is even Harder

- Lack of complete initial information
- Range of things to do is large (branching factor!)
- Search spaces are huge
- Things happen fast
- There are deadlines
- Rapidly accessible and executable heuristics
- Must be learned by trial and error (for example)
- Such heuristic rules are bound to be fallible
 - Overgeneralization
 - Poor observations, weak sensors
 - Errors in measurement
 - Inadequate concepts
 - Noise, environmental variance etc...

Problems with Heuristics

- Rules and facts should be consistent
 - Consistency is undecidable
 - (Approximate) Consistency checking is explosive
 - Maintaining consistency also explosive
- To revise a belief, you need
 - Fallible heuristics
 - Allow for finding related beliefs
 - Identifying and retracting underlying assumptions etc.
- A huge reason maintenance system won't do

Kinds of AI
Al: All about Trade-offs
AI must be Scruffy
Heuristics and Semantics
Scruffiness
AI is Highly Interdisciplinar

Problems with Heuristics

- Rules and facts should be consistent
 - Consistency is undecidable
 - (Approximate) Consistency checking is explosive
 - Maintaining consistency also explosive
- To revise a belief, you need
 - Fallible heuristics
 - Allow for finding related beliefs
 - Identifying and retracting underlying assumptions etc.
- A huge reason maintenance system won't do

Kinds of AI AI: All about Trade-offs AI must be Scruffy Heuristics and Semantics Scruffiness AI is Highly Interdisciplinal

Problems with Heuristics

- Rules and facts should be consistent
 - Consistency is undecidable
 - (Approximate) Consistency checking is explosive
 - Maintaining consistency also explosive
- To revise a belief, you need
 - Fallible heuristics
 - Allow for finding related beliefs
 - Identifying and retracting underlying assumptions etc.
- A huge reason maintenance system won't do

Kinds of AI AI: All about Trade-offs AI must be Scruffy Heuristics and Semantics Scruffiness AI is Highly Interdisciplinar

Semantics is Scruffy too

- Conceptual schemes: Open-ended
- Unlike formal languages
- There is no formal, recursive semantics for NL:
 - We don't know the extension-assigning functions!
- Concepts:
 - May be indeterminate, vague, or ambiguous
 - Prompt conceptual innovations
 - Empirical concepts: No crisp necess./suff. conditions
 - Many concepts are theoretical

Kinds of AI AI: All about Trade-offs AI must be Scruffy Heuristics and Semantics Scruffiness AI is Highly Interdisciplinal

Semantics is Scruffy too

- Conceptual schemes: Open-ended
- Unlike formal languages
- There is no formal, recursive semantics for NL:
 - We don't know the extension-assigning functions!
- Concepts:
 - May be indeterminate, vague, or ambiguous
 - Prompt conceptual innovations
 - Empirical concepts: No crisp necess./suff. conditions
 - Many concepts are theoretical

Kinds of AI
AI: All about Trade-offs
AI must be Scruffy
Heuristics and Semantics
Scruffiness
AI is Highly Interdisciplinar

Scruffiness is Inevitable

- Scruffiness *Inevitable* for any resource-limited being!
- No practical strategy to reduce scruffiness works always
- Al must be scruffy, for neat reasons
- Thus: Study what the history has come up with
 - Of course: Theories about such inevitably scruffy systems
 - As neat as possible (maximally falsifiable etc.!!)

Kinds of AI
AI: All about Trade-offs
AI must be Scruffy
Heuristics and Semantics
Scruffiness
AI is Highly Interdisciplinar

Scruffiness is Inevitable

- Scruffiness *Inevitable* for any resource-limited being!
- No practical strategy to reduce scruffiness works always
- Al must be scruffy, for neat reasons
- Thus: Study what the history has come up with
 - Of course: Theories about such inevitably scruffy systems
 - As neat as possible (maximally falsifiable etc.!!)

- Nearly anything you want to compute you can't !!
 - Because there are countably many Turing machines
 - But Uncountably many functions
- The interesting things you can compute
 - Too expensive to compute
 - So, you can't compute them
 - Exponential worst case run-time functions
 - $T(n) = kC^n$ e.g. 1 input item takes 10^{-7} sec, n=50, complexity is $2^n : 20 * 10^{13}$ years
- Biological systems must use approximate solutions
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation
- "To be adaptable, an organism must be suboptimal" (Gould)

- Nearly anything you want to compute you can't !!
 - Because there are countably many Turing machines
 - But Uncountably many functions
- The interesting things you can compute
 - Too expensive to compute
 - So, you can't compute them
 - Exponential worst case run-time functions
 - $T(n) = kC^n$ e.g. 1 input item takes 10^{-7} sec, n=50, complexity is $2^n : 20 * 10^{13}$ years
- Biological systems must use approximate solutions
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation
- "To be adaptable, an organism must be suboptimal" (Gould)

Kinds of AI
AI: All about Trade-offs
AI must be Scruffy
Heuristics and Semantics
Scruffiness
AI is Highly Interdisciplinar

- Nearly anything you want to compute you can't !!
 - Because there are countably many Turing machines
 - But Uncountably many functions
- The interesting things you can compute
 - Too expensive to compute
 - So, you can't compute them
 - Exponential worst case run-time functions
 - $T(n) = kC^n$ e.g. 1 input item takes 10^{-7} sec, n=50, complexity is $2^n : 20 * 10^{13}$ years
- Biological systems must use approximate solutions
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation
- "To be adaptable, an organism must be suboptimal" (Gould)

Kinds of AI
Al: All about Trade-offs
AI must be Scruffy
Heuristics and Semantics
Scruffiness
AI is Highly Interdisciplinary

- Nearly anything you want to compute you can't !!
 - Because there are countably many Turing machines
 - But Uncountably many functions
- The interesting things you can compute
 - Too expensive to compute
 - So, you can't compute them
 - Exponential worst case run-time functions
 - $T(n) = kC^n$ e.g. 1 input item takes 10^{-7} sec, n=50, complexity is $2^n : 20 * 10^{13}$ years
- Biological systems must use approximate solutions
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation
- "To be adaptable, an organism must be suboptimal" (Gould)

Al is **Highly** Interdisciplinary

Many fields have contributed to Al

- In the form of ideas, viewpoints and techniques
- Philosophy: Logic, reasoning, mind as a physical system
- Mathematics: Formal representation and proofs
- Mathematics: Computation, (un)decidability, (in)tractability
- Mathematics: Probability, fuzzy theory
- Psychology: Learning, perception, motor control
- Economics: Theory of rational decisions, game theory

Kinds of AI
AI: All about Trade-offs
AI must be Scruffy
Heuristics and Semantics
Scruffiness
AI is Highly Interdisciplinary

Al is Highly Interdisciplinary

Other fields that have contributed to AI:

- Linguistics: Knowledge representation, grammar
- Neuroscience: Physical substrate for mental activities
- Biology: Adaptation, evolution of complex systems
- Controls: Homeostatic systems, stability, optimal agents
- Complex Systems Theory etc. etc. etc....

AI Systems

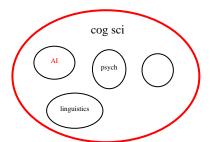
- Think like humans
 - Cognitive modelling (AI + Psychology)
- Act like humans
 - Turing test approach: needs NLP, KR, ML, ...
- Think rationally
 - First-Order-Logic based problem solving and planning
 - Closely related to automated theorem proving
- Act rationally
 - A rational agent acts so as to achieve its goals
 - Given its beliefs & limited rationality
- Autonomous agents, robots, evolutionary computation

- Heuristic search
 - Problem solving, planning, game playing
- Theorem proving
- Knowledge-based (KB) systems
 - Knowledge Engineering (KE);
 - Knowledge Representation (KR); Expert systems
- Natural Language Processing (NLP)
 - Story understanding
 - Speech recognition
 - Question answering

- Heuristic search
 - Problem solving, planning, game playing
- Theorem proving
- Knowledge-based (KB) systems
 - Knowledge Engineering (KE);
 - Knowledge Representation (KR); Expert systems
- Natural Language Processing (NLP)
 - Story understanding
 - Speech recognition
 - Question answering

- Heuristic search
 - Problem solving, planning, game playing
- Theorem proving
- Knowledge-based (KB) systems
 - Knowledge Engineering (KE);
 - Knowledge Representation (KR); Expert systems
- Natural Language Processing (NLP)
 - Story understanding
 - Speech recognition
 - Question answering

- Perception
- Vision
- Robotics
- Machine Learning
- Pattern Recognition



ce is (?) Reasoning + Knowledge

Reasoning

- Universal inference methods
- "Weak" methods, e.g. hill climbing
- Domain-independent search through symbolic state spaces
- Problem-solving/planning theorem proving first principles

Knowledge

- ullet Universal methods o combinatorial explosion
- "Strong" methods:
 - Heuristics
 - Domain-dependent knowledge
 - Shallow deductions
- Expert systems

Intelligence is (?) Reasoning + Knowledge

Reasoning

- Universal inference methods
- "Weak" methods, e.g. hill climbing
- Domain-independent search through symbolic state spaces
- Problem-solving/planning theorem proving first principles

Knowledge

- ullet Universal methods o combinatorial explosion
- "Strong" methods:
 - Heuristics
 - Domain-dependent knowledge
 - Shallow deductions
- Expert systems

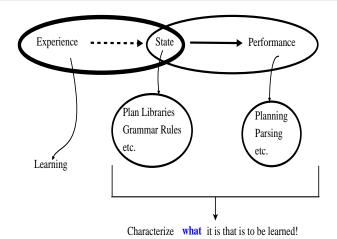
Goal of Al

Build a person / animal

Internal representation:

- Not NL
- All representations inter-translatable
- Unambiguous, explicit referents, only gist remembered
- Support inferences

Why is AI not just "Learning"?



- To learn anything you should already "know" a lot
- Without strong clues of domain, nothing is learned
- There are many kinds of learning...