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1 Background

Recall that if we have a sufficiently large collection of sample data drawn from an inherently random set of
variables then the Central Limit Theorem [1] states that this data will approximate a Gaussian or Normal
distribution [5].

1√
2πσ

e
−
(x− µ)2

2σ2 (1)

Here µ is the mean and σ2 is the variance. This follows from the idea that we expect many of the samples
to be close to the expected value, or mean, of the underlying random variable.

When working with data that has multiple attributes or dimensions, such as the iris data, there is no such
thing as the expected value, or the sample value. Instead, we use vectors and matrices to record each
dimension of our data.

More specifically, if our data has d dimensions (the iris data has 4), then:

x becomes x⃗ =


x1

x2

...
xd

 and µ becomes M =


µ1

µ2

...
µd


and σ2 becomes the d×d matrix Σ, whose contents depend on the type of classifier you are making, discussed
below.

If we modify Equation 1, above, to use these multi-dimensional variables, we get the Gaussian multivariate
formula[4], which looks as follows:

1√
(2π)d|Σ|

e
−
(x⃗−M)TΣ−1(x⃗−M)

2 (2)

∗Simon can be reached at spratt@scs.carleton.ca for questions.
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We can then simplify Equation 2 to the following:

1√
(2π)d|Σ|eD′(x⃗,M,Σ)

(3)

Where D′ is the square of the Mahalanobis distance function [2]. The square of the Mahalanobis distance
function is defined as:

D′(x⃗,M,Σ) = (x⃗−M)TΣ−1(x⃗−M)

2 Näıve Bayes Classifier

The first thing to note is that the following formulas only work to classify between two different classes. If
your training data contains more than two classes, your first step is to choose two classes of interest and
disregard all other data.

The steps we follow to build the classifier are as follows:

1. Partition the training data into two sets, those belonging to class A and those belonging to class B.

2. Calculate the Normal Distribution for each set.

3. Form the classification equation.

2.1 Partition the data

This step is easy, simply look over the training data and place each instance into the appropriate set according
to its class. Recall that we know the class of each sample of our training data.

2.2 Calculate the Normal Distribution Equations

Calculating the normal distribution of the training data is just a matter of calculating M and Σ. In our
case, we are calculating the Sample Mean and the Sample Covariance [6] since we are working with sample
data.

Sample mean is nothing more than a simple average. For each dimension i of the sample data, calculate the
sum total of the values over all instances of the class partition, and then divide by the number of instances
to get µi.

In Näıve Bayes, our covariance matrix is a diagonal matrix of the following form:


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

d


Each σi represents the variance of the particular dimension of the sample data. Variance is calculated with
the following:

σ2
i = E[(xi − µi)

2
]
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Calculating this is just a matter of looping over every sample, and for each one, we calculate the value xi−µi

(recall that we calculated all the µ’s earlier), add that value to a running total (i.e. the summation step),
and when finished, divide by the number of samples.

Now that we have M and Σ for each class, we have done all the hard work of finding the Normal Distribution
for this class. We now use these two variables to create the classification equation.

2.3 Build the Classification Equation

Let MA and ΣA be the mean vector and covariance matrix for class A, and let MB and ΣB be the mean
vector and covariance matrix for class B.

In simple terms, classification is performed by plugging an instance of input data, x⃗, from our testing set, and
checking whether class A or class B is more likely (remember: this is all just probabilities). This is equivalent
to deciding if the output value of the Normal Distribution equation is higher for class A’s equation, or class
B’s.

1√
(2π)d|ΣA|eD′(x⃗,MA,ΣA)

≷ωA
ωB

1√
(2π)d|ΣB |eD′(x⃗,MB ,ΣB)

(4)

This formula gives the probability that a given data point is in the distribution. Given the covariance matrix
and mean vector for both class A and class B, after many steps of simplification (which can be seen in
Appendix A), we get the following inequality:

ln|ΣB | − ln|ΣA|+D′(x⃗,MB ,ΣB)−D′(x⃗,MA,ΣA) ≷ωA
ωB

0 (5)

For performing the matrix calculations necessary to create this expression, we recommend the Jama library,
available at http://math.nist.gov/javanumerics/jama/, if you are programming in Java, or the NumPy li-
brary, available at http://numpy.scipy.org/, if you are programming in Python.

2.4 Classify!

Equation 5 is the final product we are looking for. With this equation in hand, we can classify any instance
of our data, x⃗, by simply plugging it in. The output from the equation will be a single, scalar number. If
that number is greater than 0, then x⃗ most likely belongs to class A, otherwise x⃗ belongs to class B.

3 Optimal Bayes Classifier

The only difference between Näıve Bayes and Optimal Bayes classifiers is the covariance matrix used. In a
Näıve Bayes classifier, the covariance matrix is just a diagonal matrix (Section 2.2), but in an Optimal Bayes
classifier, we use a full matrix instead, which has the following structure:


σ1σ1 σ1σ2 · · · σ1σd

σ2σ1 σ2σ2 · · · σ2σd

...
...

. . .
...

σdσ1 σdσ2 · · · σdσd


Where each entry is calculated by:
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σiσj = E[(xi − µi)(xj − µj)]

All of the other steps and procedures for training and testing are the same, the only difference is the
complexity of the covariance matrix.

4 Programming a Classifier

Now that we understand the theory, we can implement a working classifier. We are given n data points,
each consisting of k numerical observations and a classification.

This data is often stored as a file wherein each line contains observations, an indication of the classification,
and possibly extraneous data. This must be parsed and stored in some convenient data structure of your
own design.

4.1 Partition the Data into Training and Testing Sets

We begin by partitioning the dataset into a training set and a testing set. The purpose of the training set is
to build the covariance matrix and mean vector for each class. The purpose of the testing set is to provide
independent data with which to test the accuracy of the classifier.

The simplest way to partition the dataset is to choose the first ⌈n/2⌉ tuples for the training set and the
remaining ⌊n/2⌋ tuples for the testing set. We will discuss other partitioning schemes in Section 4.6.

4.2 Partition the Training Set by Class

Next, we further partition the training set by class. If there are two classes, A and B, let the set of data
points belonging to class A be TA and similarly let the set of data points belonging to B be TB.

It is important to note that if either TA or TB is empty, classification will almost certainly be hopelessly
inaccurate. It is important to have some strategy to handle this case, and a reasonable strategy would be to
throw an error.

4.3 Calculate the Mean Vector

A mean vector is a k-dimensional vector M (recall that k is the number of numerical observations in each
data point), in which the ith element is the mean of all ith numerical observations. It is constructed by first
building a sum vector whose ith element is the sum of all ith numerical observations, and then dividing each
element by the number of data points.

We will need to do this twice, once to build the mean vector MA for training data TA and again, separately,
to build MB for the training set TB.

4.4 Calculate the Covariance Matrix

Whether we are building a Näıve Bayes or Optimal Bayes classifier, we must calculate the variances for each
observation, similar to how we calculated the mean for each observation in the previous step.
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We construct the covariance matrix by instantiating a k × k matrix, Σ, with zeroes, and iterating over the
data points. For each data point (itself a k-dimensional vector), we subtract our mean vector M . We take
the outer product of the result (itself times its transpose) which results in a new k × k matrix. This new
matrix gets added to Σ. Once we’ve iterated over every data point, we divide each element of Σ by one less
than the number of data points.

As with the mean vector, we must repeat this procedure twice, as we must independently build ΣA (with
respect to MA and TA) and ΣB (with respect to MB and TB).

The formula for ΣA is as follows:

ΣA =
1

n− 1

n∑
i=1

(xi −MA)(xi −MA)
T

If we are building a Näıve Bayes classifier, we can take the “full” covariance matrices we just created for the
Optimal Bayes classifier and simply set every element to 0, except for those found along the main diagonal
(that is, the diagonal starting at the top left and ending at the bottom right).

4.5 Classify!

We now have everything we need in order to use Equation 5, repeated here for reference:

ln|ΣB | − ln|ΣA|+D′(x⃗,MB ,ΣB)−D′(x⃗,MA,ΣA) ≷ωA
ωB

0

Recall that x⃗ is a vector of numerical observations from our testing set that we would like to classify. We
calculate the classification value, c, as follows:

c = ln|ΣB | − ln|ΣA|+D′(x⃗,MB,ΣB)−D′(x⃗,MA,ΣA)

= ln|ΣB | − ln|ΣA|+ (x⃗−MB)
TΣ−1

B (x⃗−MB)− (x⃗−MA)
TΣ−1

A (x⃗−MA)

If c is greater than zero, the observations most likely belong to class A, otherwise class B, and our program
should report as much.

Note: Be careful when calculating the inverse of the covariance matrix, because it may be singular, i.e. have
no inverse. In this case, your library may provide a pseudo-inverse[3] which is a safe approximation
of the true inverse. You will also need to calculate the pseudo-determinant [?], since the determinant
of a singular matrix is 0, and the logarithm of 0 is undefined.

4.6 Testing

In the first step, we partitioned the sample into a Training Set and a Testing Set. To test, we simply run the
classifier against all the observations in the Testing Set and keep a score of how many are correctly classified.

To more accurately test the classifier, you could randomize which observations are used to train the classifier.

You could also use K-fold cross-validation in which the observations are partitioned into K groups and K−1
of the groups are used to train and the remaining group is used to test. Using the same partitioning, a new
classifier is trained on K − 1 of the groups and a different group is used to test. This is repeated K times
such that every group is used to test once.

Finally, both randomization and K-fold cross-validation can be used together and the results averaged.

5



A Derivation

The full derivation from Equation 4 to Equation 5 is as follows:

1√
(2π)d|ΣA|eD′(x⃗,MA,ΣA)

≷ωA
ωB

1√
(2π)d|ΣB |eD′(x⃗,MB ,ΣB)(

1√
(2π)d|ΣA|eD′(x⃗,MA,ΣA)

)2

≷ωA
ωB

(
1√

(2π)d|ΣB |eD′(x⃗,MB ,ΣB)

)2

1

(2π)d|ΣA|eD′(x⃗,MA,ΣA)
≷ωA

ωB

1

(2π)d|ΣB |eD′(x⃗,MB ,ΣB)

1

|ΣA|eD′(x⃗,MA,ΣA)
≷ωA

ωB

1

|ΣB |eD′(x⃗,MB ,ΣB)

ln

(
1

|ΣA|eD′(x⃗,MA,ΣA)

)
≷ωA

ωB
ln

(
1

|ΣB |eD′(x⃗,MB ,ΣB)

)
− ln |ΣA| − ln(eD

′(x⃗,MA,ΣA)) ≷ωA
ωB

− ln |ΣB | − ln(eD
′(x⃗,MB ,ΣB))

ln |ΣB| − ln |ΣA|+D′(x⃗,MB,ΣB)−D′(x⃗,MA,ΣA) ≷ωA
ωB

0
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