Artificial Intelligence Agents and Environments¹

Instructor: Dr. B. John Oommen

Chancellor's Professor Fellow: IEEE; Fellow: IAPR School of Computer Science, Carleton University, Canada.

¹The primary source of these notes are the slides of Professor Hwee Tou Ng from Singapore. I sincerely thank him for this.

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Intelligent, Autonomous Agents

- Agent
 - Anything that can be viewed as perceiving its environment
 - Perception done through sensors
 - Acting upon that environment through actuators
- Human agent
 - Eyes, ears, and other organs for sensors
 - Hands, legs, mouth, and other body parts for actuators
- Robotic agent
 - Cameras and infrared range finders for sensors
 - Various motors for actuators

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Intelligent, Autonomous Agents

- Agent
 - Anything that can be viewed as perceiving its environment
 - Perception done through sensors
 - Acting upon that environment through actuators

Human agent

- Eyes, ears, and other organs for sensors
- Hands, legs, mouth, and other body parts for actuators

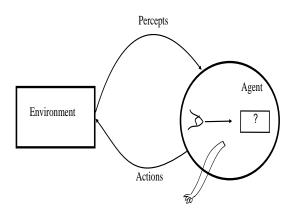
Robotic agent

- Cameras and infrared range finders for sensors
- Various motors for actuators

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Intelligent, Autonomous Agents

- Agent
 - Anything that can be viewed as perceiving its environment
 - Perception done through sensors
 - Acting upon that environment through actuators
- Human agent
 - Eyes, ears, and other organs for sensors
 - Hands, legs, mouth, and other body parts for actuators


Robotic agent

- Cameras and infrared range finders for sensors
- Various motors for actuators

Autonomous Agents

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agents...

Agent: Mapping: Percept Sequences \Rightarrow Actions

・ロト・日本・日本・日本・日本

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agent Function

• Maps from percept histories to actions: $[F : P^* \rightarrow A]$

Agent Program

- Runs on the physical architecture to produce F
- Agent = Architecture + Program
- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent:

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agent Function

Maps from percept histories to actions: [F : P^{*} → A]

Agent Program

- Runs on the physical architecture to produce F
- Agent = Architecture + Program
- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent:

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agent Function

Maps from percept histories to actions: [F : P^{*} → A]

Agent Program

Runs on the physical architecture to produce F

Agent = Architecture + Program

- Vacuum Cleaner Agent
 - Percepts: Location and Contents: {[LocA, Dirty], ... }
 - Actions: Left, Right, Suck, VacuumOn, VacuumOff
 - Agent:

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agent Function

Maps from percept histories to actions: [F : P^{*} → A]

Agent Program

Runs on the physical architecture to produce F

Agent = Architecture + Program

Vacuum Cleaner Agent

- Percepts: Location and Contents: {[LocA, Dirty], ... }
- Actions: Left, Right, Suck, VacuumOn, VacuumOff
- Agent:

Agents...

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taken
- Amount of electricity consumed
- Amount of noise generated, etc.

3

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taken
- Amount of electricity consumed
- Amount of noise generated, etc.

э

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taken
- Amount of electricity consumed
- Amount of noise generated, etc.

Agents...

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taken
- Amount of electricity consumed
- Amount of noise generated, etc.

Agents...

- Agent should strive to "do the right thing":
- Based on what it can perceive and actions it can do
- The "right action":
- One that will cause the agent to be "most successful"
- Performance measure:
- Objective criterion for success of an agent's behavior
- Performance of a vacuum-cleaner agent could be:
- Amount of dirt cleaned up
- Amount of time taken
- Amount of electricity consumed
- Amount of noise generated, etc.

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agents

Rational Agents?

- There is a:
 - Performance measure
 - Percept sequence
 - Agent's knowledge about the Environment
 - Agent's action repertoire
- Rational Agent: For each percept sequence
 - Acts so as to maximize expected performance measure
 - Given percept sequence and its built-in knowledge

Agents

Autonomous Agents Types of Environments/Actions Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents?

- There is a:
 - Performance measure
 - Percept sequence
 - Agent's knowledge about the Environment
 - Agent's action repertoire

• Rational Agent: For each percept sequence

- Acts so as to maximize expected performance measure
- Given percept sequence and its built-in knowledge

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

イロン 不良 とくほう イロン しゅ

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

・ロット (雪) (日) (日) (日)

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

・ロット (雪) (日) (日) (日)

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents?

- Rationality is distinct from omniscience
- All-knowing with infinite knowledge
- Agents can perform actions to modify future percepts
- Use this to obtain useful information
- Information gathering, Exploration
- An Autonomous Agent:
- Behavior is determined by its own experience
- With ability to learn and adapt

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents: PEAS

• PEAS:

• Performance measure, Environment, Actuators, Sensors

Must first specify the setting for intelligent agent design

Example: Task of designing an Automated Taxi Driver

• Performance: Safe, fast, legal, comfort, maximize profits

- Environment: Roads, other traffic, pedestrians, customers
- Actuators: Steering wheel, accelerator, brake, signal, horn
- Sensors:

Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

Agents

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents: PEAS

- PEAS:
- Performance measure, Environment, Actuators, Sensors
- Must first specify the setting for intelligent agent design
- Example: Task of designing an Automated Taxi Driver
 - Performance: Safe, fast, legal, comfort, maximize profits
 - Environment: Roads, other traffic, pedestrians, customers
 - Actuators: Steering wheel, accelerator, brake, signal, horn
 - Sensors:

Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

Agents

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents:PEAS

- PEAS:
- Performance measure, Environment, Actuators, Sensors
- Must first specify the setting for intelligent agent design

• Example: Task of designing an Automated Taxi Driver

- Performance: Safe, fast, legal, comfort, maximize profits
- Environment: Roads, other traffic, pedestrians, customers
- Actuators: Steering wheel, accelerator, brake, signal, horn
- Sensors:

Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents: PEAS

• PEAS: Agent: Medical Diagnosis System

- Performance: Healthy patient, minimize costs, lawsuits
- Environment: Patient, hospital, staff
- Actuators:

Screen (questions, tests, diagnoses, treatments, referrals)

Agents

• Sensors:

Keyboard (entry of symptoms, findings, patient's answers)

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

・ロット (雪) (日) (日) (日)

10/24

Rational Agents: PEAS

• PEAS: Agent: Part-picking Robot

- Performance measure: Percentage of parts in correct bins
- Environment: Conveyor belt with parts, bins
- Actuators: Jointed arm and hand
- Sensors: Camera, joint angle sensors

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

11/24

Rational Agents: PEAS

PEAS: Agent: Interactive English Tutor

• Performance measure: Maximize student's score on test

Agents

- Environment: Set of students
- Actuators: Screen (exercises, suggestions, corrections)
- Sensors: Keyboard

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents: PEAS

• Four basic types in order of increasing generality

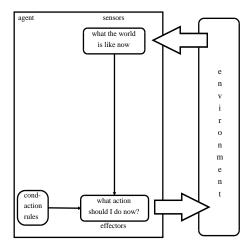
- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based (not just that we reach the goal) agents

• We consider (3) and (4) together.

Agents

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Rational Agents: PEAS


Four basic types in order of increasing generality

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based (not just that we reach the goal) agents
- We consider (3) and (4) together.

Agents

Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

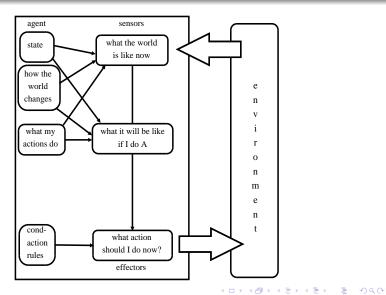
Basic (Simple Reflex) Agent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Basic (Simple Reflex) Agent

return action


Issues to be considered:

- Model-based Reflex agents
- Keeping track of the world agents
- Goal-based agents
- Utility-based agents...

Autonomous Agents

Types of Environments/Actions

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

Model-based Reflex Agent

Works only if a correct decision can be made on basis of current percept (à la subsumption architecture)

function Agent (percept) returns action
static: rules
state ← InterpretInput(percept)
;Description of world's state from percept
rule ← RuleMatch(state, rules)
;Returns a rule matching state description
action ← RuleAction(rule)
return action

NEXT: What to do when world is partially observable

function Agent (percept) returns action static: rules state ; World state ;Description of world state from percept ;Hard! Presupposes knowledge about how: ;(1) World changes independently of agent ;(2) Agent's actions effect the world rule \leftarrow RuleMatch(state, rules) ;Returns a rule matching state description action \leftarrow RuleAction(rule) ;Hard! Record unsensed parts of World ;Hard! Record effects of agent's actions return action ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の♀?

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

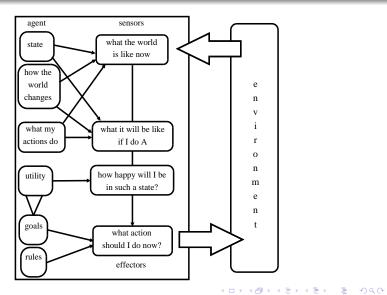
・ロット (雪) (日) (日) (日)

18/24

Goal and Utility-based Agents

- Actions depends on current state and goal...
 - Often: Goal satisfaction requires sequences of actions
 - What will happen if I do this?
- Credit assignment
- Goals are not enough
- Some goal-achieving sequences are cheaper, faster, etc.
- Utility: states → reals
- Tradeoffs on goal...

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents


Goal and Utility-based Agents

- Actions depends on current state and goal...
 - Often: Goal satisfaction requires sequences of actions
 - What will happen if I do this?
- Credit assignment
- Goals are not enough
- Some goal-achieving sequences are cheaper, faster, etc.
- Utility: states \rightarrow reals
- Tradeoffs on goal...

Autonomous Agents

Types of Environments/Actions

Agents Basic (Simple Reflex) Agent Model-based Reflex Agent Goal and Utility-based Agents Evaluating Agents

function RunEvalEnvironment

- (state, UpdateFn, agents, termination, PerformFn)
- ;Have multiple agents; Returns scores
- ;State, UpdateFn: Simulate Environment;
- ;These are **unseen** by agents!
- ;Agent's states: Constructed from percepts
- ;Agents have no access to PerformFn!

repeat

return scores

Types of Environments Source of Actions

Types of Environments

- Fully Observable/Accessible vs. Partially Observable:
 Agent's sensors: Access environment's complete state
 - Deterministic (or pet) i.e. Steeheetic
- Deterministic (or not) i.e., Stochastic
 - Next state completely determined by current state & action
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic

Episodic (or not)

- The agent's experience is divided into atomic "episodes"
- Each episode consists of the agent perceiving and then performing a single action
- The choice of action in each episode depends only on the episode itself

Types of Environments Source of Actions

Types of Environments

- Fully Observable/Accessible vs. Partially Observable:
 Agent's sensors: Access environment's complete state
- Deterministic (or not) i.e., Stochastic
 - Next state completely determined by current state & action
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic

Episodic (or not)

- The agent's experience is divided into atomic "episodes"
- Each episode consists of the agent perceiving and then performing a single action
- The choice of action in each episode depends only on the episode itself

- Fully Observable/Accessible vs. Partially Observable:
 - Agent's sensors: Access environment's complete state
- Deterministic (or not) i.e., Stochastic
 - Next state completely determined by current state & action
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic

Episodic (or not)

- The agent's experience is divided into atomic "episodes"
- Each episode consists of the agent perceiving and then performing a single action
- The choice of action in each episode depends only on the episode itself

Types of Environments Source of Actions

Types of Environments

• Static (or not)

• Environment does not change while the agent deliberates

Discrete (or not)

Fixed number of well-defined percepts and actions

• Single agent (vs. Multiagent)

• An agent operating by itself in an environment

The Real World

• Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent

 Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

• Static (or not)

• Environment does not change while the agent deliberates

Discrete (or not)

• Fixed number of well-defined percepts and actions

Single agent (vs. Multiagent)

An agent operating by itself in an environment

- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent

 Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

- Static (or not)
 - Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

• Static (or not)

- Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment

The Real World

- Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

• Static (or not)

- Environment does not change while the agent deliberates
- Discrete (or not)
 - Fixed number of well-defined percepts and actions
- Single agent (vs. Multiagent)
 - An agent operating by itself in an environment
- The Real World
 - Of course: partially observable, stochastic, sequential, dynamic, continuous, multi-agent
- Chess: Accessible, Deterministic, ¬Episodic, Static, Discrete Diagnosis: ¬Access., ¬Determin., ¬Episodic, ¬Static, ¬Discrete

Types of Environments Source of Actions

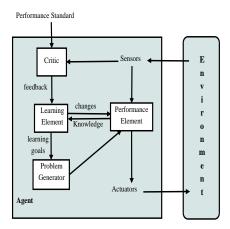
Source of Actions Selected by the Agent

Performance Element

Agent program to select actions

Learning Element

- Improves PE and makes agent's behavior robust
- In initially unknown environments


Problem Generator

- Suggests actions
- May lead to new, informative experiences

Exploitation vs Exploration

Types of Environments Source of Actions

Source of Actions Selected by the Agent

