Artificial Intelligence
An Introduction\(^1\)

Instructor: Dr. B. John Oommen

\textit{Chancellor's Professor}
Fellow: IEEE; Fellow: IAPR
School of Computer Science, Carleton University, Canada.

\(^1\)The primary source of these notes are the slides of Professor Hwee Tou Ng from Singapore. I sincerely thank him for this.
Leibniz, Babbage, Boole, Frege, Russell, Tarski ...

Turing (1930’s)

- Turing Machine (TM)
- **Turing Test** “Operationalizing” Intelligence
 - Machine’s ability to demonstrate intelligence
 - Human Judge “converses” with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine **Passes** the test

The Test itself

Turing-Church Thesis:

If a problem is not solvable by a TM, it is not solvable by people either
History of AI

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ...

- Turing (1930’s)
 - Turing Machine (TM)
 - **Turing Test** “Operationalizing” Intelligence
 - Machine’s ability to demonstrate intelligence
 - Human Judge “converses” with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine **Passes** the test

- The Test itself

- Turing-Church Thesis:
 If a problem is not solvable by a TM, it is not solvable by people either
History of AI

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ...
- Turing (1930’s)
 - Turing Machine (TM)
 - **Turing Test** “Operationalizing” Intelligence
 - Machine’s ability to demonstrate intelligence
 - Human Judge “converses” with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine **Passes** the test

- The Test itself

- Turing-Church Thesis:
 If a problem is not solvable by a TM, it is not solvable by people either
History of AI

- Leibniz, Babbage, Boole, Frege, Russell, Tarski ...
- Turing (1930’s)
 - Turing Machine (TM)
 - Turing Test “Operationalizing” Intelligence
 - Machine’s ability to demonstrate intelligence
 - Human Judge “converses” with human and machine
 - BOTH try to appear human
 - All participants are placed in isolated locations
 - If Judge cannot reliably tell the machine from the human, the machine **Passes** the test

- The Test itself

 ![Turing-Test Diagram](image)

- Turing-Church Thesis:
 If a problem is not solvable by a TM, it is not solvable by people either
1940s: McCulloch-Pitts, Wiener, Ashby

- Neuron models
- Cybernetics - Feedback
 - Teleological behavior
 - Study of design and purpose
 - All things to be designed for or directed toward a final result
 - There is an inherent purpose or final cause for all that exists

- Homeostat
 - Device built by Ashby in 1948
 - Adaptive ultrastable system from four bomb control units
 - Had inputs and feedback
 - Used magnetically-driven water-filled potentiometers
 - Stabilizes effects of disturbances introduced into the system
 - *Time*: “Closest thing to a synthetic brain... designed by man”
1940s: McCulloch-Pitts, Wiener, Ashby

- Neuron models
- Cybernetics - Feedback
- Teleological behavior
 - Study of design and purpose
 - All things to be designed for or directed toward a final result
 - There is an inherent purpose or final cause for all that exists

Homeostat

- Device built by Ashby in 1948
- Adaptive ultrastable system from four bomb control units
- Had inputs and feedback
- Used magnetically-driven water-filled potentiometers
- Stabilizes effects of disturbances introduced into the system
- *Time*: “Closest thing to a synthetic brain... designed by man”
1940s: McCulloch-Pitts, Wiener, Ashby

- Neuron models
- Cybernetics - Feedback
- Teleological behavior
 - Study of design and purpose
 - All things to be designed for or directed toward a final result
 - There is an inherent purpose or final cause for all that exists

Homeostat

- Device built by Ashby in 1948
- Adaptive ultrastable system from four bomb control units
- Had inputs and feedback
- Used magnetically-driven water-filled potentiometers
- Stabilizes effects of disturbances introduced into the system
 Time: “Closest thing to a synthetic brain... designed by man”
History of AI: 1940’s

1940s: Walter, von Neumann
- Machina Speculatrix (Elmer 1948, and Elsie 1949)
 - First electronic autonomous robots
 - Rich connections between a small number of brain cells - Very complex behaviors
 - Described as tortoises due to their shape and slow motion
 - “Taught us” about the secrets of organization and life
 - Three-wheeled tortoise robots
 - Could find their way to a recharging station

Self-reproducing automata
- Self-replication: Process by which a thing copies of itself
- Self-reproductive systems: Produce copies of themselves
- Primitives: From metal bar and wire
- Self-assembling systems
- Assemble copies of themselves from finished parts
- Self-reproducing “computer programs”
1940s: Walter, von Neumann
- Machina Speculatrix (Elmer 1948, and Elsie 1949)
 - First electronic autonomous robots
 - Rich connections between a small number of brain cells -
 Very complex behaviors
 - Described as tortoises due to their shape and slow motion
 - “Taught us” about the secrets of organization and life
 - Three-wheeled tortoise robots
 - Could find their way to a recharging station

Self-reproducing automata
- Self-replication: Process by which a thing copies of itself
- Self-reproductive systems: Produce copies of themselves
- Primitives: From metal bar and wire
- Self-assembling systems
- Assemble copies of themselves from finished parts
- Self-reproducing “computer programs”
1950s: Simon, Newell, McCarthy, Minsky: “AI” (1956)
- Fundamentals of Classification
- Neural networks
- Perceptron
1960s: Lisp, Adaline, Fuzzy sets (Zadeh 65)
1960s: General Problem Solver (GPS), Logic Theory
1970s: Backpropogation, Fuzzy Controllers
1970s: Knowledge Engineering, Genetic Algorithms (GA)
1970s: Production systems, Expert systems
1970s: Natural Language Processing (NLP)

SHRDLU
- SHRDLU was an early NLP developed by Winograd at MIT
- Micro Planner and Lisp programming language on a PDP-6
- SHRDLU was derived from ETAOIN SHRDLU
- Arrangement of the alpha keys on a Linotype machine in descending frequency order
History of AI: Since 1960’s

- 1960s: Lisp, Adaline, Fuzzy sets (Zadeh 65)
- 1960s: General Problem Solver (GPS), Logic Theory
- 1970s: Backpropogation, Fuzzy Controllers
- 1970s: Knowledge Engineering, Genetic Algorithms (GA)
- 1970s: Production systems, Expert systems

- 1970s: Natural Language Processing (NLP)
- SHRDLU
 - SHRDLU was an early NLP developed by Winograd at MIT
 - Micro Planner and Lisp programming language on a PDP-6
 - SHRDLU was derived from ETAOIN SHRDLU
 - Arrangement of the alpha keys on a Linotype machine in descending frequency order
1970s: Theorem proving, Planning
1980s: NN / Connectionist boom, Boltzmann Machine
1980s: Knowledge Representation (KR)
1980s: More semantics in NLP (Conceptual Dependency)
1980s: Symbolic Machine Learning (ML)
More NN

Subsumption Architecture (Brooks)
- Decompose complicated intelligent behaviour
- Many “simple” behaviour modules organized into layers
- Each layer implements a particular goal
- Higher layers are increasingly abstract
- A robot’s layers:
 - Lowest layer could be “avoid an object”
 - On top of it would be the layer “wander around”
 - Which in turn lies under “explore the world”
- Uses a bottom-up design
More NN

Subsumption Architecture (Brooks)
- Decompose complicated intelligent behaviour
- Many “simple” behaviour modules organized into layers
- Each layer implements a particular goal
- Higher layers are increasingly abstract
- A robot’s layers:
 - Lowest layer could be “avoid an object”
 - On top of it would be the layer “wander around”
 - Which in turn lies under “explore the world”

- Uses a bottom-up design
History of AI: Since 1990’s

- Reinforcement Learning
- Bayesian Belief Nets
- Data Mining
- More NN, More GA, GP, Artificial-Life
- More GAs, Genetic Programming (GP), Artificial-Life
- “Bottom-up or behavior-based AI” vs “Top-down AI”
- “Emergent Computing”, Swarm Intelligence
- Self-Organization...
Reinforcement Learning
Bayesian Belief Nets
Data Mining

More NN, More GA, GP, Artificial-Life
More GAs, Genetic Programming (GP), Artificial-Life
“Bottom-up or behavior-based AI” vs “Top-down AI”
“Emergent Computing”, Swarm Intelligence
Self-Organization...
What is Intelligence

Intelligence is:
- Intellectual (?) behavior that we admire
- But don’t understand
- Intelligence is manifested in behavior
- Closely related to surviving in a complex world
- Or ...
“2” kinds of AI (or 3 or 4)

- Engineering vs “Cognitive Science”
 - Making usefully smart machines, somehow:
 - Expert systems; Deep Blue; some Data Mining
 - Understanding *how* minds work
 - AI to express and test psychological/linguistic etc. theories
Kinds of AI

Classical/Top-down / Symbolic vs Behavior-based / Bottom-up / Subsymbolic Mind vs Brain

“Physical symbol system hypothesis”

- Hi-level approach is *brittle*
- Bottom-up approach often unimpressive

Scruffies vs Neats
Kinds of AI

- Classical/Top-down / Symbolic vs Behavior-based / Bottom-up / Subsymbolic Mind vs Brain
 - “Physical symbol system hypothesis”
 - Hi-level approach is brittle
 - Bottom-up approach often unimpressive

- Scruffies vs Neats
Weak AI vs Strong AI

- Chinese Room argument (John Searle)
- No such things as AI...
- An experiment: Someone who knows only English sits alone in a room following English instructions for manipulating strings of Chinese characters.
- To those outside the room it appears as if someone in the room understands Chinese.
- Shows that while computers may appear to converse in natural language, they cannot – even in principle.
- Searle argues that computers merely use syntactic rules to manipulate symbol strings.
- Have no understanding of meaning or semantics.
Theoretical insights in AI: Concern tradeoffs

- **Tradeoffs**: Efficiency and Generality
- **Tradeoffs**: Robustness and Power
- **Tradeoffs**: Design complexity - Ability to degrade gracefully
- **Tradeoffs**: Prior cooking and Achievement
- **Tradeoffs**: Memory and Inference
- **Above All Tradeoffs**: Memory and Time
Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- **Tradeoffs**: Robustness and Power
- Tradeoffs: Design complexity - Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time
Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity - Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time
Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity - Ability to degrade gracefully
- **Tradeoffs**: Prior cooking and Achievement
- Tradeoffs: Memory and Inference
- Above All Tradeoffs: Memory and Time
Theoretical insights in AI: Concern tradeoffs

- **Tradeoffs**: Efficiency and Generality
- **Tradeoffs**: Robustness and Power
- **Tradeoffs**: Design complexity - Ability to degrade gracefully
- **Tradeoffs**: Prior cooking and Achievement
- **Tradeoffs**: Memory and Inference
- **Above All Tradeoffs**: Memory and Time
Theoretical insights in AI: Concern tradeoffs

- Tradeoffs: Efficiency and Generality
- Tradeoffs: Robustness and Power
- Tradeoffs: Design complexity - Ability to degrade gracefully
- Tradeoffs: Prior cooking and Achievement
- Tradeoffs: Memory and Inference

Above All Tradeoffs: Memory and Time
AI must be *Scruffy*...

- Neatness is impossible in complex domains
- Complex domains: Structure that requires solutions
- Found by exploring branching paths in a search space
 - No. of branches is exponential function of path depth
- Any intelligent agent needs to find tricks and shortcuts
- Even in formally specified domains!
- Unless: Infinitely large and fast computers
- Good shortcuts cannot be worked out in advance
- They are not perfect - even in mathematics
- Shortcuts & laziness: Go hand in hand...
- Key to intelligence (Gauss 1..100)
AI must be *Scruffy*...

- Neatness is impossible in complex domains
- Complex domains: Structure that requires solutions
- Found by exploring branching paths in a search space
 - No. of branches is exponential function of path depth
- Any intelligent agent needs to find tricks and shortcuts
- Even in formally specified domains!
- Unless: Infinitely large and fast computers
- Good shortcuts cannot be worked out in advance
- They are not perfect - even in mathematics
- Shortcuts & laziness: Go hand in hand...
- Key to intelligence (Gauss 1..100)
Neatness is impossible in complex domains
Complex domains: Structure that requires solutions
Found by exploring branching paths in a search space
 No. of branches is exponential function of path depth
Any intelligent agent needs to find tricks and shortcuts
Even in formally specified domains!
Unless: Infinitely large and fast computers
Good shortcuts cannot be worked out in advance
They are not perfect - even in mathematics
Shortcuts & laziness: Go hand in hand...
Key to intelligence (Gauss 1..100)
The *Real World* is even Harder

- Lack of complete initial information
- Range of things to do is large (branching factor!)
- Search spaces are huge
- Things happen fast
- There are deadlines
- Rapidly accessible and executable heuristics
- Must be learned by trial and error (for example)
- Such heuristic rules are bound to be fallible
 - Overgeneralization
 - Poor observations, weak sensors
 - Errors in measurement
 - Inadequate concepts
 - Noise, environmental variance etc...
Lack of complete initial information
Range of things to do is large (branching factor!)
Search spaces are huge
Things happen fast
There are deadlines

Rapidly accessible and executable heuristics
Must be learned by trial and error (for example)
Such heuristic rules are bound to be fallible
 Overgeneralization
 Poor observations, weak sensors
 Errors in measurement
 Inadequate concepts
 Noise, environmental variance etc...
The *Real World* is even Harder

- Lack of complete initial information
- Range of things to do is large (branching factor!)
- Search spaces are huge
- Things happen fast
- There are deadlines
- Rapidly accessible and executable heuristics
- Must be learned by trial and error (for example)

Such heuristic rules are bound to be fallible

- Overgeneralization
- Poor observations, weak sensors
- Errors in measurement
- Inadequate concepts
- Noise, environmental variance etc...
Rules and facts should be **consistent**
- Consistency is **undecidable**
- (Approximate) Consistency **checking** is explosive
- **Maintaining** consistency also explosive

To revise a belief, you need
- **Fallible** heuristics
- Allow for finding related beliefs
- Identifying and retracting underlying assumptions etc.

A huge reason maintenance system won’t do
Problems with Heuristics

- Rules and facts should be consistent
 - Consistency is undecidable
 - (Approximate) Consistency checking is explosive
 - Maintaining consistency also explosive

- To revise a belief, you need
 - Fallible heuristics
 - Allow for finding related beliefs
 - Identifying and retracting underlying assumptions etc.

- A huge reason maintenance system won’t do
Problems with Heuristics

- Rules and facts should be consistent
 - Consistency is undecidable
 - (Approximate) Consistency checking is explosive
 - Maintaining consistency also explosive
- To revise a belief, you need
 - Fallible heuristics
 - Allow for finding related beliefs
 - Identifying and retracting underlying assumptions etc.
- A huge reason maintenance system won’t do
Conceptual schemes: Open-ended
Unlike formal languages
There is no formal, recursive semantics for NL:
 We don’t know the extension-assigning functions!

Concepts:
 May be indeterminate, vague, or ambiguous
 Prompt conceptual innovations
 Empirical concepts: No crisp necess./suff. conditions
 Many concepts are theoretical
Semantics is *Scruffy too*

- Conceptual schemes: Open-ended
- Unlike formal languages
- There is no formal, recursive semantics for NL:
 - We don’t know the extension-assigning functions!

- Concepts:
 - May be indeterminate, vague, or ambiguous
 - Prompt conceptual innovations
 - Empirical concepts: No crisp necess./suff. conditions
 - Many concepts are theoretical
Scruffiness is *Inevitable* for any resource-limited being!

No practical strategy to reduce scruffiness works *always*

AI must be scruffy, for neat reasons

Thus: Study what the history has come up with

- Of course: Theories about such inevitably scruffy systems
- As *neat* as possible (maximally falsifiable etc.!!)
Scruffiness is *Inevitable* for any resource-limited being!

- No practical strategy to reduce scruffiness works *always*

- AI must be scruffy, for neat reasons

- Thus: Study what the *history* has come up with
 - Of course: Theories about such inevitably scruffy systems
 - As *neat* as possible (maximally falsifiable etc.!!)
By the Way

- Nearly anything you want to compute you can’t!!
 - Because there are countably many Turing machines
 - But *Uncountably* many functions

- The interesting things you can compute
 - Too expensive to compute
 - So, you can’t compute them
 - Exponential worst case run-time functions
 - $T(n) = kC^n$ e.g. 1 input item takes 10^{-7} sec, $n=50$, complexity is $2^n : 20 \times 10^{13}$ years

- Biological systems must use approximate solutions
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation

- “To be adaptable, an organism must be suboptimal” (Gould)
By the Way

- Nearly anything you want to compute you can’t!!
 - Because there are countably many Turing machines
 - But *Uncountably* many functions

- **The interesting things you can compute**
 - Too expensive to compute
 - So, you can’t compute them
 - Exponential worst case run-time functions
 - \(T(n) = kC^n \) e.g. 1 input item takes \(10^{-7} \text{ sec} \), \(n=50 \), complexity is \(2^n : 20 \times 10^{13} \text{ years} \)

- Biological systems must use *approximate solutions*
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation

- “To be adaptable, an organism must be suboptimal” (Gould)
By the Way

- Nearly anything you want to compute you can’t!!
 - Because there are countably many Turing machines
 - But *Uncountably* many functions

- The interesting things you can compute
 - Too expensive to compute
 - So, you can’t compute them
 - Exponential worst case run-time functions
 - \(T(n) = kC^n \) e.g. 1 input item takes \(10^{-7} \) sec, \(n=50 \), complexity is \(2^n : 20 \times 10^{13} \) years

- Biological systems must use **approximate solutions**
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation

- “To be adaptable, an organism must be suboptimal” (Gould)
By the Way

- Nearly anything you want to compute you can’t!!
 - Because there are countably many Turing machines
 - But *Uncountably* many functions
- The interesting things you can compute
 - Too expensive to compute
 - So, you can’t compute them
 - Exponential worst case run-time functions
 - \(T(n) = kC^n \) e.g. 1 input item takes \(10^{-7} \) sec, \(n=50 \), complexity is \(2^n : 20 \times 10^{13} \) years
- Biological systems must use approximate solutions
 - Learning: On-line regularity detection for prediction
 - Experimentation and mental simulation

- “To be adaptable, an organism must be suboptimal” (Gould)
Many fields have contributed to AI

- In the form of ideas, viewpoints and techniques
- **Philosophy**: Logic, reasoning, mind as a physical system
- **Mathematics**: Formal representation and proofs
- **Mathematics**: Computation, (un)decidability, (in)tractability
- **Mathematics**: Probability, fuzzy theory
- **Psychology**: Learning, perception, motor control
- **Economics**: Theory of rational decisions, game theory
Other fields that have contributed to AI:

- **Linguistics**: Knowledge representation, grammar
- **Neuroscience**: Physical substrate for mental activities
- **Biology**: Adaptation, evolution of complex systems
- **Controls**: Homeostatic systems, stability, optimal agents
- **Complex Systems Theory**: etc. etc. etc...
Think like humans
 - Cognitive modelling (AI + Psychology)
Act like humans
 - Turing test approach: needs NLP, KR, ML, ...
Think rationally
 - First-Order-Logic based problem solving and planning
 - Closely related to automated theorem proving
Act rationally
 - A rational agent acts so as to achieve its goals
 - Given its beliefs & limited rationality

Autonomous agents, robots, evolutionary computation
Some Subareas of AI...

- Heuristic search
 - Problem solving, planning, game playing

- Theorem proving
 - Knowledge-based (KB) systems
 - Knowledge Engineering (KE);
 - Knowledge Representation (KR); Expert systems

- Natural Language Processing (NLP)
 - Story understanding
 - Speech recognition
 - Question answering
Some Subareas of AI...

- Heuristic search
 - Problem solving, planning, game playing

- Theorem proving

- Knowledge-based (KB) systems
 - Knowledge Engineering (KE);
 - Knowledge Representation (KR); Expert systems

- Natural Language Processing (NLP)
 - Story understanding
 - Speech recognition
 - Question answering
Some Subareas of AI...

- Heuristic search
 - Problem solving, planning, game playing
- Theorem proving
- Knowledge-based (KB) systems
 - Knowledge Engineering (KE);
 - Knowledge Representation (KR); Expert systems
- Natural Language Processing (NLP)
 - Story understanding
 - Speech recognition
 - Question answering
Some Subareas of AI...

- Perception
- Vision
- Robotics
- Machine Learning
- Pattern Recognition

Diagram:
- cog sci
- AI
- psych
- linguistics
Intelligence is (?) Reasoning + Knowledge

Reasoning
- Universal inference methods
- “Weak” methods, e.g. hill climbing
- Domain-independent search through symbolic state spaces
- Problem-solving/planning theorem proving - first principles

Knowledge
- Universal methods \rightarrow combinatorial explosion
- “Strong” methods:
 - Heuristics
 - Domain-dependent knowledge
 - Shallow deductions
- Expert systems
Intelligence is (?) Reasoning + Knowledge

- Reasoning
 - Universal inference methods
 - “Weak” methods, e.g. hill climbing
 - Domain-independent search through symbolic state spaces
 - Problem-solving/planning theorem proving - first principles

- Knowledge
 - Universal methods \rightarrow combinatorial explosion
 - “Strong” methods:
 - Heuristics
 - Domain-dependent knowledge
 - Shallow deductions
 - Expert systems
Goal of AI

Build a person / animal

Internal representation:
- Not NL
- All representations inter-translatable
- Unambiguous, explicit referents, only gist remembered
- Support inferences
Why is AI not just “Learning”?!
To learn anything you should already “know” a lot
Without strong clues of domain, nothing is learned
There are many kinds of learning...