
INFORMATION SCIENCES 40,261-284 (1986) 267

Constrained String Editing*

B. J. OOMMEN

School of Computer Science, Carleton Universiry, Ottawa, KIS 5B6, Canada.

ABSTRACT

Let X and Y be any two strings of finite length. We consider the problem of transforming
X to Y using the edit operations of deletion, insertion, and substitution. The optimal
transformation is the one which has the minimum edit distance associated with it. The
problem of computing this distance and the optimal transformation using no edit constraints
has been studied in the literature. In this paper we consider the problem of transforming X to
Y using any arbitrary edit constraint involving the number and type of edit operations to be
performed. An algorithm is presented to compute the minimum distance associated with
editing X to Y subject to the specified constraint. The algorithm requires O(l x(1 Yj min(lXl, 1 ?I))
time and space. The technique to compute the optimal transformation is also presented.

I. INTRODUCTION

In the study of the comparison of text patterns, syllables, and biological
macromolecules a question that has interested researchers in that of quantifying

the dissimilarity between two strings. A review of such distance measures and
their applications is given by Hall and Dowling [2] and Peterson [16]. We

recommend to the reader a recent excellent book edited by Sankoff and
Kruskal[18] which discusses in detail the problem of sequence comparison.

The most promising of all the distance measures which compare two strings
seems to be the one that relates them using various edit operations [18, pp.

37-391. The edit operations most frequently considered are the deletion of a
symbol, the insertion of a symbol, and the substitution of one symbol for

another [2, 5-10, 15-191. This distance, referred to as the generalized
Levenshtein distance (GLD), between two strings is defined as the minimum
sum of the edit distances associated with the edit operations required to
transform one string to the other. Apart from being a suitable index for

*A preliminary version of this paper was presented at the 1984 Mathematical Foundations
of Computer Science Symposium in Prague, in September 1984. This work was partially
supported by the Natural Sciences and Engineering Research Council of Canada.

OElsevier Science Publishing Co., Inc. 1986
52 Vanderbilt Ave., New York, NY 10017 0020-0255/86/$03.50

268 B. J. OOMMEN

comparing two strings, this measure is closely related to the other numerical
and nonnumerical measures that involve the strings, such as the longest

common subsequence (LCS) and the shortest common supersequence [7].
Various algorithms to compute this distance have been proposed, the best of

which are due to Wagner and Fischer [19] and Masek and Paterson [13]. For the
infinite-alphabet case it has been shown that Wagner and Fischer’s algorithm is
the optimal one [20]. A generalization of [19] has even been used to correct
noisy substrings [8]. Closely related to these algorithms are the ones proposed to
compute the LCS of two strings by Hirschberg [3, 41, Hunt and Szymanski (51,

and Needleman and Wunsch [14]. Bounds on the complexity of the LCS
problem have been given by Aho et al. [l].

All of the abovementioned algorithms consider the editing of one string, say
X, to transform it to Y, with the edit process being absolutely unconstrained.
Sankoff [17] pioneered the study of constrained string editing. The only

algorithm presented in the literature on this problem is due to him. His
algorithm is a LCS algorithm which involves a specialized constraint that has its

application in the comparison of amino acid sequences.
In this paper we consider the problem of editing X to Y subject to any

general edit constraint. This edit constraint can be arbitrarily complex, so long
as it is specified in terms of the number and type of the edit operations to be

included in the optimal edit transformation. For the sake of clarity we give
below some examples of constrained editing.

EXAMPLE I. Here are some typical constrained editing problems.

(a) What is the optimal way of editing X to Y using no more than k
insertions?

(b) How can we optimally transform X to Y using exactly k substitutions?
(c) Is it possible to transform X to Y using exactly k, substitutions, ki

insertions, and k, deletions? If it is possible, what is the distance between X
and Y subject to this constraint?

In this paper we first present a consistent method of specifying any arbitrary
edit constraint T. We then discuss the computation of D&X, Y), the edit
distance between X and Y subject to this constraint. The latter quantity is
computed by first evaluating the elements of a three-dimensional array

.W(*, *, *) using dynamic-programming techniques, and then combining certain
elements of W(f , . , .) to yield D,(X, Y). Using the array I+‘(. , . , -), the optimal
sequence of edit operations required to edit X to Y subject to the constraint T
can also be obtained by backtracking. It will be shown that the algorithm
requires 0 (I 4 1 Yj min() Xl,1 II)) time and space.

Apart from defining and solving the problem of constrained string editing in
its most general framework, a major contribution of this paper is that of using

the concepts of dynamic programming to compute a quantity that does not

CONSTRAINED STRING EDITING 269

inherently possess any known recursively computable properties. The quantity

which we are referring to is indeed the constrained edit distance DT(X, Y).

However, we show that unlike that quantity, there is an array W(. , +, -) which is
closely related to it and which can be computed using dynamic programming in
a fairly straightforward way. This technique is quite analogous to the computa-
tions in a control system in which the output is evaluated in terms of state
variables which are computable in real time.

1.1. NOTATION

Let A be any finite alphabet, and A* be the set of strings over A. t9 is the
null symbol, 0 Z A. Let A” = A U { 0 }. 2 is referred to as the appended alphabet.

AstringXEA*oftheformX=x,...x,,whereeachxiEA,issaidtobeof
length]x(= N. Its prefix of length i will be written as X,, i < N. Uppercase
symbols represent strings, and lower case symbols, elements of the alphabet
under consideration.

Let Z’ be any element in A*, the set of strings over A. The compression

operator C is a mapping from A” to A*: C(Z’) is Z’ with all occurrences of the
symbol 8 removed from Z’. Note that C preserves the order of the non-0
symbols in Z’. For example, if Z’ = feoer, C(Z’) = for.

1.2. THE SET OF ELEMENTARY EDIT DISTANCES d(.. .) AND THE SET G,,,

d(.;):AxA”+R+ is a function whose arguments are a pair of symbols
belonging to A, the appended alphabet, and whose range is the set of nonnega-

tive real numbers; d(0, 0) is undefined and is not needed. The elementary
distance d(a, b) can be interpreted as the distance associated with transforming

a to b, for a, b E A’. Thus,

(a) d(xi, y,) is the distance associated with substituting y, for xi, xi, r, E .4.

(b) d(x,, fl) is the distance associated with deleting xi E A.

(c) d(0, 4) is the distance associated with inserting y, E A.

For every pair (X, Y), X, Y E A*, the finite set G,, r is defined by means of
the compression operator C, as a subset of Al* X AI*:

G x,r= {(X’,Y’)((X’,Y’)~kXA”*,arrdeach(X’,Y’) obeys

(i) C (X’) = X, C(Y’) = Y,

(ii)]X’]=/Y’J,

(iii) forall16ig]X’],

itisnotthecasethatx~=y,l=e). (1)

. . . .
Bydef~hon,d(X’,Y’)~G,,.thenmax[lXI,IY1]6(X’I=IY’IdIXI+JY).

270 B. J. OOMMEN

The meaning of the pair (X’, Y’) E Gx, r is that it corresponds to one way of
editing X into Y, using the edit operations of substitution, deletion, and
insertion. The edit operations themselves are specified for all 1~ i < IX’1 by
(x;, y;), which represents the transformation of x,! to J+‘. The cases below
consider the three edit operations individually:

(i) If xi E A and y/ E A, it represents the substitution of v/ for x,!.
(ii) If x; E A and _v/ = 8, it represents the deletion of xl. Between these two

cases, all the symbols in X are accounted for.
(iii) If x; = 0 and v[E A, it represents the insertion of y;. Between cases (i)

and (iii) all the symbols in Y are accounted for.

G *, r is an exhaustive enumeration of the set of all the ways by which X can
be edited to Y using the edit operations of substitution, insertion, and deletion
without destroying the order of occurrence of the symbols in X and Y.

The number of elements in the set G,, r is given by

IGX,Yl= E (Ixl+ k)!
k-maxIO.IYI-141

k!(lq-k)!(lA-IYj+k)!’

Note that 1 G, yI depends only on IXj and I II, and not on the actual strings X
and Y themselves. Further, observe that the transformation of a symbol a E A
to itself is also considered us an operation in the arbitrary pair (X’, Y’) E G,, r.

EXAMPLE II. Let X = f and Y = go. Then,

G x.y= {(fe,go),(ef,go),(fee,eg0o>,(efe,geo),(eef,goe)}.

In particular the pair (ef, go) represents the edit operations of inserting the g
and replacing the f by an o.

Since the generalized Levenshtein distance (GLD) between X and Y is the
minimum of the sum of the edit distances associated with the edit operations

required to transform X to Y, this distance, written as D(X, Y), has the
expression [6,9],

(2)

Since the transformation of a symbol, a E A to itself is considered as a
substitution operation, an application in which this is a nonoperation must
specifyd(u,u)=Oforall UEA.

CONSTRAINED STRING EDITING 271

II. EDIT CONSTRAINTS

II.1. PERMISSIBLE AND FEASIBLE EDIT OPERATIONS

Consider the problem of editing X to Y, where IXj = N and 1 II = M.
Suppose we edit a prefix of X into a prefix of Y, using exactly i insertions, e
deletions (or erasures), and s substitutions. Since the numbers of edit oper-
ations are specified, this corresponds to editing X,,, = xi.. . x,+, , the prefix of
Xof length e+s,into yl+s=yl...yi+s, theprefixof Yof length i+s.

To obtain bounds on the magnitudes of the variables i, e, and s, we observe
that they are constrained by the lengths of the strings X and Y. Thus, if
r = e + s, q = i + s, and R = min[M, N], these variables will have to obey the
following obvious constraints:

max[O,M-N]<i<q<M,

O<s<min[M,N].

Values of triples (i, e, s) which satisfy these constraints are termed the feasible

values of the variables. Let

H,=(jlmax[O,M-N]gjgM},

H,={ jlO<j<N}, (3)

H,={j~O<j<min[M,N]}.

Hi, H,, and H, are called the set of permissible values of i, e, and s. Observe
that a triple (i,e,s) is feasible if apart from iEHi, eEH,, SEH, the

following is satisfied:

i+s<M and e+sdN. (4)

The following theorem specifies the permitted forms of the feasible triples
which are encountered in editing X,, the prefix of X of length r, to Yq, the
prefix of Y of length q.

THEOREM I. To edit X,., the prefix of X of length r, to 5, the prefix of Y of

length q, the set of feasible triples is given by

{(i,r-q+i,q-i)l max[O, q - r] Q i d q}.

212 B. J. OOMMEN

Proof. Consider the constraints imposed on feasible values of i, e, and s.
Since we are interested in the editing X, to Yg, we have to consider only those
triples (i, e, s) in which i + s = r and e + s = q. But the number of insertions

can take any value from max[O, q - r] to q. For every value of i in this range,
the feasible triple (i, e, s) must have exactly q - i substitutions.

Similarly, since the sum of the number of substitutions and the number of
deletions is r, the triple (i, e, s) must have exactly r - q + i deletions. Hence
the theorem. n

II.2. SPECIFICATION OF EDIT CONSTRAINTS

An edit constraint is specified in terms of the number and type of edit
operations that are required in the process of transforming X to Y. It
is expressed by formulating the number and type of edit operations in terms of
three sets Q,, Qi, and Q, which are subsets of the sets H,, H,, and H, defined

in (3). We clarify this using the three constraints given in Example I.

EXAMPLE III.

(a) To edit X to Y performing no more than k insertions, the sets Q, and
Q, are both equal to 0, the null set. Further,

(b) To edit X to Y performing exactly k substitutions, Q, and Q, would be
null and, Q, = { k } f~ H,. Note that if k is not in H, , the problem is infeasible.

(c) To edit X to Y performing exactly ki insertions, k, deletions, and k,

substitutions yields

Q, = { k, > n 4 9 Q,= {k)nHe, and Q,={k,}nH,.

Note that the problem is infeasible unless k, E Hi, k, E H,, and k, E H,.

THEOREM II. Every edit constraint specified for the process of editing X to Y

can be written as a unique subset of Hi.

Proof. Let the constraint be specified by the sets Q,, Q,, and Q,. Every
element j E Q, requires the editing to be performed using exactly j deletions.
From Theorem I, since 14 = N, this requires that the number of substitutions
be N - j. Further, since 1 Yj = M, the number of insertions is forced to be
M-N+j.

Similarly, if j E Q,, the edit transformations must contain exactly j substitu-
tions. Since 1 II = M and 14 = N, Theorem I requires that M - j insertions and
N - j deletions be performed.

CONSTRAINED STRING EDITING

Let

273

Q: = {M-N+.WQ,) and Q: = {M-jlj~Q~>.

Clearly, for any arbitrary constraint the number of insertions that are permitted
is given by a set of integers which is obtained by intersecting Q;, Q: , and Q: ,
which is obviously a subset of Hi. n

REMARKS.

(1) The set referred to above, which describes the constraint and which is
the subset of Hi, will in future be written as T.

(2) The edit constraint can just as easily be written as a subset of H, or He.
We have arbitrarily chosen to describe T as a subset of Hi.

(3) Observe that the converse of Theorem II is not true. Verbal descriptions
of many edit constraints could lead to the same set T.

EXAMPLE IV. Let X = for and Y = fa. Suppose we want to transform X to 1

by performing at least 1 insertion, at most 1 substitution, and exactly 2

deletions. Then,

Qi={1,2}, Q,= {2}, and Q,= {OJ}.

Hence,

Q: = (1) and Q: = (L2).

Thus T=QinQ: nQ: = (1).
Hence the optimal transformations must contain exact& one insertion. Some

candidate edit transformations are given by the following subset of G*,r:

Note that every pair in the above subset corresponds to at least 1 insertion, at
most 1 substitution, and exactly 2 deletions.

We shall refer to the edit distance subject to the constraint T as DT(X, Y).
By definition, D,(X, Y) = 00 if T =0. This is merely a simple way of ex-
pressing that it is impossible to edit X to Y subject to the constraint T. We
shall now consider the computation of D,(X, Y).

214 B. J. OOMMEN

III. W: THE ARRAY OF CONSTRAINED EDIT DISTANCES

Let W(i, e, s) be the constrained edit distance associated with editing X,,,

to Y+, subject to the constraint that exactly i insertions, e deletions, and s

substitutions are performed in the process of editing. As before, let r = e + s

and q = i + s. Let G,,,,,(X, Y) be the subset of the pairs in G!,, rq in which
every pair corresponds to i insertions, e deletions, and s substitutions. Since
we shall always be referring to the strings X and Y, we refer to this set as G,,,,,.
Thus, using the notation of (l), and assuming (i, e,s) is feasible for the

problem, W(i, e, s) has the expression

We shall derive the recursively computable properties of the array W(. , . , s).

THEOREM 111. h?t W(i,e, s) be the quuntify defined in

X and Y. Then,

(5) for any two strings

W(i,e,s) =min[{ W(i-l,e,s)+d(e,y,+,)},

{W(i,e-l,s)+d(x,+,,O},

for all feasible triples (i, e, s).

The theorem is proved in the appendix.

The computation of the distance &(X, Y) from the array W(i, e, s) only

involves combining the appropriate elements of the array using T, the set of
insertions permitted. This is proved in the following theorem.

THEOREM IV. The quantity D,(X, Y) is related to the elements of the array

W(i, e, s) as follows:

D,(X,Y)=FTW(i,N-M+i,M-i).

Proof. The theorem follows directly from Theorem I with the substitution
r=Nandq=M. n

CONSTRAINED STRING EDITING 215

REMARK. In an unconstrained editing problem i can take on any value
ranging from max[O, M - N] to M. Thus the unconstrained edit distance (which

is commonly known as the generalized Levenshtein distance) D(X, Y) has the
expression

D(X,Y)= min
iE[max[O,M- N],M]

W(i,N-M+i,M-i).

Using the results of the above two theorems, we now propose a computational
scheme for D,(X, Y).

IV. THE COMPUTATION OF W(. , . , *) AND DT(X, Y)

To compute Dr(X, Y) we make use of the fact that though this index does
not itself seem to have any recursive properties, the index W(. , . , .), which is

closely related to it, has the interesting properties proved in Theorem III.
Algorithm I, which we now propose, computes the array W(a, . , -) for all
feasible values of the variables i, e, and s. Subsequently, using the array

W(i, e, s) as input, Algorithm II computes I&(X, Y) by comparing the contri-
butions of the pertinent elements in W(. , . , .) as specified by Theorem IV.

The computation of the array W(. , . , .) has to be done in a systematic
manner, so that any quantity W(i, e, s) is computed before its value is required
in any further computation. This is easily done by considering a three-dimen-

sional coordinate system whose axes are i, e, and s. Initially the weight

associated with the origin, W(O,O,O), is assigned the value zero, and the weights
associated with the vertices on the axes are evaluated. Thus, W(i, 0, 0), W(0, e, 0),

and W(O,O, s) are computed for all permissible values of i, e, and s. Subse-
quently, the i-e, e-s, and i-s planes are traversed, and the weights associated

with the vertices on these planes are computed using the previously computed
values. Finally, the weights corresponding to strictly positive values of the
variables are computed. To avoid unnecessary computations, at each stage the
variables are tested for feasibility. The quantity DT(X, Y) is evaluated by
comparing the weights associated with the triples of the form

{(i,N-M+i,M-i)liET}.

The algorithm to compute W(1, . , .) is given below.

ALGORITHM I.

Input: The strings X = xlxz . . . xN, Y = y,y2 . . . y,, and the set of elementary
edit distances defined by d(., e). Let R = min[M, N].

216 B. J. OOMMEN

Output: The may W(i, e,s) for all feasible values of i, e, and s.
Method:

W(O,O,O) = 0
for i=l to Mdo W(i,O,O)=W(i-l,O,O)+ d(@,y,)
for e=l to Ndo W(O,e,O)=W(O,e-l,O)+d(x,,e)

for s=l to R do ~(O,O,~)=~(O,O,~-l)+d(~~,y~)

for i=l to Mdo
for e=l to Ndo

~(i,e,O)=min[~(i-1,e,O)+d(8,yi),W{i,e-1,0)+d(x,,~)]
end

end

for i=l to Mdo
fors=ltoM-ido

W(i,O,f) =minlW(i -l,O,s)+d(B,yi+,),W(i,O,s -1)+ d(x,,~i+,)l
end

end

for e=l to Ndo
fors=l toN-edo

W(O,e,s)=~~(O,e-1,s)+d(x,+,,~),~(O,e,s-f)+d(x,+,,y,)l
end

end

for i-l to Mdo
for e=l to Ndo

fors=l to~[(M-i),(N-e)]~

W(i,e,s) = min[(W(i-l,e,s)+ d(6,y,+,)},

{W(i,e-l,s)+d(x,+,,e)},
Iw(i,e,s--l)+ 4x,+,~~~+,)N

end
end

end

END &Olithl 1

We now present Algorithm II, which has for its input the array W(*, -, -),
and yields as its output the quantity D,(X, Y).

Input: The array W(., ., *) computed using Algorithm I, and the constraint
set T.

Output: The constrained distance Dr(X, Y).

CONSTRAINED STRING EDITING 277

D,(X,Y) =ca
for all iETdo

&(X,Y)=min[D,(X,Y),W(i,N-M+i,M-i)]
end

REMARKS.

(1) The computational complexity of algorithms involving the comparison of
two strings is conveniently given by the number of symbol comparisons
required by the algorithm [I, 9, 201. In this case, the number of symbol
comparisons required by Algorithm I has an upper bound of

i

(N-M)M(M+l) + M(M+1)(2M+l)

#(Algf)= (M-N);(N+I) + N(N+I)&+l)

if N>M,

2 6
otherwise.

Note that for every symbol comparison, we will need at most three multiplica-
tions and two additions. From the last set of “for” loops it is easy to see that
the time required to compute the array W(. , . , *) is O(MNR), where
R = min[M, N]. Thus it has a worst-case complexity which is cubic in time.
Algorithm II clearly requires linear time. Thus the overall time required to
compute D, (X, Y) is 0(MNR). We conjecture that this is a lower bound for
the number of symbol comparisons required for any algorithm which attempts
to solve the constrained string editing problem.

(2) The array W(i, e, s) contains far more information than is required to
merely compute I),(X, Y). It contains all the weights associated with editing
prefixes of X into prefixes of Y. One could therefore use the contents of the
array to compute far more complicated indices which concern constrained edit
distances involving prefixes of either or both the strings. We illustrate the
computation of DT(X, Y) with an example.

EXAMPLE V. Let X = au and Y = be. Let us suppose we want to edit X to Y,
permitting either two substitutions or exactly one edit operation of each type. It
can be seen that the set T defiuing the constraint is (0, 1).

We shall now follow through the computation of Dr(uu, bc) using Al-
gorithms I and II. To begin with, the weight associated with the origin is

278 B. J. OOMMEN

initialized. The i, e, and s axes are then traversed:

Wl,O,O) =d(e,b), W(2,0,0) = d(8, b) + d(8, c),

W(OA0) =+,e), w(o,2,0) =2+,e),

W(O,O,l) = da, b), W(O,O,2) =d(a,b)+d(a,c).

The i-e, i-s, and e-s planes are then traversed:

w(i,i,o) =d(e,b)++,e), w(1,2,0) =d(e,b)+2+,e),

w(2,1,0) =d(e,b)+d(e,c)+d(a,e),

w(2,2,0) =d(e,b)+d(e,c)+2d(u,e),

W(l,O,l) =min[d(e,b)+d(u,c),d(e,c)+d(u,b)],

W(O,IJ) =min[d(u,e)+d(~,b),d(~,e)+d(u,c)].

Finally, the weights for strictly positive values of i, e, and s are computed:

w(i,l,i) =min[{d(e,b)+d(a,e)+d(a,c)},

Since the terms that must be compared to obtain D,(X, Y) are those which
involve i = 0 and i = 1, D,(X, Y) can now be trivially computed as the
minimum of W(O,O,2) and W(l,l,l).

IV.]. COMPUTING THE BEST EDIT SEQUENCE

Once the quantity D,(X, Y) has been computed, the optimal edit sequence
can be obtained by backtracking through the array W(. , . , .) and printing out
the actual edit sequence traversed, in the reverse order. The technique is well
known in dynamic-programming problems and has been used extensively for
edit sequences [13, 15, 191 and longest common subsequences [3, 4, 5, 61.
Without further comment we now present Algorithm III, which has as its input
the distance DT(X, Y) and the optimal element of W(., ., e), i.e., the element
W(I, E, S) which is equal to DT(X, Y).

To simplify the backtracking, we exclude the possibility of encountering
negative values of i, e, and s by rendering W(i, e, s) infinite whenever any of
the three indices are negative.

CONSTRAINED STRING EDITING 279

hGORITHM III.

Input: The indices I, E, and S for which &(X, Y) = W(I, E, S)

Output: The optimal sequence of edit operations subject to the specified
constrained. The sequence is given in the reverse order and in the following
notation:

(a) The pair (x, , JQ) means the substitution of r, for xi.
(b) The pair (x,, 0) means the deletion of x,.
(c) The pair (0, y,) means the insertion of y,.

Method:

i=I, e=E, s = S, where W(I, E, S) = DT(X, Y).

Define W(i,e,s)=cc whenever i<Oor e<Oors<O.

while(i#Oore#Oors#O)do

if(W(i,e,s)=W(i-1,e,s)+d(8,yi+,))
then

print (6 Y,,,)
i=i-1

elseif (W(i,e,s)=W(i,e-l,s)+d(x,+,,@))
then

print (x,+,, 0)
e=e-1

else

Print (x,+,, Vi+,>
s=s-1

endif

endif
endwhile

END &Olith 111

Obviously Algorithm III is performed in O(max(M, N)) time.

REMARKS.

(1) The entire thrust of this paper has been to study the constrained editing
of strings in which the primitive edit operations are substitution, insertion, and
deletion of individual characters. The problem of editing strings subject to
generalized constraints and using the edit operations of substitution, insertion,
deletion, and the transposition of characters remains unsolved.

(2) Using the concepts introduced here we can also conceive of constrained
measures related to the LCS of two strings. These measures would impose more

280 B. J. OOMMEN

generalized constraints than those that have been studied in the literature [17]
and could be used to study the similarity between biological molecules which
have gross differences in the lengths of their string representations.

(3) From a naive perspective it is possible to consider the techniques applied
here as mere applications of dynamic programming to extensions of a problem
that has been widely discussed. This is in fact not the case, for previous research
applies dynamic-programmin g tools to obtaining recursive formulations for
D(X, Y). Observe however that the constrained distance between X and Y is
not recursively computable in terms of the constrained distanced between the
prefixes of the corresponding strings. One of the highlights of this paper is that
we have shown that DT(X, Y) can be computed by evaluating the recursively
computable index W(-, . , -). This is reminiscent of a control system in which
the output is computed in terms of state variables which are recursively
computable.

(4) The use of the generalized Levenshtein distance to perform the auto-
matic correction of noisy strings [9] and noisy substrings [8] has been discussed
in the literature. In the latter results, the errors which were present in the noisy
strings were deletions, insertions, and the substitutions of individual characters.
One problem that has been open is that of correcting erroneous strings and
substrings in which, apart from the latter errors, the noisy string also has
chunks of characters deleted. From our experience, we believe that ccmstruined
string editing properties of strings can be used to perform the correction of
noisy strings which contain all the above types of errors. We are currently
investigating this possibility.

V. CONCLUSIONS

In this paper we have considered the problem of editing a string X to a
string Y subject to a specified edit constraint. ‘Ihe edit constraint is fairly
arbitrary and can be specified in terms of the number and type of edit
operations desired in the optimal transformation. The way by which the
constraint T can be specified has has been proposed. Also the technique to
compute DT(X, Y), the edit distance subject to the constraint T, has been
presented. A final algorithm has been given which has as its input the quantity
DT(X, Y) and outputs the optimal edit transformation subject to the specified
constraint.

Given the strings X and Y, D,(X, Y) and the array of constrained edit
distances W(. , . , *) cao be computed in O(]XlI Yhnin((~,] yI>) time. If DT(X, Y)
is given, the optimal edit transformation can be obtained by backtracking
through W(*, *, *) in O(max(lXI, I rl)) the.

CONSTRAINED STRING EDITING 281

The problem of constrained string editing using the elementary edit oper-
ations of substitution, insertion, deletion, and the transportation of characters
remains unsolved.

We are currently investigating the use of constrained edit distances in the
pattern recognition of noisy substrings and boundary segments.

APPENDIX

Proof of Theorem ZZ. It is required to prove that for all feasible values of i,
e, and s,

W(i,e,s) =min[{W(i-l,e,s)+d(B,y,+,)},

{ W(i,e-I,s)+d(x,+,,e)},

{W(i,e,s-l)+d(x,+,,yi+,)}l.

The proof of the theorem is divided into three main cases:

Care (a): Any two of the three variables i, e, and s are zero.
Case (b): Any one of the three variables i, e, and s is zero.
Care (c): None of the variables i, e, and s are zero.

The most involved of these cases is case (c). Cases (a) and (b) are merely one-
and two-parameter subcases respectively of case (c). To avoid repetition, we
shall here prove only case (c). Thus, for the rest of the proof, we encounter only
strictly positive values for the variables i, e, and s.

Let r=e+s, q=i+s, X,=x,...x;,and Y,=y,...y,.Bydefinition,

(A.1)

where (X,!, Y,‘) is an arbitrary element of the set Gj, e,s, with x;~ and yij as the
jth symbols of Xi and Y; respectively. Let the lengths of the strings X; and Y;
in the arbitrary element be L. Then the last symbols of X,! and Y; are x;~ and
y& respectively.

We partition the set G,,,,, into three mutually exclusive and exhaustive
subsets:

282 B. J. OOMMEN

By their definitions, we see that the above three sets are mutually exclusive.
Further, since xi,_ and y& cannot be 8 simultaneously, every pair in G,, e,s
must be in one of the above sets. Hence these three sets partition Gi,.,..
Rewriting (Al), we obtain

W(i,e,s) = min mill S’,
k-1,2,3 (~:,Y;)EG$~

t A.4

where S’ = $?i16(x$, yij).
Consider each of the terms in (A.2) individually. In every pair in G,‘,,,,,,

%L ’ = x, and y& = y,. Hence,

For every element in Gj, e, s there is a unique element in Gi, e, s _ I and vice versa.
Hence, the first term in the above expression is exactly W(i, e, s - 1). Since
r=ets and q=i+s,

tx;t
mill C d(x:j,Y~j)=W(j,e,s-l)+d(x,+,,yi+,). (A.4)

(X;>YL)EG~.e,Jj=~

Consider the second term in (A.2). In every pair in G,$,, xiL = x, and
y& = B. Hence,

For every element in G&, there is a unique element in Gi,,_iT, and vice versa.
Hence, the first term in the above expression is exactly W(i, e - 1, s). Thus,

Ix;1
min C d(x;,,y&) =W(i,e-l,s)+d(x,+,,@).

(K.Y;)~o:,,,j-1
(~.6)

CONSTRAINED STRING EDITING 283

Consider the third term in (A.2). In every pair in G;fe,s, xiL = 0 and

y&_ = JJ,. Hence,

IQ IX-1
min C d(x$j 7 .Yij) = Inin

(x;,y;,~G:..,j=l

C d(x~,,Y~j)+d(BYY~)’

(x:,Y;)EG:,.,, j=l

(A.71

For every element in Ct.,, there is a unique element in G,_l, e,s and vice versa.

Hence, the first term in the above expression is exactly W(i - 1, e, s). As in the

above cases,

1x1

min C d(x:j,y~,)=W(i-l,e,s)+d(e,y,+,). (A.8)

(~:.yg,~G:c.sj=l

Resubstituting (A.4), (A.6), and (A.8) in (A.2) proves the theorem. w

I would like to thank Professor Jeff Sidney of the University of Ottawa for

proofreading the paper thoroughly and for the time he spent to improve the

readability of the paper.

REFERENCES

1.

2.

3.

4.

5.

6.

I.

8.

9.

A. V. Aho, D. S. Hirschberg, and J. D. Ullman, Bounds on the complexity of the longest
common subsequence problem, J. Assoc. Comput. Much. 23:1-12 (1976).
P. A. V. Hall and G. R. Dowling, Approximate string matching, Compur. Surueys
12:381-402 (1980).
D. S. Hirschberg, Algorithms for the longest common subsequence problem, J. Assoc.

Compur. Mach. 24:664-615 (1977).

D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences,
Comm. ACM 18:341-343 (1975).
J. W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common
subsequences, Comm. ACM 20:350-353 (1977).

R. L. Kashyap and B. J. Oommen, A common basis for similarity and dissimilarity
measures involving two strings, Internat. J. Compuf. Math. 13:17-40 (Mar. 1983).
R. L. Kashyap and B. J. Oommen, Similarity measures for sets of strings, Infernat. J.

Comput. Math. 13:95-104 (May 1983).
R. L. Kashyap and B. J. Oommen, The noisy substring matching problem, IEEE Trans.

Software Engrg. SE-93365-370 (1983).

R. L. Kashyap and B. J. Oommen, An effective algorithm for suing correction using
generalized edit distances-I. Description of the algorithm and its optimatlity, Inform.
Sci. 23(2):123-142 (Mar. 1981).

284 B. J. OOMMEN

10. R. L. Kashyap and B. J. Oommen, Probabilistic correction of strings, in Proceedings of the
IEEE Transactions on Pattern Recognition and Image Processing, June 1982, pp. 28-33.

11. A. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals,
Soviet Phys. Dokl. 10:707-710 (1966).

12. D. Maier, The complexity of some problems on subsequences and supersequences, J.
Assoc. Comput. Mach. 25:322-336 (1978).

13. W. J. Masek and M. S. Paterson, A faster algorithm computing string edit distances, J.
Comput. System Sci. 20:18-31 (1980).

14. S. B. Needleman and C. D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol. Biol., 1970, pp. 443-453.

15. T. Okuda, E. Tanaka, and T. Kasai, A method of correction of garbled words based on the
Levenshtein metric, IEEE Trans. Compui. C-25:172-177 (1976).

16. J. L. Peterson, Computer programs for detecting and correcting spelling errors, Comm.
ACM 23:676-687 (1980).

17. D. Sankoff, Matching sequences under deletion/insertion constraints, Proc. Nat. Acad.
Sci. U.S. A. 69:4-6 (Jan. 1972).

18. D. Sankoff and J. B. Kruskal, Time Warps, Siring Edits and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison-Wesley, 1983.

19. R. A. Wagner and M. J. Fischer, The string to string correction problem, J. Assoc.
Comput. Mach. 21:168-173 (1974).

20. C. K. Wong and A. K. Chandra, Bounds for the string editing problem, J. Assoc. Comput.
Mach. 23:13-16 (1976).

Received I1 April 1985; revised I May 1986

