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Constrained String Editing* 

B. J. OOMMEN 

School of Computer Science, Carleton Universiry, Ottawa, KIS 5B6, Canada. 

ABSTRACT 

Let X and Y be any two strings of finite length. We consider the problem of transforming 
X to Y using the edit operations of deletion, insertion, and substitution. The optimal 
transformation is the one which has the minimum edit distance associated with it. The 
problem of computing this distance and the optimal transformation using no edit constraints 
has been studied in the literature. In this paper we consider the problem of transforming X to 
Y using any arbitrary edit constraint involving the number and type of edit operations to be 
performed. An algorithm is presented to compute the minimum distance associated with 
editing X to Y subject to the specified constraint. The algorithm requires O(l x( 1 Yj min(lXl, 1 ?I)) 
time and space. The technique to compute the optimal transformation is also presented. 

I. INTRODUCTION 

In the study of the comparison of text patterns, syllables, and biological 
macromolecules a question that has interested researchers in that of quantifying 

the dissimilarity between two strings. A review of such distance measures and 
their applications is given by Hall and Dowling [2] and Peterson [16]. We 

recommend to the reader a recent excellent book edited by Sankoff and 
Kruskal[18] which discusses in detail the problem of sequence comparison. 

The most promising of all the distance measures which compare two strings 
seems to be the one that relates them using various edit operations [18, pp. 

37-391. The edit operations most frequently considered are the deletion of a 
symbol, the insertion of a symbol, and the substitution of one symbol for 

another [2, 5-10, 15-191. This distance, referred to as the generalized 
Levenshtein distance (GLD), between two strings is defined as the minimum 
sum of the edit distances associated with the edit operations required to 
transform one string to the other. Apart from being a suitable index for 
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comparing two strings, this measure is closely related to the other numerical 
and nonnumerical measures that involve the strings, such as the longest 

common subsequence (LCS) and the shortest common supersequence [7]. 
Various algorithms to compute this distance have been proposed, the best of 

which are due to Wagner and Fischer [19] and Masek and Paterson [13]. For the 
infinite-alphabet case it has been shown that Wagner and Fischer’s algorithm is 
the optimal one [20]. A generalization of [19] has even been used to correct 
noisy substrings [8]. Closely related to these algorithms are the ones proposed to 
compute the LCS of two strings by Hirschberg [3, 41, Hunt and Szymanski (51, 

and Needleman and Wunsch [14]. Bounds on the complexity of the LCS 
problem have been given by Aho et al. [l]. 

All of the abovementioned algorithms consider the editing of one string, say 
X, to transform it to Y, with the edit process being absolutely unconstrained. 
Sankoff [17] pioneered the study of constrained string editing. The only 

algorithm presented in the literature on this problem is due to him. His 
algorithm is a LCS algorithm which involves a specialized constraint that has its 

application in the comparison of amino acid sequences. 
In this paper we consider the problem of editing X to Y subject to any 

general edit constraint. This edit constraint can be arbitrarily complex, so long 
as it is specified in terms of the number and type of the edit operations to be 

included in the optimal edit transformation. For the sake of clarity we give 
below some examples of constrained editing. 

EXAMPLE I. Here are some typical constrained editing problems. 

(a) What is the optimal way of editing X to Y using no more than k 
insertions? 

(b) How can we optimally transform X to Y using exactly k substitutions? 
(c) Is it possible to transform X to Y using exactly k, substitutions, ki 

insertions, and k, deletions? If it is possible, what is the distance between X 
and Y subject to this constraint? 

In this paper we first present a consistent method of specifying any arbitrary 
edit constraint T. We then discuss the computation of D&X, Y), the edit 
distance between X and Y subject to this constraint. The latter quantity is 
computed by first evaluating the elements of a three-dimensional array 

.W(*, *, *) using dynamic-programming techniques, and then combining certain 
elements of W( f , . , .) to yield D,( X, Y). Using the array I+‘(. , . , -), the optimal 
sequence of edit operations required to edit X to Y subject to the constraint T 
can also be obtained by backtracking. It will be shown that the algorithm 
requires 0 (I 4 1 Yj min() Xl,1 II)) time and space. 

Apart from defining and solving the problem of constrained string editing in 
its most general framework, a major contribution of this paper is that of using 

the concepts of dynamic programming to compute a quantity that does not 
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inherently possess any known recursively computable properties. The quantity 

which we are referring to is indeed the constrained edit distance DT( X, Y). 

However, we show that unlike that quantity, there is an array W( . , +, -) which is 
closely related to it and which can be computed using dynamic programming in 
a fairly straightforward way. This technique is quite analogous to the computa- 
tions in a control system in which the output is evaluated in terms of state 
variables which are computable in real time. 

1.1. NOTATION 

Let A be any finite alphabet, and A* be the set of strings over A. t9 is the 
null symbol, 0 Z A. Let A” = A U { 0 }. 2 is referred to as the appended alphabet. 

AstringXEA*oftheformX=x,...x,,whereeachxiEA,issaidtobeof 
length ]x( = N. Its prefix of length i will be written as X,, i < N. Uppercase 
symbols represent strings, and lower case symbols, elements of the alphabet 
under consideration. 

Let Z’ be any element in A*, the set of strings over A. The compression 

operator C is a mapping from A” to A*: C( Z’) is Z’ with all occurrences of the 
symbol 8 removed from Z’. Note that C preserves the order of the non-0 
symbols in Z’. For example, if Z’ = feoer, C( Z’) = for. 

1.2. THE SET OF ELEMENTARY EDIT DISTANCES d(.. .) AND THE SET G,,, 

d(.;):AxA”+R+ is a function whose arguments are a pair of symbols 
belonging to A, the appended alphabet, and whose range is the set of nonnega- 

tive real numbers; d( 0, 0) is undefined and is not needed. The elementary 
distance d( a, b) can be interpreted as the distance associated with transforming 

a to b, for a, b E A’. Thus, 

(a) d( xi, y,) is the distance associated with substituting y, for xi, xi, r, E .4. 

(b) d(x,, fl) is the distance associated with deleting xi E A. 

(c) d(0, 4) is the distance associated with inserting y, E A. 

For every pair (X, Y), X, Y E A*, the finite set G,, r is defined by means of 
the compression operator C, as a subset of Al* X AI*: 

G x,r= {(X’,Y’)((X’,Y’)~kXA”*,arrdeach(X’,Y’) obeys 

(i) C ( X’) = X, C( Y’) = Y, 

(ii) ]X’]=/Y’J, 

(iii) forall16ig]X’], 

itisnotthecasethatx~=y,l=e). (1) 

. . . . 
Bydef~hon,d(X’,Y’)~G,,.thenmax[lXI,IY1]6(X’I=IY’IdIXI+JY). 
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The meaning of the pair (X’, Y’) E Gx, r is that it corresponds to one way of 
editing X into Y, using the edit operations of substitution, deletion, and 
insertion. The edit operations themselves are specified for all 1~ i < IX’1 by 
(x;, y;), which represents the transformation of x,! to J+‘. The cases below 
consider the three edit operations individually: 

(i) If xi E A and y/ E A, it represents the substitution of v/ for x,!. 
(ii) If x; E A and _v/ = 8, it represents the deletion of xl. Between these two 

cases, all the symbols in X are accounted for. 
(iii) If x; = 0 and v[ E A, it represents the insertion of y;. Between cases (i) 

and (iii) all the symbols in Y are accounted for. 

G *, r is an exhaustive enumeration of the set of all the ways by which X can 
be edited to Y using the edit operations of substitution, insertion, and deletion 
without destroying the order of occurrence of the symbols in X and Y. 

The number of elements in the set G,, r is given by 

IGX,Yl= E (Ixl+ k)! 
k-maxIO.IYI-141 

k!(lq-k)!(lA-IYj+k)!’ 

Note that 1 G, yI depends only on IXj and I II, and not on the actual strings X 
and Y themselves. Further, observe that the transformation of a symbol a E A 
to itself is also considered us an operation in the arbitrary pair (X’, Y’) E G,, r. 

EXAMPLE II. Let X = f and Y = go. Then, 

G x.y= {(fe,go),(ef,go),(fee,eg0o>,(efe,geo),(eef,goe)}. 

In particular the pair (ef, go) represents the edit operations of inserting the g 
and replacing the f by an o. 

Since the generalized Levenshtein distance (GLD) between X and Y is the 
minimum of the sum of the edit distances associated with the edit operations 

required to transform X to Y, this distance, written as D(X, Y), has the 
expression [6,9], 

(2) 

Since the transformation of a symbol, a E A to itself is considered as a 
substitution operation, an application in which this is a nonoperation must 
specifyd(u,u)=Oforall UEA. 
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II. EDIT CONSTRAINTS 

II.1. PERMISSIBLE AND FEASIBLE EDIT OPERATIONS 

Consider the problem of editing X to Y, where IXj = N and 1 II = M. 
Suppose we edit a prefix of X into a prefix of Y, using exactly i insertions, e 
deletions (or erasures), and s substitutions. Since the numbers of edit oper- 
ations are specified, this corresponds to editing X,,, = xi.. . x,+, , the prefix of 
Xof length e+s,into yl+s=yl...yi+s, theprefixof Yof length i+s. 

To obtain bounds on the magnitudes of the variables i, e, and s, we observe 
that they are constrained by the lengths of the strings X and Y. Thus, if 
r = e + s, q = i + s, and R = min[ M, N], these variables will have to obey the 
following obvious constraints: 

max[O,M-N]<i<q<M, 

O<s<min[M,N]. 

Values of triples (i, e, s) which satisfy these constraints are termed the feasible 

values of the variables. Let 

H,=(jlmax[O,M-N]gjgM}, 

H,={ jlO<j<N}, (3) 

H,={j~O<j<min[M,N]}. 

Hi, H,, and H, are called the set of permissible values of i, e, and s. Observe 
that a triple (i,e,s) is feasible if apart from iEHi, eEH,, SEH, the 

following is satisfied: 

i+s<M and e+sdN. (4) 

The following theorem specifies the permitted forms of the feasible triples 
which are encountered in editing X,, the prefix of X of length r, to Yq, the 
prefix of Y of length q. 

THEOREM I. To edit X,., the prefix of X of length r, to 5, the prefix of Y of 

length q, the set of feasible triples is given by 

{(i,r-q+i,q-i)l max[O, q - r] Q i d q}. 



212 B. J. OOMMEN 

Proof. Consider the constraints imposed on feasible values of i, e, and s. 
Since we are interested in the editing X, to Yg, we have to consider only those 
triples (i, e, s) in which i + s = r and e + s = q. But the number of insertions 

can take any value from max[O, q - r] to q. For every value of i in this range, 
the feasible triple (i, e, s) must have exactly q - i substitutions. 

Similarly, since the sum of the number of substitutions and the number of 
deletions is r, the triple (i, e, s) must have exactly r - q + i deletions. Hence 
the theorem. n 

II.2. SPECIFICATION OF EDIT CONSTRAINTS 

An edit constraint is specified in terms of the number and type of edit 
operations that are required in the process of transforming X to Y. It 
is expressed by formulating the number and type of edit operations in terms of 
three sets Q,, Qi, and Q, which are subsets of the sets H,, H,, and H, defined 

in (3). We clarify this using the three constraints given in Example I. 

EXAMPLE III. 

(a) To edit X to Y performing no more than k insertions, the sets Q, and 
Q, are both equal to 0, the null set. Further, 

(b) To edit X to Y performing exactly k substitutions, Q, and Q, would be 
null and, Q, = { k } f~ H,. Note that if k is not in H, , the problem is infeasible. 

(c) To edit X to Y performing exactly ki insertions, k, deletions, and k, 

substitutions yields 

Q, = { k, > n 4 9 Q,= {k)nHe, and Q,={k,}nH,. 

Note that the problem is infeasible unless k, E Hi, k, E H,, and k, E H,. 

THEOREM II. Every edit constraint specified for the process of editing X to Y 

can be written as a unique subset of Hi. 

Proof. Let the constraint be specified by the sets Q,, Q,, and Q,. Every 
element j E Q, requires the editing to be performed using exactly j deletions. 
From Theorem I, since 14 = N, this requires that the number of substitutions 
be N - j. Further, since 1 Yj = M, the number of insertions is forced to be 
M-N+j. 

Similarly, if j E Q,, the edit transformations must contain exactly j substitu- 
tions. Since 1 II = M and 14 = N, Theorem I requires that M - j insertions and 
N - j deletions be performed. 
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Q: = {M-N+.WQ,) and Q: = {M-jlj~Q~>. 

Clearly, for any arbitrary constraint the number of insertions that are permitted 
is given by a set of integers which is obtained by intersecting Q;, Q: , and Q: , 
which is obviously a subset of Hi. n 

REMARKS. 

(1) The set referred to above, which describes the constraint and which is 
the subset of Hi, will in future be written as T. 

(2) The edit constraint can just as easily be written as a subset of H, or He. 
We have arbitrarily chosen to describe T as a subset of Hi. 

(3) Observe that the converse of Theorem II is not true. Verbal descriptions 
of many edit constraints could lead to the same set T. 

EXAMPLE IV. Let X = for and Y = fa. Suppose we want to transform X to 1 

by performing at least 1 insertion, at most 1 substitution, and exactly 2 

deletions. Then, 

Qi={1,2}, Q,= {2}, and Q,= {OJ}. 

Hence, 

Q: = (1) and Q: = (L2). 

Thus T=QinQ: nQ: = (1). 
Hence the optimal transformations must contain exact& one insertion. Some 

candidate edit transformations are given by the following subset of G*,r: 

Note that every pair in the above subset corresponds to at least 1 insertion, at 
most 1 substitution, and exactly 2 deletions. 

We shall refer to the edit distance subject to the constraint T as DT( X, Y). 
By definition, D,(X, Y) = 00 if T =0. This is merely a simple way of ex- 
pressing that it is impossible to edit X to Y subject to the constraint T. We 
shall now consider the computation of D,( X, Y). 
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III. W: THE ARRAY OF CONSTRAINED EDIT DISTANCES 

Let W(i, e, s) be the constrained edit distance associated with editing X,,, 

to Y+, subject to the constraint that exactly i insertions, e deletions, and s 

substitutions are performed in the process of editing. As before, let r = e + s 

and q = i + s. Let G,,,,,( X, Y) be the subset of the pairs in G!,, rq in which 
every pair corresponds to i insertions, e deletions, and s substitutions. Since 
we shall always be referring to the strings X and Y, we refer to this set as G,,,,,. 
Thus, using the notation of (l), and assuming (i, e,s) is feasible for the 

problem, W( i, e, s) has the expression 

We shall derive the recursively computable properties of the array W(. , . , s). 

THEOREM 111. h?t W(i,e, s) be the quuntify defined in 

X and Y. Then, 

(5) for any two strings 

W(i,e,s) =min[{ W(i-l,e,s)+d(e,y,+,)}, 

{W(i,e-l,s)+d(x,+,,O}, 

for all feasible triples (i, e, s). 

The theorem is proved in the appendix. 

The computation of the distance &(X, Y) from the array W( i, e, s) only 

involves combining the appropriate elements of the array using T, the set of 
insertions permitted. This is proved in the following theorem. 

THEOREM IV. The quantity D,(X, Y) is related to the elements of the array 

W(i, e, s) as follows: 

D,(X,Y)=FTW(i,N-M+i,M-i). 

Proof. The theorem follows directly from Theorem I with the substitution 
r=Nandq=M. n 
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REMARK. In an unconstrained editing problem i can take on any value 
ranging from max[O, M - N] to M. Thus the unconstrained edit distance (which 

is commonly known as the generalized Levenshtein distance) D( X, Y) has the 
expression 

D(X,Y)= min 
iE[max[O,M- N],M] 

W(i,N-M+i,M-i). 

Using the results of the above two theorems, we now propose a computational 
scheme for D,(X, Y). 

IV. THE COMPUTATION OF W( . , . , *) AND DT( X, Y) 

To compute Dr( X, Y) we make use of the fact that though this index does 
not itself seem to have any recursive properties, the index W(. , . , .), which is 

closely related to it, has the interesting properties proved in Theorem III. 
Algorithm I, which we now propose, computes the array W( a, . , -) for all 
feasible values of the variables i, e, and s. Subsequently, using the array 

W( i, e, s) as input, Algorithm II computes I&(X, Y) by comparing the contri- 
butions of the pertinent elements in W( . , . , .) as specified by Theorem IV. 

The computation of the array W( . , . , .) has to be done in a systematic 
manner, so that any quantity W( i, e, s) is computed before its value is required 
in any further computation. This is easily done by considering a three-dimen- 

sional coordinate system whose axes are i, e, and s. Initially the weight 

associated with the origin, W(O,O,O), is assigned the value zero, and the weights 
associated with the vertices on the axes are evaluated. Thus, W( i, 0, 0), W(0, e, 0), 

and W(O,O, s) are computed for all permissible values of i, e, and s. Subse- 
quently, the i-e, e-s, and i-s planes are traversed, and the weights associated 

with the vertices on these planes are computed using the previously computed 
values. Finally, the weights corresponding to strictly positive values of the 
variables are computed. To avoid unnecessary computations, at each stage the 
variables are tested for feasibility. The quantity DT(X, Y) is evaluated by 
comparing the weights associated with the triples of the form 

{(i,N-M+i,M-i)liET}. 

The algorithm to compute W( 1, . , .) is given below. 

ALGORITHM I. 

Input: The strings X = xlxz . . . xN, Y = y,y2 . . . y,, and the set of elementary 
edit distances defined by d( ., e). Let R = min[ M, N]. 
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Output: The may W(i, e,s) for all feasible values of i, e, and s. 
Method: 

W(O,O,O) = 0 
for i=l to Mdo W(i,O,O)=W(i-l,O,O)+ d(@,y,) 
for e=l to Ndo W(O,e,O)=W(O,e-l,O)+d(x,,e) 

for s=l to R do ~(O,O,~)=~(O,O,~-l)+d(~~,y~) 

for i=l to Mdo 
for e=l to Ndo 

~(i,e,O)=min[~(i-1,e,O)+d(8,yi),W{i,e-1,0)+d(x,,~)] 
end 

end 

for i=l to Mdo 
fors=ltoM-ido 

W(i,O,f) =minlW(i -l,O,s)+d(B,yi+,),W(i,O,s -1)+ d(x,,~i+,)l 
end 

end 

for e=l to Ndo 
fors=l toN-edo 

W(O,e,s)=~~(O,e-1,s)+d(x,+,,~),~(O,e,s-f)+d(x,+,,y,)l 
end 

end 

for i-l to Mdo 
for e=l to Ndo 

fors=l to~[(M-i),(N-e)]~ 

W(i,e,s) = min[(W(i-l,e,s)+ d(6,y,+,)}, 

{W(i,e-l,s)+d(x,+,,e)}, 
Iw(i,e,s--l)+ 4x,+,~~~+,)N 

end 
end 

end 

END &Olithl 1 

We now present Algorithm II, which has for its input the array W( *, -, -), 
and yields as its output the quantity D,( X, Y). 

Input: The array W(., ., *) computed using Algorithm I, and the constraint 
set T. 

Output: The constrained distance Dr( X, Y). 
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D,(X,Y) =ca 
for all iETdo 

&(X,Y)=min[D,(X,Y),W(i,N-M+i,M-i)] 
end 

REMARKS. 

(1) The computational complexity of algorithms involving the comparison of 
two strings is conveniently given by the number of symbol comparisons 
required by the algorithm [I, 9, 201. In this case, the number of symbol 
comparisons required by Algorithm I has an upper bound of 

i 

(N-M)M(M+l) + M(M+1)(2M+l) 

#(Algf)= (M-N);(N+I) + N(N+I)&+l) 

if N>M, 

2 6 
otherwise. 

Note that for every symbol comparison, we will need at most three multiplica- 
tions and two additions. From the last set of “for” loops it is easy to see that 
the time required to compute the array W( . , . , *) is O( MNR), where 
R = min[ M, N]. Thus it has a worst-case complexity which is cubic in time. 
Algorithm II clearly requires linear time. Thus the overall time required to 
compute D, (X, Y) is 0( MNR). We conjecture that this is a lower bound for 
the number of symbol comparisons required for any algorithm which attempts 
to solve the constrained string editing problem. 

(2) The array W(i, e, s) contains far more information than is required to 
merely compute I),( X, Y). It contains all the weights associated with editing 
prefixes of X into prefixes of Y. One could therefore use the contents of the 
array to compute far more complicated indices which concern constrained edit 
distances involving prefixes of either or both the strings. We illustrate the 
computation of DT( X, Y) with an example. 

EXAMPLE V. Let X = au and Y = be. Let us suppose we want to edit X to Y, 
permitting either two substitutions or exactly one edit operation of each type. It 
can be seen that the set T defiuing the constraint is (0, 1). 

We shall now follow through the computation of Dr( uu, bc) using Al- 
gorithms I and II. To begin with, the weight associated with the origin is 
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initialized. The i, e, and s axes are then traversed: 

Wl,O,O) =d(e,b), W(2,0,0) = d( 8, b) + d( 8, c), 

W(OA0) =+,e), w(o,2,0) =2+,e), 

W(O,O,l) = da, b), W(O,O,2) =d(a,b)+d(a,c). 

The i-e, i-s, and e-s planes are then traversed: 

w(i,i,o) =d(e,b)++,e), w(1,2,0) =d(e,b)+2+,e), 

w(2,1,0) =d(e,b)+d(e,c)+d(a,e), 

w(2,2,0) =d(e,b)+d(e,c)+2d(u,e), 

W(l,O,l) =min[d(e,b)+d(u,c),d(e,c)+d(u,b)], 

W(O,IJ) =min[d(u,e)+d(~,b),d(~,e)+d(u,c)]. 

Finally, the weights for strictly positive values of i, e, and s are computed: 

w(i,l,i) =min[{d(e,b)+d(a,e)+d(a,c)}, 

Since the terms that must be compared to obtain D,( X, Y) are those which 
involve i = 0 and i = 1, D,(X, Y) can now be trivially computed as the 
minimum of W(O,O,2) and W(l,l,l). 

IV.]. COMPUTING THE BEST EDIT SEQUENCE 

Once the quantity D,(X, Y) has been computed, the optimal edit sequence 
can be obtained by backtracking through the array W( . , . , .) and printing out 
the actual edit sequence traversed, in the reverse order. The technique is well 
known in dynamic-programming problems and has been used extensively for 
edit sequences [13, 15, 191 and longest common subsequences [3, 4, 5, 61. 
Without further comment we now present Algorithm III, which has as its input 
the distance DT( X, Y) and the optimal element of W( ., ., e), i.e., the element 
W( I, E, S) which is equal to DT( X, Y). 

To simplify the backtracking, we exclude the possibility of encountering 
negative values of i, e, and s by rendering W( i, e, s) infinite whenever any of 
the three indices are negative. 
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hGORITHM III. 

Input: The indices I, E, and S for which &(X, Y) = W(I, E, S) 

Output: The optimal sequence of edit operations subject to the specified 
constrained. The sequence is given in the reverse order and in the following 
notation: 

(a) The pair (x, , JQ) means the substitution of r, for xi. 
(b) The pair (x,, 0) means the deletion of x,. 
(c) The pair (0, y,) means the insertion of y,. 

Method: 

i=I, e=E, s = S, where W(I, E, S) = DT( X, Y). 

Define W(i,e,s)=cc whenever i<Oor e<Oors<O. 

while(i#Oore#Oors#O)do 

if(W(i,e,s)=W(i-1,e,s)+d(8,yi+,)) 
then 

print (6 Y,,,) 
i=i-1 

elseif (W(i,e,s)=W(i,e-l,s)+d(x,+,,@)) 
then 

print (x,+,, 0) 
e=e-1 

else 

Print (x,+,, Vi+,> 
s=s-1 

endif 

endif 
endwhile 

END &Olith 111 

Obviously Algorithm III is performed in O(max( M, N)) time. 

REMARKS. 

(1) The entire thrust of this paper has been to study the constrained editing 
of strings in which the primitive edit operations are substitution, insertion, and 
deletion of individual characters. The problem of editing strings subject to 
generalized constraints and using the edit operations of substitution, insertion, 
deletion, and the transposition of characters remains unsolved. 

(2) Using the concepts introduced here we can also conceive of constrained 
measures related to the LCS of two strings. These measures would impose more 
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generalized constraints than those that have been studied in the literature [17] 
and could be used to study the similarity between biological molecules which 
have gross differences in the lengths of their string representations. 

(3) From a naive perspective it is possible to consider the techniques applied 
here as mere applications of dynamic programming to extensions of a problem 
that has been widely discussed. This is in fact not the case, for previous research 
applies dynamic-programmin g tools to obtaining recursive formulations for 
D(X, Y). Observe however that the constrained distance between X and Y is 
not recursively computable in terms of the constrained distanced between the 
prefixes of the corresponding strings. One of the highlights of this paper is that 
we have shown that DT( X, Y) can be computed by evaluating the recursively 
computable index W( -, . , -). This is reminiscent of a control system in which 
the output is computed in terms of state variables which are recursively 
computable. 

(4) The use of the generalized Levenshtein distance to perform the auto- 
matic correction of noisy strings [9] and noisy substrings [8] has been discussed 
in the literature. In the latter results, the errors which were present in the noisy 
strings were deletions, insertions, and the substitutions of individual characters. 
One problem that has been open is that of correcting erroneous strings and 
substrings in which, apart from the latter errors, the noisy string also has 
chunks of characters deleted. From our experience, we believe that ccmstruined 
string editing properties of strings can be used to perform the correction of 
noisy strings which contain all the above types of errors. We are currently 
investigating this possibility. 

V. CONCLUSIONS 

In this paper we have considered the problem of editing a string X to a 
string Y subject to a specified edit constraint. ‘Ihe edit constraint is fairly 
arbitrary and can be specified in terms of the number and type of edit 
operations desired in the optimal transformation. The way by which the 
constraint T can be specified has has been proposed. Also the technique to 
compute DT( X, Y), the edit distance subject to the constraint T, has been 
presented. A final algorithm has been given which has as its input the quantity 
DT( X, Y) and outputs the optimal edit transformation subject to the specified 
constraint. 

Given the strings X and Y, D,( X, Y) and the array of constrained edit 
distances W( . , . , *) cao be computed in O(]XlI Yhnin((~, ] yI>) time. If DT( X, Y) 
is given, the optimal edit transformation can be obtained by backtracking 
through W(*, *, *) in O(max(lXI, I rl)) the. 
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The problem of constrained string editing using the elementary edit oper- 
ations of substitution, insertion, deletion, and the transportation of characters 
remains unsolved. 

We are currently investigating the use of constrained edit distances in the 
pattern recognition of noisy substrings and boundary segments. 

APPENDIX 

Proof of Theorem ZZ. It is required to prove that for all feasible values of i, 
e, and s, 

W(i,e,s) =min[{W(i-l,e,s)+d(B,y,+,)}, 

{ W(i,e-I,s)+d(x,+,,e)}, 

{W(i,e,s-l)+d(x,+,,yi+,)}l. 

The proof of the theorem is divided into three main cases: 

Care (a): Any two of the three variables i, e, and s are zero. 
Case (b): Any one of the three variables i, e, and s is zero. 
Care (c): None of the variables i, e, and s are zero. 

The most involved of these cases is case (c). Cases (a) and (b) are merely one- 
and two-parameter subcases respectively of case (c). To avoid repetition, we 
shall here prove only case (c). Thus, for the rest of the proof, we encounter only 
strictly positive values for the variables i, e, and s. 

Let r=e+s, q=i+s, X,=x,...x;,and Y,=y,...y,.Bydefinition, 

(A.1) 

where (X,!, Y,‘) is an arbitrary element of the set Gj, e,s, with x;~ and yij as the 
jth symbols of Xi and Y; respectively. Let the lengths of the strings X; and Y; 
in the arbitrary element be L. Then the last symbols of X,! and Y; are x;~ and 
y& respectively. 

We partition the set G,,,,, into three mutually exclusive and exhaustive 
subsets: 
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By their definitions, we see that the above three sets are mutually exclusive. 
Further, since xi,_ and y& cannot be 8 simultaneously, every pair in G,, e,s 
must be in one of the above sets. Hence these three sets partition Gi,.,.. 
Rewriting (Al), we obtain 

W(i,e,s) = min mill S’, 
k-1,2,3 (~:,Y;)EG$~ 

t A.4 

where S’ = $?i16( x$, yij). 
Consider each of the terms in (A.2) individually. In every pair in G,‘,,,,,, 

%L ’ = x, and y& = y,. Hence, 

For every element in Gj, e, s there is a unique element in Gi, e, s _ I and vice versa. 
Hence, the first term in the above expression is exactly W( i, e, s - 1). Since 
r=ets and q=i+s, 

tx;t 
mill C d(x:j,Y~j)=W(j,e,s-l)+d(x,+,,yi+,). (A.4) 

(X;>YL)EG~.e,Jj=~ 

Consider the second term in (A.2). In every pair in G,$,, xiL = x, and 
y& = B. Hence, 

For every element in G&, there is a unique element in Gi,,_iT, and vice versa. 
Hence, the first term in the above expression is exactly W( i, e - 1, s). Thus, 

Ix;1 
min C d(x;,,y&) =W(i,e-l,s)+d(x,+,,@). 

(K.Y;)~o:,,,j-1 
(~.6) 
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Consider the third term in (A.2). In every pair in G;fe,s, xiL = 0 and 

y&_ = JJ,. Hence, 

IQ IX-1 
min C d( x$j 7 .Yij) = Inin 

(x;,y;,~G:..,j=l 

C d(x~,,Y~j)+d(BYY~)’ 

(x:,Y;)EG:,.,, j=l 

(A.71 

For every element in Ct.,, there is a unique element in G,_l, e,s and vice versa. 

Hence, the first term in the above expression is exactly W( i - 1, e, s). As in the 

above cases, 

1x1 

min C d(x:j,y~,)=W(i-l,e,s)+d(e,y,+,). (A.8) 

(~:.yg,~G:c.sj=l 

Resubstituting (A.4), (A.6), and (A.8) in (A.2) proves the theorem. w 

I would like to thank Professor Jeff Sidney of the University of Ottawa for 

proofreading the paper thoroughly and for the time he spent to improve the 

readability of the paper. 
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