
             

    PATTERN RECOGNITION OF STRINGS CONTAINING TRADITIONAL AND GENERALIZED TRANSPOSITION

ERRORS1

B. J. Oommen and R. K. S. Loke
School of Computer Science

Carleton University
Ottawa ; CANADA : K1S 5B6

ABSTRACT

We study the problem of recognizing a string Y
which is the noisy version of some unknown string X*
chosen from a finite dictionary, H. The traditional case
which has been extensively studied in the literature is
the one in which Y contains substitution, insertion and
deletion (SID) errors. Although some work has been
done to extend the traditional set of edit operations to
include the straightforward transposition of adjacent
characters2 [LW75] the problem is unsolved when the
transposed characters are themselves subsequently
substituted, as is typical in cursive and typewritten
script, in molecular biology and in noisy chain-coded
boundaries.  In this paper we present the first reported
solution to the analytic problem of editing one string X
to another, Y using these four edit operations. A scheme
for obtaining the optimal edit operations has also been
given. Both these solutions are optimal for the infinite
alphabet case.  Using these algorithms we present a
syntactic pattern recognition scheme which corrects
noisy text containing all these types of errors. The paper
includes experimental results involving subdictionaries
of the most common English words which demonstrate
the superiority of our system over existing methods.

1.  INTRODUCTION

A common problem in text editing is that of
finding the occurrence of a given string in a file.  This
is usually done to locate one's bearings in the file or to
replace the occurrence of one string by another.  With
no loss of generality, the file can be considered as a
sequence of words from a finite dictionary.  One mishap
that often occurs is that the string sought for is noisily
represented, either due to mistyping or ignorance of
spelling. We study the problem of recognizing the
original string by processing its noisy version.

                                                            
1Partially supported by the Natural Sciences and Engineering
Research Council of Canada.
2There has been some recent work done [Oo93] to consider
the squashing and expansion operations too, where in the
squashing operation two (or more) contiguous characters of X
can be transformed into a single character of Y, and in the
expansion operation a single character in X may be expanded
into two or more contiguous characters of Y.

Apart from text editing, spelling correction has
numerous applications in text and document retrieval
using noisy keywords, word processing, designing
effective spelling checkers and in image processing
where the boundary of the image to be recognized is
syntactically coded as a string [MV93]. Inexact
sequence comparison is also used extensively in the
comparison of biological macromolecules where "noisy"
version of proteins strings are compared with their exact
forms typically stored in large protein databases. The
literature on spelling correction is extensive; indeed, the
reviews [HD80,Pe80] list hundreds of publications that
tackle the problem from various perspectives.

Damareau [See references in Oo87] was probably
the first researcher to observe that most of the errors
that were found in strings were either a single
Substitution, Insertion and Deletion (SID) or reversal
(transposition) error.  Thus the question of computing
the dissimilarity between strings was reduced to
comparing them using these edit transformations.  In
most of the existing literature the transposition
operation has been modelled as a sequence of a single
insertion and deletion. Since this simplification can
drastically change the complexity of the comparison
problem, most of the research in this area has been
directed towards comparing strings using the SID edit
operations.

The first major breakthrough in comparing
strings using these three elementary edit
transformations was the concept of the Levenshtein
metric introduced in coding theory [Le66], and its
computation.  The Levenshtein distance between two
strings is defined as the minimum number of edit
operations required to transform one string into
another.  Okuda et. al. [OTK76] extended this concept
by weighting the edit operations, and many other
researchers among whom are Wagner and Fisher
[WF74] generalized it by using edit distances which are
symbol dependent.  The latter distance is termed as the
Generalized Levenshtein Distance (GLD).  One of the
advantages of the GLD is that it can be made a metric if
the individual edit distances obey some constraints
[OTK76,SK83].  Wagner and Fischer [WF74] also
proposed an efficient algorithm for computing this
distance by utilizing the concepts of dynamic
programming.  This algorithm has been proved to be
the optimal algorithm for the infinite alphabet case.
Various amazingly similar versions of the algorithm are



available in the literature, a review of which can be
found in [SK83].  Masek and Paterson [MP80]
improved the algorithm for the finite alphabet case.

Related to these algorithms are the ones used to
compute the Longest Common Subsequence (LCS) of
two strings (Hirschberg [Hi77], Hunt and Szymanski
[HS77] and others [SK83]).  The complexity of the LCS
problem has been studied by Aho et. al. [AHU76].
String correction using the GLD as a criterion has been
done for strings [Pe80,SK83], substrings [KO83],
dictionaries treated as generalized tries [KO83] and for
grammars [SK83]. Besides these deterministic
techniques, various probabilistic methods have been
studied in the literature [Pe80,KO84].

Although some work has been done to extend the
traditional set of SID operations to include the
transposition of adjacent characters [LW75,SK83] the
problem is unsolved for "Generalized" Transposition
(GT) errors. In this paper we revisit the problem for this
setting. The difference between the latter errors and
those traditionally considered as "transposition errors"
is the following. Currently, transposition errors merely
imply errors caused when the order of adjacent symbols
in a sequence are reversed. Such an error could cause
the string "develop" to be mutated into "dveelop". As
opposed to this, Generalized Transposition (GT) errors
permit these transposed symbols to be subsequently
substituted. Thus, if one was working on a typewriter
keyboard, this could cause the string "develop" to be
mutated into "dbrelop" -- which would arise when the
typist inherently "reversed" the two characters ("ev")
due to the sequence in which the fingers touched the
keyboard, but also accidentally shifted his/her hands to
the right of the keyboard one key too far -- which
happens all too often. Of course, it is clear that GT
errors can be represented as a sequence of two
substitutions ('e' ∅ 'b', and 'v' ∅ 'r'). However, we shall
show that the recognition accuracies involved by
representing them as GTs is much more than can be
obtained by representing them as two substitutions.
Furthermore, it will become clear that the additional
computational burden is but marginal; the order of the
two complexities  is identical -- both optimal and
quadratic.

The only reported result for traditional
transpositions is the the one proposed by Lowrance and
Wagner [LW75,SK83]. The difference between our
algorithm and the scheme presented by Lowrance and
Wagner for traditional transpositions is given in the
unabridged paper [OL94].

We formalize the problem as follows. We are
given a string Y which is the noisy version of some

unknown string X* chosen from a finite dictionary, H.
Apart from Y containing SID errors, it also contains
transposed characters which are themselves

subsequently substituted. The intention is to recognize

X* by processing Y. To achieve this we present the first
reported  solution to the analytic problem of editing one
string X to another, Y using these four edit operations.
A scheme for obtaining the optimal edit operations has
also been given. Both these solutions are optimal for the
infinite alphabet case.  Using these algorithms we
present a syntactic PR scheme which corrects noisy text
containing all these types of errors.

This "new" GT operation is not only applicable
in the recognition of typewritten and cursive script, but
also has vast potential application in processing of
chain-coded images [MV93] and biological
macromolecules.  To see the latter, consider the
representation of the a handwritten cursive "2". A study
of various boundaries shows that the "hook" at the top
of "2" varies with the writer --some "hooks" being more
curved than others. A less curved "hook" can have a
"0101" chain-coded representation, which is equivalent
to "1010" when the symbols are transposed. As opposed
to this, a more curved  "hook" can have the code
"6710", which is precisely edited from "0101" by two
GTs, where the symbols of one of the transpositions has
been subsequently substituted. Indeed, such scenarios
are numerous in boundary representations. GT errors
are also encountered in the study of biological
macromolecules [SK83] where the mutation
(substitution) of transposed molecules occurs in the
"next" generation after the protein sequences are
transposed.

1.1 Notation

A is a finite alphabet, and A* is the set of strings
over A. θ is the null symbol, where θ � A, and is

distinct from µ the empty string. Let A 
~

 = A ≈ {θ}. A 
~

 is

referred to as the Appended Alphabet.  A string X � A*

of the form   X = x1...xN , where each xi � A, and is
said to be of length |X| = N.  Its prefix of length i will be
written as Xi, for 1 � i � N.  Uppercase symbols
represent strings, and lower case symbols, elements of
the alphabet under consideration.

Let Z' be any element in A 
~*, the set of strings

over A 
~

 .  The Compression Operator  C is a mapping

from A 
~* to A* : C(Z') is Z' with all occurrences of the

symbol θ removed from Z'.  Note that C preserves the

order of the non-θ symbols in Z'.  For example, if Z'=

fθοθr, C(Z') = for.
We now define the costs associated with the

individual edit operations. If R+ is the set of



nonnegative real numbers, we define the elementary
edit distances using four elementary functions ds(.,.),
di(.), de(.,.), dt(.,.) defined as :

(i)  ds(p,q) is a map from A X A∅ R+ and is
called the Substitution Map. In particular, ds(a,b) is the

distance associated with substituting b for a, a,b � A.
For all a � A, ds(a,a) is generally assigned the value
zero, although this is not mandatory.

(ii)  di(.) is a map from A ∅ R+ and is called the
Insertion Map. The quantity di(a) is the distance

associated with inserting the symbol a � A.

(iii)  de(.) is a map from A ∅ R+ and is called
the Deletion or Erasure Map. The quantity de(a) is the
distance associated with deleting (or erasing) the
symbol a � A.

(iv)  dt(.,.) is a map from A
2
 X A

2∅ R+ called
the Transposition Map. The quantity dt(ab,cd) is the
distance associated with transposing the string "ab" into
"cd". This can be thought of as a "serial" operation:
"ab" is first transposed to "ba" and subsequently the
individual characters are substituted.

1.2 The Set of Edit Possibilities : ΓΓX,Y

For every pair (X,Y), X, Y � A
*, the finite set

ΓX,Y is defined by means of the compression operator

C, as a subset of A 
~*  X A 

~*  as :

ΓX,Y = {(X',Y') | (X',Y') � A 
~*  X A 

~*  , and

each (X',Y') obeys
(i) C(X') = X, C(Y') = Y,
(ii) |X'| = |Y'|,

(iii) For all 1 ≤ i ≤ |X'|, it is not the case that

xi '
 
= yi '  = θ }

(1)
By definition, if (X',Y') � ΓX,Y then Max ( |X|, |Y| )

≤ |X'| = |Y'| ≤ |X| + |Y|.
  Each element in ΓX,Y corresponds to one way

of editing X into Y, using the SID operations. The edit
operations themselves are specified for all 1 ≤ i ≤ |X'| by

(xi '
 
, yi '), which represents the transformation of xi ' to yi

' .  The cases below consider the SID operations :

(i) If xi ' � A and  yi ' � A, it represents the

substitution of yi '
 
 for xi ' .

(ii) If xi ' � A  and yi ' = θ, it represents the

deletion of xi 
'
 .

(iii) If xi '  =  θ and yi ' � A, it represents the

insertion of  yi ' .

ΓX,Y is an exhaustive enumeration of the set of

all the ways by which X can be edited to Y using the
SID operations. However, on examining the individual
elements of ΓX,Y it becomes clear that each pair

contains more information than that. Indeed, in each
pair, there is also information about the various ways by
which X can be edited to Y even if the set of edit
operations is grown so as to include GTs. Thus, when
(X',Y') = (abθ, cde), apart from the operations described
above, the pair also represents the GT of ‘ab’ to ‘cd’
and the insertion of ‘e’.

Observe that the transformation of a symbol a
� A to itself  is also considered as an operation in the
arbitrary pair (X',Y') � ΓX,Y. Also note that the same

set of edit operations can be represented by multiple
elements in  ΓX,Y . This duplication serves as a

powerful tool in the proofs of various analytic results
[KO81,KO83,KO84,Oo87,Oo93].

Since the Edit Distance between X and Y is the
minimum of the sum of the edit distances associated
with operations required to change X to Y, this
distance, D(X,Y), has the expression :

D(X,Y) = 
min

((X',Y')� ΓX,Y)  

|J'|

Σ
i=1

  [ ξ(X',Y') ], 

where, (X',Y') represents J' possible edit operations and
ξ(X',Y')   = distances associated with the operations in

(X', Y').

2. THE RECURSIVE PROPERTIES OF THE EDIT
DISTANCE

Let D(X,Y) be the distance associated with
transforming X to Y with SID and GT operations. We
shall describe how D(.,.) can be computed. To achieve
this, we shall first derive the properties of D(X,Y)
which can be derived recursively  in terms of the
corresponding quantities defined in terms of the
prefixes of X and Y, (Xi and Xj respectively) with the

assumption that D(µ, µ) is zero.

LEMMA 0a.
Let X = Xi = x1...xi  be the prefix of X and Y = µ,

the null string. Then, D(Xi, µ) obeys :



D(Xi, µ) =  D(Xi-1, µ) + de(x])
→→→

LEMMA 0b.
Let X = µ,    and Yj =  y1...yj be the prefix of Y.

Then, D(µ, Yj) obeys :
D(µ, Yj) =  D(µ, Yj-1) + di(yj)

→→→
LEMMA 0c.

Let X = x1 and Y = y1. Then, D(X, Y) obeys :

D(X, Y) = Min [ D(µ, Y) + de(x1),
D(X, µ) + di(y1),

ds(x1,y1) ]
→→→

 We shall now state the main result of our paper.

THEOREM I.
Let Xi = x1...xi and Yj = y1...yj with i , j � 2.

Also, let D(Xi, Yj) be the edit distance associated with
the transforming Xi to Yj with the edit operations of
substitution, insertion, deletion and generalized
transposition. Then, the following is true :

D(Xi, Yj) = Min [ D(Xi-1, Yj) + de(xi),
D(Xi, Yj-1) + di(yj),
D(Xi-1, Yj-1) + ds(xi, yj),
D(Xi-2, Yj-2) + dt(xi-1xi, yj-1yj)].

The proof, which differs from proofs traditionally
used in the literature can be found in the unabridged
paper [OL94].

→→→

3. THE COMPUTATION OF D(X,Y)

To compute D(X,Y) we make use of the recursive
properties given above. The idea is essentially one of
computing the distance D(Xi, Yj) between the prefixes
of X and Y. The computation of the distances  has to be
done in a schematic manner, so that any quantity
D(Xi,Yj) is computed before its value is required in any
further computation. This can be actually done in a
straightforward manner by tracing the underlying
graph, commonly referred to as a trellis and
maintaining an array Z(i,j) defined for all 0 � i � N
and  0 � j � M when |X| = N and |Y| = M. The quantity
Z(i,j) is nothing but  D(Xi, Yj). We will discuss the
properties of the our particular trellis subsequently.

The algorithm to compute Z(.,.) is given below.

ALGORITHM Distance_SID_GT
Input: The strings X = x1...xN and Y = y1...yM, and the

set of elementary edit distances defined using the
five elementary functions ds(.,.), di(.), de(.),
dt(.,.).

Output: The distance D(X, Y)  associated with transforming
X to Y using the four edit operations of
substitution, insertion, deletion and transposition

Method :
Z(0, 0) ♦ 0
For i ♦ 1 to N Do

Z(i, 0) ♦ Z(i-1, 0) + de(xi)
For j ♦ 1 to M Do

Z(0, j) ♦ Z(0, j-1) + di(yj)

For i ♦ 1 to N Do

Z(i, 1) ♦ Min [ Z(i-1, 1) + de(xi), Z(i,0) + di(y1),
Z(i-1, 0) + ds(xi,y1)]

For j ♦ 2 to M Do
Z(1, j) ♦ Min [ Z(1, j-1) + di(yj), Z(0, j) + de(x1),

Z(0, j-1) + ds(x1,yj)]

For i ♦ 2 to N do

   For j ♦ 2 to M do
     Z(i,j) ♦ Min [ Z(i-1, j) + de(xi),

Z(i, j-1) + di(yj),
Z(i-1, j-1) + ds(xi,yj),
Z(i-2, j-2) + dt(xi-1xi , yj-1yj)]

D(X,Y) ♦ Z(N, M)

END ALGORITHM Distance_SID_GT

Remarks
1. The computational complexity of string

comparison algorithms is conveniently given by the
number of symbol comparisons required by the
algorithm [AHU76,WC76].  In this case, the number of
symbol comparisons is quadratic. In the interior of the
main loop, we will need at most four additions and the
computation of the minimum of a fixed (at most four)
quantities.

2. The lower bound result claimed in [Hu88]
naturally implies that our algorithm is optimal for the
infinite alphabet case. This is because, first of all, we
have not placed any restrictions on the edit costs. Also,
the lower bound of [Hu88] applies to the more restricted
problem of finding a minimum cost alignment. Finally,
when GTs have infinite costs, our underlying problem
contains the traditional string alignment problem as a
special case.

3. The difference between our algorithm and
the scheme presented by Lowrance and Wagner for
traditional transpositions [LW75] is also given in the
unabridged paper [OL94].

4. As mentioned earlier, the underlying
graph that has to be traversed is called a trellis. This
trellis is two dimensional in this case. Even though the
set of edit operations has been expanded the



fundamental properties of the underlying graph
traversed remains the same. Here, the graph G is :

G = (V, E), where, V and E are :

V = {<i, j> | 0 � i � N,  0 � i � M }, and,
E = {(<i, j>, <i+1,j>) | 0�i�N-1, 0�j�M }

≈ {(<i, j>, <i, j+1>) | 0�i�N , 0�j�M-1 }

≈ {(<i, j>, <i+1, j+1>) | 0�i�N-1, 0�j�M-1 }

≈ {(<i, j>,<i+2, j+2>) | 0�i�N-2, 0�j�M-2 }. 
The graph essentially has arcs whenever a single

edit operation can be applied. Indeed, the algorithm
describes an efficient quadratic time scheme by which
the trellis can be traversed. The pictorial representation
of the graph and an example of the traversal is given in
[OL94].

5. Just as in all the edit processes studied in
the literature, the trellis can also be used to compute the
best edit sequence to yields the optimal edit distance.
This is done by backtracking through the trellis from
the array element (N,M) in the reverse direction so as to
reach the origin. The details of this are found in the
unabridged paper [OL94].

 4. EXPERIMENTAL RESULTS

To investigate the power of our new measure
(and its computation) and to demonstrate the accuracy
of our new scheme in the original PR problem various
experiments were conducted. The results obtained were
remarkable. The algorithm was compared with PR
results which could have been obtained if

(i) only SID errors were assumed as in the case
of the Wagner & Fischer [WF74] algorithm

and,
(ii) SID and traditional transposition errors were

assumed as in the case of the Lowrance and
Wagner [LW75] algorithm.

The dictionary consisted of 342 words obtained
as a subset of the 1023 most common English words
[KO81,KO83,KO93] augmented with words used in
computer literature. The length of all the words in the
dictionary was greater than or equal to 7 and the
average length of a word was approximately 8.3
characters. From these words two sets of 1026 noisy
words were generated using the method described in
[KO93] (with the inclusion of GT errors). We shall
refer to these sets as SA and SB respectively. The
average percentage number of errors per word
associated with these two sets was 51.56% and 67.89%
respectively. A subset of some of the words in SA is
given Table III.

The three algorithms, Wagner & Fischer (WF),
Lowrance & Wagner (LW) and our algorithm
(SID_GT), were tested with the sets of 1026 noisy
words, SA and SB.  The individual inter-symbol edit
distances were computed using negative logarithms of
the symbol confusion accuracies as explained in
[SK83,KO87]. The details of the confusion matrices
and the distance assignments used are given in the
unabridged paper [OL94]. The results obtained in terms
of accuracy and approximate computation times for the
two sets are tabulated below. Note that our scheme far
outperforms the traditional string correction algorithm
(97.9 % instead of 77.2 %). It also outperforms the
Lowrance and Wagner algorithm (97.9 % instead of
94.5 %). The reader should observe that in this case (as
in all PR applications) it is much harder to increase the
recognition accuracies at the higher end of the
spectrum. Indeed, we believe that our algorithm is the
best reported scheme to date when the errors
encountered include SID and GTs.

Algorithm Accuracy Approximate
computation time

Wagner & Fischer 79.92% 3 minutes 57 seconds
Lowrance & Wagner 94.83% 4 minutes 00 seconds
SID_GT 97.08% 4 minutes 30 seconds

Table I : The results obtained from the set SA.

Algorithm Accuracy Approximate
computation time

Wagner & Fischer 77.19% 3 minutes 57 seconds
Lowrance & Wagner 94.54% 4 minutes 00 seconds
SID_GT 97.86% 4 minutes 30 seconds

Table II : The results obtained from the set SB.

Our algorithm is marginally slower than
Lowrance & Wagner's due to the following reasons.
First of all, our edit distances (based on the inter-
symbol confusion probabilities) are represented by a
matrix for substitution weights, and by two linear arrays
for insertions and deletions. As opposed to this, these
are represented by a fixed number of the constant values
for the Lowrance & Wagner's algorithm [LW75]. This
inevitably increases the computational look-up time
required by our algorithm. Another reason is that our
algorithm, while looking for GTs searches for all
possible transpositions of adjacent characters. As
opposed to this, the transposition of adjacent characters
in [LW75] is considered only for the case where the
transposed characters remain unchanged.

5. CONCLUSIONS



In this paper we have studied the problem of
recognizing a string Y which is the noisy version of

some unknown string X* chosen from a finite
dictionary, H. We assume that the Y contains
substitution, insertion and deletion (SID) errors and
also transposition errors . Although some work has been
done to extend the traditional set of edit operations to
include the straightforward transposition of adjacent
characters [LW75], the problem is unsolved when the
transposed characters are themselves subsequently
substituted, as is typical in cursive and typewritten
script, in molecular biology and in noisy chain-coded
boundaries.  In this paper we present the first reported
solution to the analytic problem of editing one string X
to another, Y, using these four edit operations. A
scheme for obtaining the optimal edit operations has
also been given. Both these solutions are optimal for the
infinite alphabet case.  Using these algorithms we
present a syntactic pattern recognition scheme which
corrects noisy text containing all these types of errors.
The paper includes experimental results involving
subdictionaries of the most common English words
which demonstrate the superiority of our system over
existing methods.

REFERENCES

[AHU76] A. V. Aho, D. S. Hirschberg, and J. D. Ullman,
Bounds on the complexity of the longest common
subsequence problem, J. Assoc. Comput. Mach.,
23:1-12 (1976).

[HD80] P. A. V. Hall and G. R. Dowling, Approximate
string matching, Comput. Surveys, 12:381-402
(1980).

[Hi77] D. S. Hirschberg, Algorithms for longest common
subsequence problem, J. Assoc. Comput. Mach.,
24:664-675 (1977).

[Hu88] X. Huang, A lower bound for the edit distance
problem under an arbitrary cost function, Inf.
Proc. Letters, 27: 319-321 (1988).

[HS77] J. W. Hunt and T. G. Szymanski, A fast algorithm
for computing longest common subsequences,
Comm.  Assoc. Comput. Mach.,   20:350-353
(1977).

[KO81] R. L. Kashyap and B. J. Oommen, An effective
algorithm for string correction using generalized
edit distances -I. Description of the algorithm and
its optimality, Inform. Sci., 23(2):123-142 (1981).

[KO83] R. L. Kashyap and B. J. Oommen, The noisy
substring matching problem, IEEE Trans.
Software Engg., SE-9:365-370 (1983).

[KO84] R. L. Kashyap,  and B. J. Oommen, String
correction using probabilistic methods, Pat. Recog.
Letters,  147-154 (1984).

[MV93] A. Marzal and E. Vidal, Computation of
normalized edit distance and applications, IEEE

Trans. on Pat. Anal. and Mach. Intel., PAMI-
15:926-932 (1993).

[KO93] B. J. Oommen and R. L. Kashyap, Symbolic
Channel Modelling for Noisy Channels which
Permit Arbitrary Noise Distributions, Proc. of the
1993 Int. Symp. on Comp. and Inform. Sci.,
Istanbul, Turkey, November 1993, pp. 492-499.

[Le66] A. Levenshtein, Binary codes capable of correcting
deletions, insertions and reversals, Soviet Phys.
Dokl., 10:707-710 (1966).

[LW75] R. Lowrance and R. A. Wagner, An extension of
the string to string correction problem, J. Assoc.
Comput. Mach., 22:177-183 (1975).

[MP80] W. J. Masek and M. S. Paterson, A faster
algorithm computing string edit distances, J.
Comput. System Sci., 20:18-31 (1980).

[Oo87] B. J. Oommen, Recognition of noisy subsequences
using constrained edit distances, IEEE Trans. on
Pat. Anal. and Mach. Intel., PAMI-9:676-685
(1987).

[Oo93] B. J. Oommen, "String alignment with
substitution, insertion, deletion, squashing and
expansion operations". To appear in Inf. Sci..

[OL94] B. J. Oommen and R. K. S. Loke, Pattern
recognition of strings with substitutions,
insertions, deletions and generalized
transpositions. Unabridged Paper. Will be soon
available as a Carleton University technical report.

[OTK76]  T. Okuda, E. Tanaka, and T. Kasai, A method of
correction of garbled words based on the
Levenshtein metric, IEEE Trans. Comput., C-
25:172-177 (1976).

[Pe80] J. L. Peterson, Computer programs for detecting
and correcting spelling errors, Comm.  Assoc.
Comput. Mach., 23:676-687 (1980).

[SK83] D. Sankoff and J. B. Kruskal, Time Warps,String
Edits and Macromolecules: The Theory and
practice of Sequence Comparison, Addison-Wesley
(1983).

[Uk85] E. Ukkonen, Algorithms for approximate string
matching, Inf. and Cont., 64: 100-118 (1985).

[WF74] R. A. Wagner and M. J. Fisher, The string to
string correction problem, J. Assoc. Comput.
Mach., 21:168-173 (1974).

[WC76] C. K. Wong and A. K. Chandra, Bounds for the
string editing problem, J. Assoc. Comput. Mach.,
23:13-16 (1976).

Acknowledgments : The authors are very grateful
to Ms. Latika Khanna of the School of Computer
Science at Carleton for her assistance in proofreading
the manuscript.



             

Original
  Words

Noisy words Algorithm
    WF

Algorithm
    LW

Algorithm
 SID_GT

according ocrding holding according according
account awocnt wouldnt account account
addition vkdtion addition addition addition
address awrdss address address address
advance awqvce advance advance advance
advantage qvntahe advantage another advantage
altogether akvotbterdhoanuxker average another altogether
anything vtyhinh nothing nothing anything
attention ntntion station station station
building vlidinh holding holding building
certainly trainly training certainly certainly
changed cwnaed engaged changed changed
character raactqr greater character character
company cmapny company company company
computers cpmsuptejsr chapter computers computers
condition cpnsihtijno condition position condition
conditions cpnjkdtinohs conditions conditions conditions
correcting cprjnrctnihg correcting correcting correcting
defense dfnesw defines defines defense
defines dfniez defines defines defines
express epersz experts experts express
friends finedz defines friends friends

Table III : A subset of the original words, their noisy versions and the words identified by the three algorithms.


