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1 Highlights of the Invention

1.1 Patent Information

The details of the patent-protected invention, referred to as DODE∗, are as follows:

• Title of Patent: A Method For Encryption with Statistical Perfect Secrecy

• Inventors: B. John Oommen and Luis G. Rueda1.

• Owner of the Patent: Oommen Computer Consultants Inc., 5942 Third Line Road,

North Gower, ON: K0A2T0, Canada.

• Associated Patents:

1. U.S. Patent No. 7,508,935 issued on March 24, 2009.

2. Canadian Patent No. 2,460,863 issued on April 26, 2011.

• Significance of the Patent: This patent solves a compression-based problem that

was reported to be unsolved in the standard textbooks. Using this solution, we were

able to invent an encryption which provides Statistical Perfect Secrecy. We believe that

our solution is, to date, the only reported one for this problem.

∗The technology has been patent protected as explained in the text. The commercial history of the patent
can be discussed separately with interested parties.

†The author can be contacted at: Chancellor’s Professor and Fellow: IEEE; Fellow: IAPR, School of
Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada. E-mail:
oommen@scs.carleton.ca.

1This inventor can be contacted at: Professor, School of Computer Science, University of Windsor, 401
Sunset Avenue, Windsor, ON, N9B 3P4, Canada. E-mail: lrueda@uwindsor.ca.
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1.2 Overview

The hallmark of a “perfect” cryptosystem is the fundamental property called “Perfect Se-

crecy” [8]. Informally, this property means that for every input data stream, X , the prob-

ability of yielding any given output data stream, Y , is the same, and independent of the

input. Consequently, there is no statistical information in the output data stream or Cipher-

text, about the identity and distribution of the input data or Plaintext. A system possessing

Perfect Secrecy yields an output sequence that is distributed like random noise. This means

that an eavesdropper who examines the Ciphertext output Y , cannot deduce the input X

from analyzing the statistical information in Y .

The problem of attaining Perfect Secrecy was originally formalized by Shannon in 1949 [6].

Shannon [4, 6, 7, 8] showed that if a cryptosystem possesses Perfect Secrecy, then the length

of the secret key must be at least as large as the Plaintext. This makes the development

of a realistic perfect secrecy cryptosystem impractical, such as demonstrated by the Vernam

One-time Pad. Developing a pragmatic encoding system that satisfies this property is an

open problem that has been unsolved for many decades.

The invention described here, referred to as DODE∗, guarantees Statistical Perfect Secrecy

- a property closely related to the phenomenon of Perfect Secrecy. A system (including a

cryptosystem, a compression system, and in general, an encoding system) is said to possess

Statistical Perfect Secrecy if all its contiguous output sequences of length k are equally likely,

for all values of k, independent of the input data stream, X . Thus, a scheme that removes all

statistical properties of the input stream also has the property of Statistical Perfect Secrecy. A

system possessing Statistical Perfect Secrecy maximizes the entropy of the output computed

on a symbol-wise basis.

It is easy to see that the phenomenon of Statistical Perfect Secrecy is related to the concept

of Perfect Secrecy. It differs marginally from the former in that it is defined in terms of all

possible subsequences of Y of length k (for all k), and not in terms of the entire output

sequence Y . Additionally, since the property of Statistical Perfect Secrecy can characterize

any system and not just a cryptosystem, there is no requirement of relating the size of the

key to the size of the input, as required by Shannon’s theorem.
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2 The Kernel and Properties of the Invention, DODE∗

2.1 The Kernel of the Solution

To obtain a Statistical Perfect Secrecy encryption, we proceed from the first principles of

coding theory, Shannon’s entropy theory and the theory of stochastic learning, instead of

using bit-wise operations (like XORs and the principles of feedback shift registers), elliptic

functions, factoring of large numbers, or other NP-hard problems. The goal of the whole

exercise is to develop a system generating “white-noise-like” output, where this output or

Ciphertext is statistically independent of the input or Plaintext.

In the case of DODE∗, this is accomplished by solving a problem which we refer to as the

Distribution Optimizing Data Compression (DODC) problem. This has been reported to be

open even in modern-day textbooks [1], and is described briefly in Section 3.

Our solution to the DODC forms the kernel for DODE∗.

2.2 The Properties of DODE∗

DODE∗ has the following properties:

1. DODE∗ is based on the solution of a previously-reported unsolved problem.

2. It is a stream cipher using an underlying philosophy that has not been previously used in

encryption. Indeed, the foundational mathematical tools used in solving the above open

problems are those used in the design and analysis of stochastic Learning Automata

(LA).

3. DODE∗ represents the pioneering use of LA in encryption.

4. The scheme encrypts guaranteeing Statistically Perfect Secrecy. Thus, the output re-

sembles random noise even for relatively small keys. The Statistical Perfect Secrecy

phenomenon is not merely experimentally verified, but also rigorously proven.

5. The cryptosystem passes all the latest FIPS 140-2 tests on the standard benchmark

corpuses as explained in Section 2.3.

6. The system also demonstrates bit-wise, key-to-output, and input-output independence

on the standard benchmark corpuses.
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7. The output Y maximizes the entropy, H(Y), independent of any input data and any

key.

8. The secret key used by DODE∗ need not be 128 or 256 bits long. Rather, it can be

arbitrarily large. Further, the speed of the encryption decreases linearly with the key

length, rendering it superior to many modern-day encryption schemes.

9. The scheme guarantees stealth and is thus ideal for steganography.

10. Since the scheme effectively removes all statistical information from the input stream,

it does not lend itself to statistics-based cryptanalysis, and can thus be broken only by

an exhaustive search of the entire key space.

11. Most reported stream ciphers claim to experimentally yield random noise characteris-

tics. However, the strength of DODE∗ is the novel underlying philosophy and paradigm

which are distinct from the ones traditionally used, and the rigorous formal proofs that

it does yield Statistical Perfect Secrecy.

12. The formal details of these proofs can be found in the patent papers for the invention.

The patent offices determined that the closest result to our invention was a publica-

tion/invention in 1995, but even that solution does not solve the unsolved problem that

we have solved. We emphasize that all the claims that we asked for were evaluated to

be novel, inventive, and to possess industrial applicability.

2.3 Passing the FIPS Industry Stantards

The FIPS Industry Standards are the tests for evaluating the randomness of data, and is the

accepted industry standard. To quote from Wikipedia:

“ the National Institute of Standards and Technology (NIST) issued the FIPS 140 Pub-

lication Series to coordinate the requirements and standards for cryptography modules

that include both hardware and software components. Protection of a cryptographic

module within a security system is necessary to maintain the confidentiality and in-

tegrity of the information protected by the module. This standard specifies the security

requirements that will be satisfied by a cryptographic module. The standard provides

four increasing, qualitative levels of security intended to cover a wide range of potential

applications and environments.”
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In particular:

1. DODE∗ passes the Frequency Test (monobit test). In this case it passes passes the

chi-square monobit test with a confidence level higher than 99%.

2. DODE∗ passes the Serial Tests (two-bit tests). In this case, it passes the chi-square

test with a confidence level higher than 99% for bits which are k-symbols-apart, where

k = 1, . . . , 5.

3. DODE∗ passes all the latest industry-accepted FIPS 140 tests of randomness including

the Poker Test, the Runs Tests, the Long Runs Test and the Autocorrelation

Test [4] (pp. 181-183).

4. The message obtained by “decrypting” using a key that differs from the true key by

even a single bit, also has random noise characteristics. This is demonstrated by a suite

of key-output tests.

5. Analogous conclusions can be gleaned by examining the results of a suite of input-

output independence tests.

These results are found at: http://www.scs.carleton.ca/~oommen/papers/FIPS-140-2.pdf.

3 Open Problems

To show how the kernel is developed, we discuss in greater detail the open problem alluded

to above.

When data has to be transmitted from one place to another or optimally stored, it is

typically compressed and encrypted. The aim is to ensure that a much smaller compressed

and secure file can be transmitted or stored, with no loss, to the receiver, who would then

decode the encoded file to procure the original file. Viewed from this perspective, there are

two fundamental problems involving

(i) Controlling the output probabilities, and,

(ii) Achieving Statistical Perfect Secrecy.

These two concepts are separately discussed in the next two sub-sections. We have solved

the former problem and utilized its solution in DODE∗ to develop a cryptosystem possessing

Statistical Perfect Secrecy and stealth.
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3.1 Optimizing the Output Probabilities

Consider a system in which X = x[1] . . . x[M ] is the Plaintext data stream, where each x[k]

is drawn from a Plaintext alphabet, S = {s1 . . . sm}, and Y = y[1] . . . y[R] is the Ciphertext

data stream, where each y[k] ∈ A of cardinality r.

There are numerous schemes which have been devised for data compression/encoding. A

survey of the field is found in [1, 5, 9].

The problem of obtaining arbitrary encodings of the output symbols has been studied

by researchers for at least five decades. Many encoding algorithms (such as those of Huff-

man, Fano, Shannon, the arithmetic coding and others) have been developed using different

statistical and structure models (e.g. dictionary structures, higher-order statistical models

and others). They are all intended to compress data, but their major drawback is that they

cannot control the probabilities of the output symbols.

This drawback can be explained as follows. Once the data encoding method has been

specified, the user loses control of the contents of the encoded file. In other words, in all the

compression/encoding techniques known till today, the statistical properties of the output

compressed/encoded file cannot be controlled by the user - they take on their values as a

consequence of the statistical properties of the original file and the data encoding method in

question.

A problem that has been open for many decades [1] is that of devising an encoding

scheme, which when applied on a data file, compresses the file and simultaneously makes the

file appear to be random noise. Thus, if the alphabet is binary (as is typically the case) the

input probability of ‘0’ and ‘1’ could be arbitrary. The problem of the user specifying the

output probability of ‘0’ and ‘1’ in the encoded file has been open. Indeed, if the user specifies

the stringent constraint that the output probabilities of ‘0’ and ‘1’ be arbitrarily close to 0.5,

the consequences are very far-reaching, resulting in the erasure of statistical information.

We assume that we are given a code alphabet A = {a1, . . . , ar}, and that the user spec-

ifies the desired output probabilities or frequencies of each aj ∈ A in the encoded file by

F∗ = {f ∗

1 , . . . , f
∗

r }. Such a rendering will be called an “entropy optimal” rendering. On the

other hand, the user also simultaneously requires optimal, or even sub-optimal lossless data

compression. Thus, after compressing a file, we are required to recover exactly the same file

after the specified decompression process has been invoked. This problem, which we refer

to as the “Distribution Optimizing Data Compression” (DODC) problem2, is known to be

2In the more general context of not just compressing the Plaintext, but encoding it, the problem will be
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unsolved. Its formal statement is given in Appendix A.

It is interesting to note that the problem is intrinsically difficult because the data compres-

sion requirements and the output probability requirements can be contradictory. Informally

speaking, if the occurrence of ‘0’ is significantly lower than the occurrence of ‘1’ in the orig-

inal file, designing an encoding method which compresses the file and which simultaneously

increases the proportion of ‘0’s to ‘1’s is far from trivial.

The importance of the problem is reflected in the following paragraph as originally stated

in [1] (pp. 76-77):

“ It would be nice to have a slick algorithm to solve Problem 1, especially in the case

r = 2, when the output will not vary with different definitions of d(F ,F∗). Also, the

case r = 2 is distinguished by the fact that binary channels are in widespread use in

the real world.

We have no such algorithm! Perhaps someone reading this will supply one some day...”

3.2 Statistical Perfect Secrecy

As mentioned in Section 1.2, the problem of erasing the statistical distribution from the input

data stream in the encoded output data stream, has fundamental significance in cryptographic

applications. It is well known that any good cryptosystem should generate an output that

has random characteristics [4, 6, 7, 8].

A fundamental goal in cryptography is to attain Perfect Secrecy [8]. Indeed, as mentioned

earlier, it is well known that it is quite impractical to develop a cryptosystem possessing

Perfect Secrecy because such a system must have a secret key whose length is at least as

large as the size of the Plaintext.

The phenomenon of Statistical Perfect Secrecy eliminates the constraint between the

key length and the length of the Plaintext. This is achieved by defining the corresponding

probabilities in terms of the subsequences of arbitrary lengths, as opposed to the entire output

Ciphertext. Thus, a system (including a cryptosystem, a compression system, and in general,

an encoding system) is said to possess Statistical Perfect Secrecy if all its contiguous output

sequences of length k are equally likely, for all values of k, independent of X .

More formally, a system is said to possess Statistical Perfect Secrecy if for every input X

there exists some integer j0 ≥ 0 and an arbitrarily small positive real number δ0 such that

for all j > j0,Pr[yj+1...yj+k|X ] = 1

rk
± δ0 for all k, 0 < k < R − j0.

referred to as the Distribution Optimizing Data Encoding (or “DODE”) problem.
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If the encoding system can guarantee this property, we can assert that for all practical

purposes and for all finite-lengthed subsequences, statistically speaking, the system behaves

as if it, indeed, possessed the stronger property of Perfect Secrecy.

3.3 Solving these Open Problems

Our current solution to both these open problem uses stochastic learning methodologies to

achieve this encoding. The solution is both optimal and lossless. Additionally, the scheme is

adaptive, and so the input probabilities need not be estimated. Finally, the output probabil-

ities are controllable so that the output quickly converges to the specified distribution of ‘0’s

and ‘1’s. All of these properties have been theoretically proven and experimentally verified

to demonstrate adherence to the highest industry standards.

This algorithm achieves amazing results for any file type, and with any probability dis-

tribution.

4 Solution Proposed for these Open Problems

4.1 Highlights of the Solution

We have solved the open DODC problem stated as Problem 1 in the Appendix for the case

when the input alphabet is any r-ary alphabet and the output alphabet is binary. This

solution can easily be extended to the multi-symbol output alphabet case.

4.2 Solution for General Encoding Systems

Apart from solving the reported open DODC problem (as stated as Problem 1 in the Ap-

pendix), we have also solved the more general problem when the output probabilities are

requested by the user, but where s/he does not require the output to be compressed. Indeed,

in the most general setting, the user may require that while the output is entropy optimal,

the output size is simultaneously maintained the same, or even increased. This represents

the general Distribution Optimizing Data Encoding (DODE) problem.

By extending our solution to the basic DODC problem, we have also solved the DODE

problem. The latter solution involves a new data structure referred to as the Oommen-Rueda

Structure. Adaptively blending the exponential number of Oommen-Rueda Structures leads

to specific structure-based restructuring rules, which, in turn, lead to formal techniques for
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entropy-optimal encoding and decoding processes. Indeed, using these rules, we have been

able to solve the DODE problem for the most general case when the input alphabet is of

cardinality m, and the output alphabet is of cardinality r.

4.3 Uniqueness of the Solution

We have used the DODC solution (or in the most general setting, the DODE solution) as

the kernel to our encryption. To get an overall perspective of the uniqueness and novelty of

our contribution, we refer to the following statements from [4] (pp. 191-192):

(i) There are relatively few fully specified stream ciphers in the literature. This is

because most stream ciphers used, in practice, tend to be proprietary and confi-

dential.

(ii) Feedback Shift Registers (FSR), and, in particular, Linear Feedback Shift Registers

(LFSR) are the basic building blocks in most stream ciphers.

(iii) LFSRs can be combined using either nonlinear combining functions, nonlinear fil-

tering functions, or using the output of one or more LFSRs to control the clock of

one or more LFSRs.

(iv) Clock-controlled stream ciphers are also reported in the literature, examples of

which are the alternate step generator and the shrinking generator.

In contrast to these, our invention, DODE∗:

(i) Does not utilize XORs or FSRs in any form as a basic building block.

(ii) Is not clock-controlled in any manner.

(iii) Is based on the solution to the open DODC problem mentioned above, which till

today has not been used in encryption. This philosophy lends itself as the new

paradigm based on which we have designed our novel stream ciphers.

(iv) Although DODE∗ and its cryptographic enhancements are not FSR-based, we be-

lieve that they can be easily implemented in hardware.
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(v) Most reported stream ciphers claim to experimentally yield random noise char-

acteristics. However, the strength of DODE∗ is the novel underlying philosophy

and paradigm which are distinct from the ones traditionally used, and the rigorous

formal proofs that the schemes do yield Statistical Perfect Secrecy.

(vi) The formal details of these proofs can be found in the patent papers for the inven-

tion. As mentioned in Section 2.2, all the claims we asked for were evaluated to be

novel, inventive, and to possess industrial applicability.

This affirms the uniqueness and the novelty of our invention!

5 Cryptanalysis of the Invention

To visit the issue of cryptanalyzing DODE∗, we briefly cite the following points from [3]:

(a) The most typical use of a stream cipher for encryption is to generate a keystream in a

way that depends on the secret key, and then to combine this (typically using bit-wise

XORs) with the message being encrypted.

(b) It is imperative that the keystream “looks” random, and that this is verified by passing

a battery of statistical tests.

(c) A good stream cipher utilizes a keystream which has a very large period. Thus, if the

period of the keystream is too short, the adversary can apply discovered parts of the

keystream to help in the decryption of other parts of the Ciphertext.

(d) A more involved set of structural weaknesses might offer the opportunity of finding

alternative ways to generate part, or even the whole of the keystream. This gives rise

to the measure of security known as the linear complexity of a sequence, where the linear

complexity is the size of the LFSR that needs to be used to replicate the sequence. The

authors of [3] state that a necessary condition for the security of a stream cipher is that

the sequences it produces have a high linear complexity.

(e) Other attacks attempt to recover part of the secret key that was used. Apart from the

most obvious attack of searching for the key by brute force, a powerful class of attacks

can be described by the term divide and conquer.
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Bearing these in mind, it should be mentioned that DODE∗ is not vulnerable to the

typical cryptanalytic methods used for stream ciphers for the following reasons:

(a) As opposed to the currently available stream ciphers, DODE∗ obtains the Ciphertext

by utilizing the key in effecting the structure-based restructuring rules, and thereafter

operating on the Plaintext to generate the Ciphertext.

(b) It should be emphasized that this is achieved in a single process which cannot be

decomposed. DODE∗ is, indeed, a stream cipher because it processes the Plaintext in

a symbol-wise manner.

(c) With regard to the rigorous statistical tests that measure the correlation of bits in the

Ciphertext, we see from Section 2.3 that the output of DODE∗ effectively passes all the

most-recent FIPS 140 tests.

(d) Divide-and-conquer methods of cryptanalysis will not be effective for DODE∗ since its

output passes rigid input-output and key-output statistical independence tests.

(e) With regard to the period of DODE∗, we observe that although we have not yet deter-

mined the period of Ciphertexts generated by DODE∗, it can be easily shown that this

period is strictly greater than that of any of the cryptographically-secure pseudo-random

number generators reported.

(f) The linear complexity of the Ciphertext generated by DODE∗ has not been computed.

Furthermore, since DODE∗ does not use FSRs in any form, but utilizes techniques

that have not been previously used in designing stream ciphers, we believe that this

complexity is not easily computable, either. However, since the period of the output of

DODE∗ is very large, and since the output passes the rigid input-output and key-output

statistical independence tests, we contend that the linear complexity of the Ciphertext

generated by DODE∗ is also correspondingly high.

Thus, DODE∗ is not vulnerable to the traditional techniques for attacking stream ciphers.

On the other hand, since other well-known cryptanalytic techniques, such as linear crypt-

analysis and differential cryptanalysis are not typically useful in breaking stream ciphers

(but rather, block ciphers), we argue that they will not assist in cryptanalyzing DODE∗

either. Indeed, the axioms that warrant these methods imperatively utilize the statistical

information resident in the Ciphertext.
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DODE∗ cannot be broken using linear cryptanalysis, because this technique is based on

the non-uniformity of the output distribution. This non-uniformity is the characteristic that

is erased using the DODC kernel and its enhancement, DODE∗.

Similarly, differential cryptanalysis is also based on the non-uniformity of the distribution

of the data streams resulting from performing XOR (or similar) operations. Since (a) the out-

put of DODE∗ possesses the Statistical Perfect Secrecy property, (b) the output of DODE∗

demonstrates independence for higher-order Markovian models, (c) the blending achieved

by the stochastic learning is adaptive, and (d) the output empirically demonstrates an in-

dependence of the input, the resulting output obtained from performing XOR (or similar)

operations between output sequences will also demonstrate random noise characteristics.

Thus, DODE∗ will not be vulnerable to differential cryptanalysis.

6 Applications of DODE∗-based Solutions

Humanity has been sending secret messages for centuries. Our generation is not unique in

this. One way to develop “harder-to-break” encryptions is to use increasingly larger keys.

However, the real art and science of advancing the field is to know how to design encryptions

with novel technologies that have not been previously used. This is the case with DODE∗,

and thus:

1. It invokes a completely new theory and so the cryptanalysis techniques will have to be

new.

2. Not only is the cryptanalysis unknown, but more importantly, even the methods to be

used to achieve the cryptanalysis are unknown. Since, it is a relatively new patent, as

far as we know, people have not started attempting to break it.

In this light, we now list the primary applications of DODE∗:

1. Secure Data Storage: Consider problem of storing data on the “Cloud”. In such

cases, one is not aware of where (i.e., the servers) the data resides. One is often not

even aware of who controls the data. Finally, the user is not even aware of how the

firewalls of the servers are maintained. If now the firewalls of the servers in the “Cloud”

are compromised, the Intruder would never be able to access the data itself if it were

encoded using DODE∗. Indeed, the Intruder would only see a file populated with

random noise.
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• We have built two (JAVA and C) applications that achieve this encoding on a

typical modern day desktop equipped with a 3.6 GHz processor.

• The applications can encode 1GigByte of data in about 100 seconds.

• The potential of using this desktop application for secure storage in the “Cloud”

is virtually unbounded.

2. Secure Messaging: Messaging using mobile Apps are becoming increasingly popular

(for example, using WhatsApp, Telegram etc.). DODE∗ can be used to allow secure

mobile messaging and communication. Again, in the absence of the secret key, an

Eavesdropper would never only see random noise.

• We have built a prototype mobile App for Android devices, which has all the

standard messaging functionalities of a typical mobile App.

• The prototype is able to send messages, include emoticons, and also attach pictures

etc..

3. The other major applications are those that arise from DODE∗’s cryptographic capa-

bilities, and include:

• Traffic on the internet.

• E-commerce/e-banking.

• E-mail/ftp.

• Video conferencing.

• Audio/Video streaming.

• secure communications, including Secure IP, Secure VOIP, Secure Satellite, secure

mobile and wireless communications.

• Watermarking, in which the watermark is generated by invoking a DODE∗-based

encryption.

• Steganography, which is the ancient art of hiding information – an art that dates

back from around 440 B.C [2]. One of the most common steganographic tech-

niques consists of hiding information in images. To experimentally demonstrate

the power of DODE∗, it has been incorporated into a steganographic applica-

tion by modifying 256-gray scale images with DODE∗’s random-noise output. By
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virtue of the DODE∗’s Statistical Perfect Secrecy property, its use in steganog-

raphy is unique. An example of this is shown in Figure 1. We first display the

original Lena image. We then display the image resulting from embedding the

output obtained from encrypting the file fields.c of the Canterbury corpus. Apart

from the two images being visually similar, their respective histograms pass the

similarity test with a very high level of confidence.

Figure 1: The original carrier image and the resulting image after applying steganographic
techniques to the output with an encoding of the file fields.c from the Canterbury corpus.
The steganographic method used is the fairly straightforward Least Significant Bit approach.

7 Conclusions

In this report we have presented a novel method of encryption whose kernel is based on a

solution to a problem which has been reported open, namely the Distribution Optimizing

Data Compression (DODC) problem. The invention, referred to as DODE∗, guarantees

Statistical Perfect Secrecy - a property which is closely related to the phenomenon of Perfect

Secrecy. The Statistical Perfect Secrecy phenomenon is not merely experimentally verified

for the most recent FIPS 140 tests on the standard benchmark corpuses. It has also been

formally and rigorously proven. The resulting cryptosystem also demonstrates bit-wise, key-

to-output, and input-output independence on the standard benchmark corpuses.

The speed of the encryption decreases linearly with the key length, rendering it superior

to many modern-day encryption schemes. One of the embodiments of the invention achieves

on-line data compression, and thus permits communication with an increased bandwidth.
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Finally, since the scheme effectively removes all statistical information from the input stream,

it does not lend itself to statistics-based cryptanalysis, and can thus be broken only by an

exhaustive search of the entire key space.

The report also includes a list of the possible applications of DODE∗.

References

[1] D. Hankerson, G. Harris, and P. Johnson Jr. Introduction to Information Theory and

Data Compression. CRC Press, 1998.

[2] S. Katzenbeisser and F. Peticolas. Information Hiding Techniques for Steganography and

Digital Watermarking. Artech House, 2000.

[3] RSA Laboratories. RSA Laboratories’ Frequently Asked Questions About Today’s Cryp-

tography, Version 4.1. RSA Security Inc., 2000.

[4] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC

Press, 1996.

[5] K. Sayood. Introduction to Data Compression. Morgan Kaufmann, 2nd. edition, 2000.

[6] C. E. Shannon and W. Weaver. The Mathematical Theory of Communications. University

of Illinois Press, 1949.

[7] W. Stallings. Cryptography & Network Security: Principles & Practice. Prentice Hall,

1998.

[8] D. R. Stinson. Cyptography : Theory and Practice. CRC Press, 1995.

[9] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann, 2nd. edition, 1999.

15



Appendix A: Formal Statement of the Problems

As stated in [1], the Distribution Optimizing Data Compression (DODC) problem can be

more formally written as follows:

Problem 1. Consider the source alphabet, S = {s1, . . . , sm}, with probabilities of occur-

rence, P = [p1, . . . , pm], an input sequence, X = x[1] . . . x[M ], the code alphabet, A =

{a1, . . . , ar}, and the optimal frequencies, F∗ = {f ∗

1 , . . . , f
∗

r }, of each aj , j = 1, . . . , r, re-

quired in the output sequence. The output is to be a sequence, Y = y[1] . . . y[R], whose

probabilities are F = [f1, . . . , fr], generated by the encoding scheme si → wi ∈ A+ such

that:

(i) The scheme must generate a prefix code, required for lossless compression.

(ii) The average code word length of the encoding scheme, ℓ =
∑m

i=1
piℓi, must be

minimal among all the prefix codes, where ℓi is the length of wi.

(iii) The distance, d(F ,F∗) =
∑r

j=1
|fj − f ∗

j |
α, α ≥ 1 must be minimized.

Typically, the distance is measured using the mean square error, by setting α = 2.

The problem of achieving Perfect Secrecy is stated below.

Problem 2. Let X = x[1] . . . x[M ] be the Plaintext, where each x[k] is drawn from a source

alphabet, S = {s1 . . . sm}. Let Y = y[1] . . . y[R] be the Ciphertext, where each y[k] ∈ A, the

Ciphertext alphabet.

A cryptosystem has Perfect Secrecy if Pr[X |Y ] = Pr[X ].

By Bayes theorem, this is equivalent to requiring that Pr[Y|X ] = Pr[Y ].
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