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ABSTRACT 

We consider the problem of multiple mobile robots navigating in a common workspace. 
Initially, based on the premise that the costs of operation of the robots can be ignored, results 
regarding the probability of collision of two point robots in the workspace are derived. 
Obviously, these results depend on the geometry of the workspace, and hence they are 
derived for workspaces with various geometries. The results are then extended for two 
robots of finite dimensions. The question “Are k + 1 robots better than k?” is then 
considered. Based on two modes of operation, namely, the batch-scheduled mode and the 
list-scheduled mode, various theoretical results are derived. If the costs of operation of the 
robots can be ignored, based on various computational results obtained, we conjecture that 
the answer to the question is in the affirmative in both modes of operation. Finally, by using 
the model of computation which includes the costs of operation of the robots, the problem is 
revisited. We have shown that for various geometries and revenue to cost ratios, there are 
optimal finite values for the number of robots that can operate within the workspace. 
Expressions for these optimal values have been derived. 

INTRODUCTION 

The area of robotics is one of the most fascinating and interesting areas of 
computer science. Not only is it an area of great importance economically, but 
as a research area, robotics encompasses such fields as kinematics, mechanics, 
computational geometry, control, and language design. 

One of the most interesting areas in robotics is the study of the problem of 
navigating a robot (or a manipulator) within a workspace. When the robot has 
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no obstacles to avoid, the problem is essentially a control problem. Solutions 
usually involve joint interpolated motions, when the trajectory is not necessar- 
ily linear, and motions computed using recursive algorithms (such as Taylor’s 
algorithm) if the path desired is linear. However, the problem is far more 
complex if the robot (or manipulator) has to plan its motion when there are 
obstacles in its workspace. 

Udupa [31] was probably the initiator of the work on motion planning 
amidst obstacles. He introduced the concept of working in configuration space, 
and later this was studied extensively by many researchers, including Brooks 

and Lozano-Perez [3], Lozano-Perez and Wesley [ 19, 201, and Oommen and 
Reichstein [23]. Simultaneously, a variety of results concerning the theoretical 
issues of motion planning were presented by researchers, among whom are 
Schwartz, Sharir, and Yap. Since the literature in this field is so extensive, we 
refer the reader to a comprehensive survey by Whitesides of the papers and 
results in the area [33]. We strongly recommend this survey for a researcher 
who is just embarking on working in this rather extensive field. 

Whereas the problem of moving a single robot in known terrains was almost 

completely investigated, the problem of navigating in unknown terrains was 
almost completely untouched till the last few years. The study of the problem 

of navigating mobile robots sparked a whole series of very interesting results. 

Learned paths were suggested by Iyengar et al. [15], who also suggested using 
learned spatial graphs [14] to compute the path of the robot. Oommen et al. 
presented a formal approach to tackling the problem using learned visibility 
graphs [22]. Although their solution was suitable only for a point robot, we 

believe that it is conceptually an ideal working model, inasmuch as the learned 
visibility graph actually converges to the actual visibility graph. Alternate 
solutions which exist for practical robot navigation systems have been pro- 
posed, which involve map making [2], environment learning [5], discretization 
of the terrain [7], and the use of multilevel planning [lo]. Other papers 

involving mobile robot navigation are those of Gouzenes [l l] and Chattergy 
161, as well as Moravec’s report on the CMU Rover [21], Ozguner et al.‘s 
approach to the navigation of a hexapod [24], and Thompson’s paper on the 
navigation of the JPL robot [29]. 

A subsequent question of much importance has been that of navigating (or 
moving) multiple objects. Schwartz and Sharir [27] presented an analytic 
solution for the special case in which the objects to be moved were circular and 
the obstacles were polygonal. This problem was also studied by Ramanathan 
and Alagar [25]. Yap [34] discussed the theoretical issues involved in coordi- 
nating the motion of several disks. The general problem of coordinating the 
motion of multiple independent objects was shown by Hopcroft, Schwartz, and 
Sharir [13] to be PSpace-hard. Erdmann and Lozano-Perez [8] described an 
efficient technique (in configuration space) to move multiple objects and in 
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particular to move multiple manipulator arms. Using a certain mechanical 
construction, Shih [28] derived the elliptic nature of the path taken by two 
robots moving in antiparallel directions. 

In this paper we consider a problem that has been addressed only marginally 
in the literature. The motivating result which triggered this research was due to 
Grossman et al. [12, 361 of IBM. In their paper [ 121, they considered the value 
of using multiple independent robot arms. Clearly this “value” depends on the 
criterion function used to evaluate the performance of the multiple robots. The 
reader will probably be best motivated, for this present paper, by reading the 
following extract from [12]: 

In a given time interval, if one arm can perform one unit of work, then n 
independent arms all working in parallel could, in principal, perform n units of 
work. In reality, n is only an upper bound, since for most applications there 
would be spatial contention, and the arms will occasionally interfere with one 
another. 

If there were no provision for avoiding such interferences, multiple indepen- 
dent robot arms might become so deadlocked as to render unfeasible a task that 
can be done with a single arm. The simplest solution is to ensure that each arm 
other than the first has a parked position that leaves the first arm unencumbered. 
With this provision, the work W accomplished by n arms must satisfy the trivial 
inequality 

1< w(n) < n 

where W(1) is assumed normalized to 1 

Based on a particular criterion function, Grossman et al. actually proved a 

fascinating result. They proved that in both one and two dimensions, there is 
“little merit” in having more than two arms. In [12], the authors alluded to 
the more general question of this problem being related to the classical 
Buffon’s needle problem, which deals with the probability of a randomly 
dropped needle landing across parallel lines. However, the problem of study- 
ing the “value” of multiple robots navigating in arbitrary workspaces was left 
open. 

In this paper, we consider the general problem of moving k mobile robots 
in a workspace of any given geometry. The ultimate intention is to address the 
question “Are k + 1 robots better than k?” To solve this problem, we first 
consider the problem of Cwo robots working inside a workspace, and an index 
termed the collision index, p. is defined. The value of this index, which 
clearly depends on the geometry of the workspace, has been derived for two 
point robots operating in various workspaces. The problem has also been 
solved approximately for two robots with finite dimensions operating within a 
circular workspace. 
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Using these results for the collision index p, the problem of evaluating the 
use of multiple robots in the workspace has also been studied. Based on two 
simplifying assumptions, a variety of results have been derived for the cases 
when the robots operate in either a batch-scheduled or a list-scheduled mode of 
operation. It has first been shown that the upper bound for the time complexity 
of the decision problem “Are k + 1 robots better than k?” is exponential in 
both modes of operation. In fact, it consists of computing 0(2k2) decision 

problems, each of which is NP-complete. However, based on the results we 
have obtained (for k < 7 and k < 6 for the list and batch modes respectively), 
we conjecture that the answer to the latter decision problem is in the affirma- 

tive. Suffice it to say that since the computations involved for k = 7 and 8 
require almost a whole year of dedicated computing facilities on a Sun system 

[37, 381 for the batch and list cases respectively, we have extrapolated our 
results for one extra robot in each case. The extrapolated results seem to 
confirm the conjecture. However, even with an elementary model of computa- 
tion we shall show the result that the index of productivity per robot decreases 
with increasing number of robots. 

The model of computation is then changed, by changing the criterion 
function to one in which the costs and revenues involved in operating a robot 
are considered. For both the above modes of operation it is shown that for a 
fixed revenue to cost ratio, there is a maximum finite value for the number of 

robots which can work profitably inside the workspace. Employing more 
robots than this value is actually detrimental, in the sense that it would cause 
the user to incur a loss. 

NOTATION I. 1. If S and T are any points in the plane, S -+ T is the straight 
line originating at S and terminating at T. We also define C( N, M) to be the 
binomial coefficient N! /[( M!)( N - M)!]. 

II. THE COLLISION INDEX 

Let two robots R, and R, be working inside a workspace %J. We define a 
job to be the action of a single robot Ri navigating from its beginning point B, 
to its end point Ej, i = 1, 2. In practice, the motion of Ri from Bi to Ei could 
involve the transportation of some object or (hazardous) material. By defini- 
tion, we say that a single robot working by itself executes a single job in one 
unit of time. 

Suppose the robots R, and R, are commanded to move from B, to E, and 
B, to E, respectively. The assumption made throughout this paper is that the 
robots move along straight line paths. Clearly, if the paths B, --f E, and 
B2 + E2 are nonintersecting, the robots can execute their motions in parallel. 
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However, whenever the paths intersect, we assume that the robots are sched- 
uled in sequence so as to avoid a collision. 

It is clear that both the assumption of having straight line paths and the 
assumption of scheduling robots in sequence if their straight line paths collide 
are quite restrictive. One could easily envisage a scheme in which the robots 
avoid the paths of their “colleagues” by taking circuitous routes. However, 

the strategy for planning such routes is not obvious even for robots and 
workspaces with simple geometries. Alternatively, one could also envisage 

schemes in which robots used multiple stops (or controlled velocities) so as to 
avoid collisions. In the latter scenario, if R, were to go from B, to E, and R, 
from B, to E2, and if B, + E, intersected B, -+ E2, the path planning would 
be arranged so that B, went to an intermediate midpoint M, and waited until 

R, crossed the intersection points of the paths. As this juncture we suggest that 

the above two strategies are problems open for research, but we note in passing 
that for a given multirobot path pattern, even for the straightforward path 
planning strategy which we have employed, the supervisory task for the robots 
is an NP-complete problem. 

We define the collision index, p to be the probability of the paths B, + E, 
and B, -+ E2 intersecting. Clearly, this index p depends on the geometry of 

2X3, the dimensions of the robots, and the constraints on the extrema of the 
paths within the workspace. We shall now derive the collision indices for point 

robots for a variety of workspaces and then extend these results for robots of 
finite dimensions. 

THEOREM I. The collision index for two point robots moving between 
uniformly distributed random points on the circumference of a circular 
workspace is i. 

Proof. Consider Figure I in which robot Ri moves from Bi to Ei, where 

i = 1, 2, and further, where Bi and Ei are on the circumference of the circle. 
With no loss of generality, let the radius of the circular workspace be unity. 
Let 0, b and 026 be the polar angles of the points B, and B, respectively. With 
no loss of generality the measurement of these polar angles can be from B,, 
thus setting 0, b = 0. Let f?,, and eze be the polar angles of the points E, and 
E2 respectively. Clearly, ezb, 0,,, and f?,, are uniformly distributed in [0, 
2 n]. For the rest of this theorem, we shall refer to the extrema of the robot’s 
paths in terms of their polar angles. 

Since R, is moving inside the circle along 0, b --t t9 ,p, and R, is moving 

along e,, + eze, the paths will not intersect if and only if 
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Fig. 1. Two point robots moving between uniformly distributed random points on the 
circumferance of a circular workspace. Robot Ri moves from Bi to Ei for i = 1, 2. 

is satisfied, where 

Consider the value of Pr [G , \ 8, J. Since 13~~ and &_ are independently drawn 
uniform random variables, 

Hence the unconditional (total) probability of event G, is 



ROBOT CLUTTERING 61 

Similarly, Pr [ tZZ 10 ,e] = [(2 7r - 0,)/2 ?r]‘, whence, 

1 Pr[hl = se& s 0 

Z*(2r-19,.)2dB,4. 

Hence, Pr [nonintersecting paths for R, and R,] = Pr [G, ] + Pr [G *I = $. 
Thus, the collision index p has the value, 

p=l-(Pr[@,]+Pr[Q,])=i. 

REMARK. As pointed out by an anonymous referee whose assistance we 
have recognized in the acknowledgements, this result can be alternatively 
derived using a discrete probability approach. Choose any four points on the 
circle. Observe that these points can be labeled as the starting and the 
destination points of the robots in question. For any set of points thus chosen, 
if the points B,, E,, B, and E2 are permuted, there are twenty-four possible 
permutations, eight of which involve intersections. Therefore p = f . This 
argument is very nice in that it would apply equally well to a large class of 
closed convex curves. However, one should be careful not to generalize this 
argument uncritically, as one could select a closed convex curve consisting of 
two parts, one of which is linear. The argument would fail in the latter case 
because paths involving points on the linear boundary would not be internal 
paths, and would thus be nonintersecting. However, the fundamental argument 
using the continuous probability approach described in the above proof would 
still be consistent. 

COROLLARY. Let E2 be the mean time to execute a job with two robots 
at work. Then, for two point robots moving between random points on 
the circumference of a circular workspace, tz is :, 

Proof. Let T, be the mean time for both the robots to execute their jobs. 
Then 

T2 = 1 x Pr [paths don’t intersect] + 2 x Pr [paths do intersect] 

=l(l-p)+2p=l+p. 

However, observe that in T2 units of time two jobs have been executed. 
Hence, 
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The expressions for the value of p are obtained in a rather straightforward 
way in the case when the workspace is circular. In the case when the 

workspace is polygonal, however, the expressions are a little more compli- 
cated. Indeed, in this situation, we take into account the principle that two 
robots may not be at the same place at the same time, thus excluding certain 
paths that the robots might traverse. We first consider the case when two 

robots are operating between the vertices of a regular n-gon. We will restrict 
the motions of the robots in this case by insisting that the robots may not have 
either common starting points or common destination points, i.e., B, # B,, 
and E, # E2. We do, however, allow the motion of R, from B, -+ E, at the 
same time that R, is moving from E, -+ B,. In other words, we permit two 
robots to be moving in antiparallel directions between the same extrema. This 

model is not unrealistic, since the robots are but points and the actual 
implementation of the paths can be achieved by perturbing the robots by a 

small quantity from the straight line joining the vertices. 

THEOREM II. The collision index p for two point robots moving between 
uniformly distributed random vertices of a regular N-gon is 

N2 -5N+6 

‘= 3(N2-3N+3) 

whenever the point robots are permitted to move in antiparallel directions. 

Proof. Consider Figure 2. With no loss of generality, let the starting 

vertex of R, be the vertex whose index we call 0. Let R, be commanded to 
dothejobO-+E,, where E,~{1,2, 3 ,..., N-l}.Clearly, E, cantakeany 
of these values with probability 1 /(N - 1). 

For a given path 0 4 E, for R, , R, may originate at B,, which can be any 
one of N - 1 vertices, namely { 1, 2,. . . , N - l}. Further, whenever B, # E,, 
R, can terminate at E,, which can be any one of N - 2 vertices, namely (0, 

1,2,..., N-l}-{E,)-{B,}. Butwhen B,= E,, thereare N-l possible 

points for E2. Thus the total number of legal paths which R 2 can take is 

# ,ega, = (N-2)(N-2)+(1)(N- 1) = N2 -3N+3. 

However, for a given value of E, , the paths intersect wherever 8, or 8 2 is 
true, where 

S,= B,~{1,2 ,..., E,-l}nE,~{E,+l,..., N-l} 

S2=B2~{E,+1 ,..., N-l}r\E,~{1,2 ,..., E,-1) 

Due to the symmetry of the situation, it can be seen that the number of 
intersecting paths is 2( E, - l)( N - E, - 1). Thus, the probability of the robot 
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Fig. 2. Two point robots moving between uniformly distributed points on the vertices of a 
polygonal workspace. Robot Ri moves from Bi to Ei for i = 1, 2. 

paths intersecting is 

x2:‘, 2(E, - l)(N- E, - 1) 

p= (N-l)(N2-33N+3) . 

This can be simplified and evaluated to yield the desired result. 

REMARKS. 

1. One might have expected that as the number of vertices increased the 
probability of intersection of the paths would decrease, since the number of 
possible paths for the robots increases quadratically. However, it is the 
contrary which is true. The value increases monotonically with N from 0.095 
for a square, to 0.154 for a pentagon, and to 0.191 for a regular hexagon. The 
worst case is for the circle, when p = $. 

2. The mean time per job in the case of two robots operating in a regular 
N-gon is 

(* = os+ N* -5N+6 

6(N2 -3N+3) ’ 

This time increases monotonically with the number of vertices in the N-gon. 
3. In the case when the robots are not permitted to move in antiparallel 

directions, it can be seen that the number of legal paths for R, is (N - l)( N - 
2), and thus the collision index p in this case has the value (N - 3)/3( N - 1). 
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THEOREM III. The v&e of p, the colltsion index for two point robots 
operating randomly between uniformly distributed points inside a circular 
workspace of radius R and with extrema of the paths not necessarily on 
the circumference, is approximate/y 0.21. 

Proof. Consider Fig. 3. Let B, and E, be the beginning and end points of 
the path that R, is commanded to take. Let B, be the beginning point for R,, 
Clearly, the path of R, intersects the path of R, if the point E2 lies in the 
region of the circle obstructed by the line B, -+ E,, which is the region shaded 
in Fig. 3. 

Let C, and C, be the intersections of B2 -+ B, and B2 -+ E, and the circle 
respectively. Clearly, the probability of intersection of the paths given B, , E, , 
and B2 is proportional to the shaded area C, B, E,C,. By using analytic 
geometry the following results can be derived. 

Let B, = (bix, b,,), E, = (e,,, e,,,), and B2 = (b,,, b,,). Let the points 
C, and C2 be (clr, c,,) and (czw, c2_,,) respectively. Let (Y be the positive 
root of 

a”[ (L - bJ2+ (by - h,)*] 
+ a[2(bzxblx + bzYb,,) -2( b;, f b:,,)] + [b& + b;,, - R’] =o. 

Fig. 3. Two point robots moving within a circular workspace. Robot R i moves from St to 
Ei for i = 1, 2. Observe that the paths intersect if B2 is outside the region C, B, E,C, and 
E2 is inside that region. 
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Then qw=(l-~)bZX+ 
be the positive root of 
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+x and cl<,, = (1 - cxr)b,, + cxb,,. Similarly, let @ 

+ P[2(b,,c,,+ b,,,e,,)-2(b:,+ b&)] +[ bi,+ b& - R”] =O. 

Then czX = (I - P)b,, + Be,, and c2Y = (l- P)bzY f Be,,. Thus, 

Pr [intersection f 3, , E, , B,] = 
Area(C, 8, E, C,) 

TIP 

This tells us that p, the collision index, is obtained by integrating (1) over 
all possible values if B,, B2, and E,. Thus, 

-- 
p- &)4 ’ Ill Area(C, B, E, C,) d3, dE, dBz (2) 

B, El & 

where the above dB,, dE,, and dB, are vector differentials. The value of the 
above integral is approximately 0.21. m 

Till now we have assumed that the robots within the workspace are point 
robots. To render the problem more physi~~ly meanin~~l, we shall conclude 
this section by evaiuating the collision index for a robot with fixed dimensions. 

THEOREM IV. Let 83 be Q circular wor&xxe of unit radius. Let the 
robots R, and R, be such that the angle subtended at the center by the 
robots is 26 whenever A a ?F /2. Then, if the robots move between 
uniformly distributed points on the circumference of $33, the collision 
index p is 

p=l- 
2( a2 - 66.~ + 126’) 

3(x -2A)* ’ 

Proof. Consider Figure 4. With no loss of generality, let one tip of robot 
R, be at the point whose polar angle is 0 with respect to the center of m. R, 
can now he commanded to move to a point where the position of this tip is at 
an angular position i9 f e. Clear&, 8,, can take any value in [A, 2r -A]. 
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Fig. 4. Two robots of finite dimension moving inside a circular workspace. Robot Rj 
moves from Bi to Ei for i = 1, 2. The angle subtended at the center by each robot is 2A. 

Since the robots are of finite dimensions, the initial position ezb of R, can 
take any random value in [2A, 2 7r - 2A]. Similarly, 13,~ can take any random 

value in [0, 2?r]-[fl,, -2A, 8,,+2A]. Clearly, this model is true only if 
A6 7~12. 

The paths of the robots will not intersect if e2 b and 8,, are on the same side 

of the arc (0, e,,). By including the thicknesses of the robots, it can be seen 
that for the upper segment 

Pr [not intersecting paths in upper segment ) 8, ,,I = h-W 

(27r -4A)’ ’ 

Hence the probability of having nonintersecting paths in the upper segment is 

s 

** Pi, -4Aj2 de 

o (2~4A)’ le’ 

which simplifies to (x2 -6A7r + 12A2)/3(~ -2A)2. 
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The probability of having nonintersecting paths in the lower segment 
exactly the same value. Hence, the collision index p for this case is 

P= l-2&, 

which yields the desired result. 

We shall now proceed to consider the multirobot case. 

III. MULTIROBOT MOTIONS 
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has 

n 

Until now we have considered the problem of two mobile robots navigating 
in a workspace ‘Z!3, and we obtained a quantitative measure for the efficiency 
of their traversals. Indeed, if the collision index of robots in ?8 is p, the mean 
time taken for the two robots to execute a job was shown to be 

The problem of multiple robots working in a common workspace would be 
far too extensive if all possible geometries of robots and workspaces were to be 
considered. Rather than tackle the problem from this perspective, we shall 
disengage ourselves from the actual geometries of the robots and the workspace, 
and concentrate on the cluttering problem as a function of the collision index 
p. Thus, the question which we shall consider for the rest of the paper can be 
phrased: “If the collision index of two robots in a workspace is p, how 
quickly can k robots do a job ?” Additionally, the productivity of the robots in 
this scenario can be investigated. 

Extending these concepts to finite-dimension robots is not so direct, because 
one must consider the possibility of deadlock. Thus, for example, in the case 
of finite-dimension robots, if the area of the robot is R and the area of the 
workspace is A, then one might expect that when k = A /R the whole 
situation would be deadlocked. Indeed, in Theorem 4 this situation is conceptu- 
ally taken into account by the collision index, because the probability of 
intersection increases with the size of the robot. Observe that in Theorem 4, 
the condition for the calculation of the collision index (i.e., A -% a /2) is that 
the area of the robots is small compared with the area of the workspace. It is 
for this approximation that the arguments below would be useful for robots of 
finite dimension. 

We shall now describe the two scheduling modes of operation that we 
consider in this paper. 
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(i) Batch-scheduled mode. In this mode we assume that there is a 
continuing stream (i.e. an infinite number) of jobs to be done. A scheduler 
assigns to each robot R i (i = 1 to k) a job which is essentially one of going 
from where it is, at position Bi, to a destination point Ei. A Supervisor 
commands the individual robot Rj to go whenever the path Bj + Ej is free. 
Obviously the task of the supervisor is to command the various robots to go in 
such a way that all the k jobs are done as quickly as possible. Once all the k 
jobs are completed, the scheduler assigns k new jobs to the robots. 

(ii) List-scheduled mode. In this mode too we assume that there is a 
continuing stream of jobs to be done. Each robot Ri (i = 1 to k) is assigned a 
job by the scheduler, and the supervisor tries to get the maximum number done 
at that time instant. The scheduler comes into operation at the next time 
instant and assigns new jobs only to those robots with have just finished their 
jobs. 

It may seem intuitively clear that the list-scheduled mode of operation is the 
superior mode because the robots are given no “resting” time. However, 
whereas the list-scheduled mode of operation requires the scheduler to be 
invoked at every time instant, the batch-scheduled mode requires the scheduler 
to be invoked only when all the k jobs currently assigned to the robots are 
accomplished. The latter may be a desirable mode of operation, especially if 
the scheduler involves the intervention of a human being. 

We would emphasize to the reader the differences in operation between the 
scheduler and the supervisor. Once the scheduler assigns the task to the 
individual robots (be they operating in a batch-scheduled mode or in a 
list-scheduled mode), the supervisor takes over and specifies the sequence in 
which the robots should do their jobs. At the risk of being repetitive we 
reiterate that whereas in the batch-scheduled mode of operation the scheduler 
comes back on the scene only after all k current jobs have been accomplished, 
in the list-scheduled mode the scheduler is invoked at the beginning of every 
time unit to assign tasks to the robots that have just finished their previously 
assigned tasks. 

Let us suppose k robots are required to execute k jobs. We shall define Tk 
to be the mean time for the k robots to execute all k jobs in the batch-sched- 
uled mode of operation. Let Ek be the mean time per job in this mode with k 
robots at work. Clearly, tk = Tk /k. 

Let Nk be the mean number of tasks that can be done per unit time in the 
list-scheduled mode. Then pk, the mean time per job in the list-scheduled 
mode with k robots at work, is given by pk = 1 / Nk. Observe that whereas Tk 
and Nk are quite unrelated, tk and pk are analogous quantities for the two 
distinct scheduling modes of operation. 
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We also define the productivity index of k robots, X,, as the number of 
jobs done per robot per unit time. Clearly, 

in the batch-scheduled mode 

in the list-scheduled mode. 

Note that the ratio of the productivity in the list-scheduled mode to the 
productivity in the batch-scheduled mode is just tk /pk. This ratio will be used 
to compare the efficiencies of the two modes. 

One of the important features of our approach is that, as we mentioned 
earlier, we have aimed to disengage ourselves from the actual geometries of 
the workspace and the robots, primarily because the problem would be 
intractable if all possible geometries were to be considered. However, to 
render even this approach tractable we must make two approximating assump- 
tions, which we shall refer to as assumptions Al and A2: 

Al. All path patterns of k robots involving all possible intersections of 
robot pairs are geometrically realizable. 

A2. For any path pattern, the intersection of a pair of robot paths is 
independent of the intersection of another pair of robot paths. 

Assumption Al is clearly not true for all values of k, because for certain 
values of k and for certain geometries, all combinations of patterns do not 
exist. For example, let F = {I,, I,, I,, I,, 15} be a collection of 5 line 
segments, and G = {m,, . . . , m,,) be a collection of 10 line segments. Let H 
be an embedding of the 15 lines in the plane such that all elements of F are 
disjoint and all elements of G are disjoint, but each element of G intersects a 
distinct pair of elements of F. Then H cannot be realized. The proof of the 
claim is quite straightforward. Suppose that N exists. For this embedding, 
pick a point in each line IeF and gradually contract I to this point, pulling the 
lines that intersect I into this point. We can do this continuously for all 
elements of F without causing any lines to cross, because this contraction is a 
continuous map. Then the result is a planar graph of five vertices such that 
every vertex is joined to every other vertex (by the deformed lines in G). But 
this is a planar embedding of the complete graph on five vertices, which is not 
planar. Thus no such embedding H exists. Therefore, in the case of 15 robots 
working in an infinite workspace (the entire plane) there is at least one path 
pattern which cannot be realized. This counterexample is due to the anony- 
mous referee mentioned in the acknowledgements. 
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More generally, for any nonplanar graph of I’ vertices and E edges, there 
is a combination of V + E line segments which represents the graph and 
cannot be realized in the plane. 

The validity of assumption Al depends on the geometry of the workspace as 
well. For example, if five robots operate between points on the circumference 
of a circle, moving in the interior, we find by enumeration that one of the 
distinct path patterns is not physically realizable. 

Although assumptions Al and A2 are theoretically unrealistic, these approx- 
imating assumptions are made because the explicit expressions encountered in 
the analysis of the scheduling are significantly simplified if they are assumed 
valid. Furthermore, computer simulation results show that for all computation- 
ally realistic values for the number of robots, the actual experimental results 
obtained reproduce quite well the features of the analytic results obtained using 
the approximating assumptions Al and A2. 

Since the problem completely changes for every value of k, we shall first 
treat the cases of k = 3 and k = 4 separately. The case of the general value of 
k will be considered subsequently. We shall then conclude this section by 
stating some experimental results and conjecturing that the decision problem 
“Are k + 1 robots better than k?” has an affirmative answer. 

For the rest of the paper we shall assume that if p is the collision index, 
then 4=1-p. 

THEOREM V. Let the collision index for two robots operating in a 
random workspace be p, and let q = 1 - p. Then, given assumptions Al 
and A2, for three robots operating in a batch-scheduled mode, t3, the 
mean time per job, is 

E3= 
q3 +6pq* +6p*q +3p3 

3 

Proof. The result follows by enumerating the various ways by which the 
paths of the three robots can intersect. In Table 1, these distinct possible path 
patterns are enumerated, and the probability of the pattern occurring and the 
time for execution of such jobs is given. Observe that when all the paths 
intersect [this happens with probability p3, since all the C(3, 2) pairs must 
intersect], the jobs must be executed serially, i.e., in three time units. 
Similarly, if none of the paths intersect (this happens with probability q3), the 
jobs can be done in parallel in a single time unit. By enumerating all the 
possibilities we observe that T3, the mean time for executing three jobs, is 
T3 = q3 + 6pq* + 6p*q + 3p3, whence the result follows. n 
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TABLE 1 

All Distinct Intersection Patterns for Three Robots Operating in the Batch-Scheduled Mode, 
Along with the Probability of the Pattern Occurring, the Number of Intersections, and 

the Execution Time Associated with Each Pattern 

Pattern Probability Intersections Execution time 

III q3 0 1 

XI 3w2 1 2 

74 3p2q 2 2 

X P3 3 3 

REMARK. Let the collision index for two robots operating in a random 
workspace be p, and let q = 1 - p. Then, for three robots operating in a 
list-scheduled mode, p3, the mean time per job, can analogously proved to be 

1 

P3 = 3q3 +6pq* +6p*q + p3 ’ 

In an analogous way we shall now derive the expression for t4. 

THEOREM VI. Let the collision index for two robots operating in a 
random workspace be p, and let q = 1 - p. Then, if assumptions Al and 
A2 are satisfied, for four robots working in a batch-scheduled mode of 
operation, &, the mean time per job is 

54 = 
q6 + 12pq5 +30p2q4 +44p3q3 +42p4q2 + 18p5q +4p” 

4 

Proof. Consider Table 2, in which we have enumerated all the possible 
distinct ways by which four robots’ paths could intersect or not intersect. 
Clearly Al is satisfied. In the table, apart from the possible path patterns and 
their probability of occurring, we have also listed the execution times for these 
jobs. As before, observe that when none of the paths intersect (this happens 
with probability q6), the execution time is unity, since all the jobs can be done 
in parallel. Similarly, when all the paths intersect (this happens with probabil- 
ity p6), the execution time is 4. In between these is the whole spectrum of 
possibilities in which the execution times are 2 or 3, and the coefficients range 
from 4 to 44. By enumerating all these possibilities one obtains the result. m 
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TABLE 2 

All the Distinct Intersection Patterns for Four Robots Along with the Probability of the 
Pattern Occurring, the Number of Intersections, and the Execution Time Associated with 

Each Pattern 

Pattern Probability Intersections Execution time 

III 

XII 

I-Y 

XX 

x-1 

q6 0 

614 1 

12p2q4 2 

3p2q4 2 

12p3q3 3 

4p3q3 3 

4p3q3 3 

12p4q2 4 

3p4q2 4 

6p5q 5 

P6 6 

1 

2 

2 

2 

2 

2 

3 

3 

2 

3 

4 

REMARKS. 

1. There are two reasons why we have painstakingly enumerated all the 
possibilities to derive Theorem VI. First of all, we would like to highlight the 
sixth and seventh rows of the table, in which the number of intersecting paths 
is three. Whereas the time for execution for the jobs in row 6 is two time units, 
the time for execution for the jobs in row 7 is three time units-primarily 
because three of the robot paths are completely interwoven. 

2. In the case of list-scheduled robots, the corresponding quantity cc,, 
which is the mean time per job for four robots, is 

1 

P4 = 4q6 + 18pq5 +42pzq4 +44p3q3 +30p4qz + 12p5q + p6 

if assumptions Al and A2 are satisfied. Clearly, in this case, Al is satisfied. 
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We shall now consider the general case of k robots at work in a common 
workspace. 

THEOREM VII. Let k robots be working in a workspace in a batch- 
scheduled mode of operation, and let the collision index be p. Further, let 
q = I- p. Then, if assumption Al and A2 are valid, an upper bound on 
the time complexity of any algorithm that computes tk is exponential, 
because it could involve evaluating an exponential number of decision 
problems each of which is NP-complete. 

Proof. We shall prove this result by first showing that if k robots are 
operating in a workspace, the number of distinct possible path patterns is 
exponential in k2. We shall then show that the computation of the execution 
time for a single path pattern is essentially an NP-complete problem. 

Suppose k robots are operating in a common workspace. Clearly, given 
assumptions Al and A2, the path of any robot Ri can either intersect or not 
intersect the path of any other robot Rj. Since there are C( k, 2) such pairs, 
and since each pair is either intersecting or nonintersecting, the total number of 
path patterns that can be encountered is 2C(k*2), where C( k, 2) = k( k - 1)/2, 
which is G(2”). 

We shall now compute Ek by individually examining every one of these 
path patterns, and shall prove that the evaluation of the time for an arbitrary 
path pattern is the solution of an NP-complete problem. Let o be any path 
pattern. We create G, = (I/, E), the intersection graph from w, as follows: 

(a) V, the vertices of the graph, are the indices { 1, 2, . . . , k}. 
(b) An undirected edge (i, J)EE if the path of R, intersects the path of 

Rj. 

Consider the coloration of the graph G,. A coloration of a graph is an 
assignment of a color to each vertex such that no two vertices joined by an 
edge get the same color. A k-coloration is a coloration using k colors. 
Observe that we can schedule the robots in k steps if and only if the adjacency 
graph has a k-coloration. We do this by identifying each color with a distinct 
time step. Clearly, if there is a k-coloration, we can move the robots in k 
steps, because at each step we are moving robots of the same color, none of 
which are joined by an edge. Conversely, any scheduling of the robots in k 
steps must also be a k-coloration of the graph. The theorem follows, since 
computing the minimum coloration (the chromatic number) of a general graph 
is an NP-complete problem [35]. n 

REMARK. Observe that we have resorted to a brute force enumeration 
technique to evaluate the quantity l k, namely that of computing the time taken 
for each path pattern individually and subsequently computing tk as a weighted 
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combination of these time durations. However, apart from the fact that the 
above bound is an upper bound for the time required to compute tkr we also 
believe that it gives both an upper and a lower bound for the time. Thus, we 
conjecture that the best algorithm is the brute force algorithm suggested above. 
The rationale for the conjecture is as follows. 

From the theory of elementary probability and expectations it is known that 
if X is any discrete random variable, 

E[X]=CXPr[X=X], 
X 

where the summation is over all possible values of the random variable X. In 

this case, we intend to find the expected time per job. To show that the 

summation has to be treated individually for every path pattern, we shall show 

that there exist values of execution times (not necessarily distinct) which have 
distinct associated probability measures. Conversely, and more importantly, 
there are possible path patterns which have the same associated probability 

measures, but which have very different execution times. 
The first of these claims is easily proven, because when the paths of none of 

the robots intersect, the execution time is unity, and obviously the probability 
of this event is q C(kq2) Similarly, if all the paths intersect, the execution time . 
is k, and the probability associated with this event is pCCks2’. Thus, distinct 
execution times possess distinct associated probability measures. 

To prove the second of the claims, let w, be a path pattern in which there 
are H intersection points. If w, is such that every robot path intersects at 
most one other robot path, the execution time is exactly 2. Thus the total 
contribution due to o, in the computation of tk is exactly 2p HqC(k,2)-H. Let 
o2 be another pattern in which the number of intersections is H, but in which 

the H intersections are due to a subset of XH robots, in which subset every 
robot path intersects every other robot path. Clearly, o2 is executed in time 
X,. Thus the contribution to the computation of & due to w2 is exactly 
~HpHqW. *j-H. (S ee Figure 5 for the specific case when k = 6 and H = 3.) 
Thus w, and w2 are two path patterns with exactly the same associated 
probability measure but very different execution times. 

Although the above remarks are true, they do not constitute a rigorous proof 
of the conjecture. The reason for this is that there may be a way by which 
patterns with “similar” (though not identical) probability measures may be 
clustered together to yield a partial mean, and this partial mean could ulti- 
mately yield the actual resultant Ek. However, by considering a variety of 
cases, we believe that no such clustering exists for general arbitrary path 
patterns. 
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X 

b) 

T-2 x x 
T-3 

Fig. 5. Two cases for six robots: (a) three intersections with execution time of two units in 
the batch-scheduled mode; (b) three intersections with execution time of three units. 

REMARK 2. It is clear that if the assumption Al is relaxed, the number of 
path patterns will definitely be less than what is claimed in Theorem VII. 
However, if we consider a set of k lines where each of the k/2 odd lines is 
infinite and horizontal and they are evenly spaced, and each of the k/2 even 
lines is finite and vertical, then each vertical line segment can intersect the 
horizontal lines in roughly k*/8 ways. Thus there are 62( kk) [i.e., Q(2k log k)] 
distinct intersection patterns for the k lines, which is also exponentially many. 
However, the results obtained by assuming Al do not differ drastically from 
actual simulations that have been conducted for computationally feasible values 
of k. 

For the sake of completeness, we shall state (without a detailed proof) the 
analogous theorem to Theorem VII for the list-scheduled robots. 

THEOREM VIII. Let k robots be working in a workspace with list-sched- 
uled jobs, and let the collision index be p. Further, let q = 1 - p. Then, if 
assumptions A 1 and A2 are valid, an upper bound on the time complexity 
of any algorithm that computes uk is exponential, because it could involve 
evaluating an exponential number of decision problems each of which is 
NP-complete. 

Proof. The proof of the theorem is identical to that of Theorem VII except 
that the NP-complete problem encountered in the scenario is that of finding the 
size of the largest clique in G,, the complementary graph of G, defined in 
Theorem VII. 

The problems which we have studied have been implemented on the SUN 
microsystem in order to get a feeling for the actual path planning scenario [37, 
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381. They were programmed with p (the collision index) and k (the number of 
robots involved) as input parameters. Indeed, the number of computations 
involved grew exponentially as expected. For example, the time to computer 
pk in the list-scheduled case grew from a few tenths of a second when k = 3 to 

a few seconds when k = 4. It rose to about a half a minute when k = 5. The 
case for k = 6 took about 50 minutes, and the case for k = 7, which has 

2,097,152 path patterns, required about 80 hours. We estimate that the case for 
k = 8 would require about a whole year of computing time on the Sun system. 

In the batch-scheduling mode, the case k = 7 proved infeasible. 
The results of the computed values of tk are plotted in Figure 6 for various 

values of p. The value is unity for all k whenever p = 1, and it is l/k 
whenever p = 0. Clearly these two special cases report limiting behavior. 

When p = 0, the robots will never have intersecting paths, and so k + 1 robots 
will do better than k robots. When p = 1, the paths always intersect, and so it 
is never better to have more than one robot. The values of tk are also 
tabulated in Table 3 for various other values of p. For example, when p = f , 
the value of tk falls from 0.5802 when k = 3 to 0.5103 when k = 4 and to 

0.4529 when k = 5. It attains the value of 0.4130 when k = 6. These values 
are typical, since the curves are monotonically decreasing for all computed 
values and seem to reach their asymptotes fairly rapidly. A value for k = 7 
was also calculated using five point Lagrangian extrapolation, which results in 
a value of 0.4044. Based on these results, if Ek is the criterion, we conjecture 
that k + 1 robots is in general better than k robots for p~(0, 1). 

Similarly, for the list-scheduled case, the values of pk are also tabulated in 
Table 4 for various values of p in (0, 1). For example, when p = f , the value 
of pk moves from 0.4426 when k = 3 to 0.3643 when k = 4, and to 0.3131 
when k = 5. It attains the value 0.2787 when k = 6 and 0.2531 when k = 7. 

Again based on these results, if pk is the criterion, we conjecture that k + 1 
robots is better than k robots for pe(O, 1) for the list-scheduled multiple robot 
scenario. 

IV. ECONOMIC ANALYSIS OF THE EFFICIENCY OF 
MULTIPLE ROBOTS 

Suppose k robots are to execute k jobs. Clearly, the average time taken per 
job with k batch-scheduled robots at work being tk, the average time taken by 
the robot to accomplish all the k jobs is ktk. Hence, the number of jobs done 
per unit time is k/(kt,), which is l/tk. Similarly, for the list-scheduled 
case, the average time taken per job by k robots being pI(, the average time 
taken by the robots to accomplish all the k jobs is kpk. Furthermore, the 
average number of jobs done per unit time is Nk, which is 1 /pk. 
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Fig. 6. Plot of average time per job, tk versus number of robots, k, in the batch-scheduled 
mode. Note that for p = 0, tk = l/k. 

TABLE 3 

Results in the Batch-Scheduled Mode for the Average Time Taken by k Robots to Do a 
Job, tk, for Various Collision Index Values p 

k p=o p=f p=; p=; p=l 

1 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.5000 0.6667 0.7500 0.8333 1.0000 
3 0.3333 0.5802 0.6667 0.7531 1.0000 
4 0.2500 0.5103 0.5898 0.6862 1.0000 
5 0.2000 0.4529 0.5395 0.6401 1.0000 
6 0.1667 0.4130 0.5011 0.5995 1.0000 
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TABLE 4 

Results in the List-Scheduled Mode for the Average Time Taken by k Robots to Do a Job, 
pk, for Various Collision Index Values p 

k p=o p=l 

1 1.0000 1.0000 1.0000 1.0000 1.0000 
2 0.5000 0.6000 0.6667 0.7500 1.0000 
3 0.3333 0.4426 0.5000 0.5745 1.0000 
4 0.2500 0.3643 0.4238 0.4892 1.0000 
5 0.2000 0.3131 0.3724 0.4429 1.0000 
6 0.1667 0.2787 0.3350 0.4070 1.0008 
7 0.1428 0.253 1 0.3083 0.3768 1.0000 

We define the productivity of each robot as the number of jobs done per 
robot per unit time. Clearly this is a function of p, the collision index, and has 
the value l/( ktk) in the batch-scheduled mode, with the corresponding value 
for the list-scheduled mode being l/( kpk). The productivity of each robot in 
the batch-scheduled mode is tabulated in Table 5 for p = f , while that for the 
list-scheduled mode is tabulated in Table 6 for the same value of p. The 
productivity is seen to decrease with increasing number of robots for both 
modes. 

The ratio of the productivities for the robots operating in the list-scheduled 
mode to that in the batch-scheduled mode is tabulated in Table 7 for several 
values of k and pc[O, 11. The ratio is computationally always greater than 

TABLE 5 

Results in the Batch-Scheduled Mode for Collision Index p = f, Showing the Number of 
Robots, k; the Average Time Taken to Do a Job by k Robots, [k; the Productivity 

Factor, 1 /(kEk); and the Profit per Unit Time (in Units of E) for Three Values 
of the Profit Factor f”. 

Productivity Profit/(time E) 

k tk l/(ktk) f=l f =2.0 f =2.5 

1 1.0000 1.000 0.000 1.000 1.500 
2 0.6667 0.750 -0.500 1.000 1.750 
3 0.5802 0.575 - 0.447 1.309 
4 0.5103 0.490 - -0.081 0.899 
5 0.4529 0.442 - 0.584 0.520 
6 0.4130 0.404 - - 0.053 

a A negative value indicates a loss. Only the first loss in each column is noted. 
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TABLE 6 

Results in the List-Scheduled Mode for Collision Index p = f , Showing the Number of 
Robots, k; the Average Time Taken to Do a Job by k Robots, pk; the Productivity 

Factor, l/( kp,); and the Profit per Unit Time (in Units of E) for Three Values 
of the Profit Factor f”. 

k pk 

1 1.0000 
2 0.6000 
3 0.4426 
4 0.3643 
5 0.3131 
6 0.2787 
7 0.2531 

Productivity 

l/(kPk) 

1.000 
0.833 
0.753 
0.686 
0.639 
0.598 
0.565 

Profit/(time E) 

f=l f =1.5 f =2.0 

0.000 0.500 1.000 
- 0.333 0.500 1.333 

- 0.389 1.519 
- -0.117 1.490 
- -0.209 1.388 
- - 1.176 
- - 0.903 

aA negative value indicates a loss. Only the first loss in each column is noted 

unity whenever k > 1 and PE(O, 1). Based on these results, we conjecture that 
it is always better to operate within a list-scheduled mode. 

If the actual costs of operating the robots are not taken into account, then 
the decline in productivity is not in and of itself a problem. This is because 
employing a greater number of robots implies a greater total production as long 
as tk or pk continues to decline. However, if we make some simple economic 
assumptions about the costs and revenues involved, the question “Are k + 1 
robots more profitable then k?” has some interesting answers. 

Consider the following economic model. Let E be the expense involved for 
the robot plant to operate a single robot for a single time unit. Further, let C 
be the charge for a single job to be executed. Furthermore, let C = fE, where 
f is the profit factor. Clearly, if f = 1, the plant pays E units per robot time 

TABLE 7 

Ratio tk /pk of the productivities in the List-Scheduled Mode to the Batch-Scheduled 
Mode for Five Collision Index Values p 

p=o p=; p=l 

1 1.00 1.00 1.00 1.00 1.00 
2 1.00 1.11 1.12 1.11 1.00 
3 1.00 1.31 1.33 1.31 1.00 
4 1.00 1.40 1.39 1.40 1.00 
5 1.00 1.45 1.45 1.45 1.00 
6 1.00 1.48 1.50 1.47 1.00 
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unit and charges C = E units for each job. If the plant has a certain profit 
policy (i.e., it charges according to a fixed profit factor f), how beneficial is it 
for the plant to get k + 1 robots on the shop floor as opposed to having k 
robots? 

Let us assume that k batch-scheduled robots are assigned to do the jobs. 
The number of jobs done by the k robots per unit time is k /( ktk) = 1 / 4 k. 
The expense incurred by the plant for this period is kE. The tariff (or revenue) 
that has come in this unit of time is C* (1 / 4 k), essentially, because 1 / E k was 
the number of jobs done. Hence the net profit (gain) G made per unit time is 

If f is the profit factor, we observe that, G = fE/t, - kE, whence G = E( f 
- k&)/ Ek. Clearly, if the plant is to remain operational, G 2 0. 

For the extreme case of p = 0 (no possibility of any of the paths intersect- 
ing), since the average time per job is tk = l/k, the profit per unit time is 
given by 

G= E(f- 1)k. 

Thus for any fixed profit factor f > 1.0, the profit per unit time increases 
indefinitely with k. In this case, then, the more robots used, the more profit 
earned. Note that if f = 1, we will have a breakeven situation. 

For the other extreme case of p = 1 (each path intersects every other path) 
the average time per job is fk = 1, independent of k. Hence the profit per unit 
time is given by 

G=E(f-k). 

In this case, for any fixed f, the profit is always maximized with one robot, 
with a loss situation occurring at k = f. So there is no reason to have more 
than one robot. The situation for more realistic values of p is illustrated for 
p = f (the case of the circular workspace) in Figure 7, where G/E is plotted 
for various values of the profit factor f. If f = 1, one robot is the optimum 
number (at the breakeven point), with any more robots leading to a loss. If 
f = 2 (i.e., if the policy is to charge per job twice the amount that the plant 
pays per robot unit time), then it is detrimental to have more than three robots. 
In this case, the optimum number of robots is either one or two. Similarly, if 
f = 2.5, it is detrimental to have more than six robots. The optimum number in 
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Fig. 7. Plot of profit per unit time (in units of the cost per robot per unit time, E) as a 
function of the number of batch-scheduled robots for profit factors of f = 1 .O, 2.0, and 2.5. 
The collision index p is i. Negative values indicate a loss. 

this case is exactly two. Such results are typical. A tabulation of these results is 
given in Table 5. 

Analogously, in the list-scheduled case the net profit G made per unit time 
is 

G=CN,-kE=-&kE, 

where Nk is the average number of jobs done per unit time with k robots at 
work. Again if f is the profit factor, 

G=E(fN,-k)=&-$ 

As in the batch-scheduled case, for the extreme case of p = 1 the optimum 
number of robots is 1, and if p = 0, the profit earned increases indefinitely 
with k. For a more realistic value of p (say p = f , the case of the circular 
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workspace), we have plotted in Figure 8 the ratio of G/E as a function of f. If 
f = 1, one robot is the optimum number (at the breakeven point), with any 
more robots leading to a loss. If f = 1.5 (i.e., if the policy is to charge per job 
one and one-half times the amount that the plant pays per robot time unit), then 
it is detrimental to have more than four robots. In this case, the optimum 
number of robots is either one or two. Similarly, if f = 2, it is possibly 
detrimental to have more than nine robots. The optimum number in this case is 
exactly three. A collection of these results is tabulated in Table 6. In every 
case the results strength our conjecture that the list-scheduled mode is superior 
to the batch-scheduled mode. However, if the invoking of the scheduler at 
every time instant is an expensive operation, it may be advantageous to use the 
batch-scheduled mode of operation, especially if k is small. 

We conclude this section by making some observations about assumptions 
Al and A2. Clearly, as shown earlier, these assumptions are not always valid. 
However, for practical purposes they are reasonable in that the results derived 
using them do not vary significantly from actual simulation results. To check 
this we have done a simulation where the robot paths are generated randomly 
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Fig. 8. Plot of profit per unit time (in units of the cost per robot per unit time, E) as a 
function of the number of list-scheduled robots for profit factors of f = 1.0, 1.5, and 2.0. 
The collision index p is f . Negative values indicate a loss. 
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between points on the circumferance of a circle. This corresponds to a 
workspace with collision index p of f . In this case we can see by enumeration 
that Al is not fully justified, because, as we have noted previously, some of 
the path patterns are not geometrically realizable for k = 5 and greater. 
However, in practice, although our assumptions are not exact, the degree of 
approximation is warranted. To be more specific, using batch scheduling, the 
values for Ek obtained in the simulation are 0.668, 0.579, 0.518, 0.474, and 
0.439 for k = 2, 3, 4, 5, and 6 robots respectively, based on 100,000 trials; 
these results agree reasonably well with the case p = f tabulated in Table 3. Of 
course, the agreement becomes worse with increased k. Similar results obtain 
for the list-scheduled mode. 

CONCLUSION 

In this paper we have considered the general problem of moving k robots in 
a workspace. Using a general model in which the probability of two robots 
paths intersecting is a quantity p, the decision problem “Are k + 1 robots 
better than k?” has been studied using two approximating assumptions. The 
problem has been studied for the cases when the robots are operating in either 
a batch-scheduled or a list-scheduled mode of operation. We have shown that 
the upper bound time complexity of this problem requires the solution of an 
exponential number of NP-complete problems. In the batch-scheduled case the 
NP-complete problem is the computation of the chromatic number of a graph 
G,, and in the list-scheduled case the NP-complete problem involves the 
computation of the maximal clique of the complimentary graph of G,. 

We have concluded the paper by considering the economic issues at stake. 
We have shown that if the plant charges C = fE per job, where E is the cost 
per robot time unit, then, for a given profit factor f, there is an optimal 
number of robots to be used. This optimal number has been obtained for 
various values of f. In this scenario, it is clear that k + 1 robots need not be 
better than k for either mode of operation. 

Finally we have shown the outcome of a simulation to indicate that the 
effect of our approximations need not seriously affect the nature of our results. 

The authors are extremely grateful to anonymous reviewers who reviewed an earlier 
version of the paper and pointed our various technical drawbacks. The quality of this 
version was significantly enhanced by their comments. 
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