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A B S T R A C T  

Let X and Y be any two strings of finite length. The problem of transforming 
X to Y using the edit operations of substi tution, deletion, and insertion has been 
extensively studied in the literature. The problem can be solved in quadrat ic  
t ime if the edit  operations are extended to include the operation of t ransposit ion 
of adjacent characters, and is NP-complete if the characters can be edited repeat- 
edly. In this paper  we consider the problem of transforming X to Y when the set 
of edit  operations is extended to include the squashing and expansion operations. 
Whereas in the squashing operation two (or more) contiguous characters of X 
can be transformed into a single character of Y, in the expansion operat ion a 
single character in X may be expanded into two or more contiguous characters 
of Y. These operations are typically found in the recognition of cursive script. 
A quadrat ic  t ime solution to the problem has been presented. This solution is 
opt imal  for the infinite-alphabet case. The strategy to compute the sequence of 
edit operations is also presented. 

1. I N T R O D U C T I O N  

In the  s t u d y  of t he  compar i son  of  t ex t  pa t t e rns ,  syl lables ,  sound  pho-  
nemes,  and  biological  macromolecu les ,  a ques t ion  t h a t  has in te res ted  re- 
searchers  is t h a t  of quan t i fy ing  the  d i s s imi la r i ty  be tween  two str ings.  A re- 
v iew of such d i s t ance  measures  and  the i r  app l i ca t ions  is given by  Hal l  and  
Dowling  [2] and  Pe te r son  [16]. We r e c o m m e n d  to the  reader  an excel- 
lent  book  ed i t ed  by  Sankoff  and  Kruska l  [18] which discusses  in de ta i l  the  
p r o b l e m  of sequence compar i son .  

T h e  mos t  p romis ing  of all  d i s t ance  measures  which c o m p a r e  two s t r ings  
seems to  be  the  one t h a t  re la tes  t h e m  using var ious  edi t  ope ra t i ons  [18, pp. 
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37-39]. The edit operations most frequently considered are the deletion of 
a symbol, the insertion of a symbol, and the substitution of one symbol 
for another [2, 5-11, 13, 15, 16, 18-20]. This distance, referred to as the 
generalized Levenshtein distance (GLD), between two strings is defined as 
the minimum sum of the edit costs 1 associated with the edit operations 
required to transform one string to another. Apart from being a suitable 
index for comparing two strings, this measure is closely related to other 
numerical and nonnumerical measures that  involve the strings, such as the 
longest common subsequence (LCS) [3-6, 12, 14] and the shortest common 
supersequence [12]. 

Various algorithms to compute this distance have been proposed. The 
most straightforward algorithm to achieve this has been independently pub- 
lished by many authors (see [18]), but the algorithm is generally associated 
with Wagner and Fischer [19]. A faster algorithm for the finite-alphabet 
case (and the unbounded-alphabet case for unit costs) has been invented 
by Masek and Paterson [13]. For the infinite-alphabet case and arbitrary 
edit costs, it has been shown that  Wagner and Fischer's algorithm is op- 
timal [20]. Related to these algorithms are the ones proposed to compute 
the LCS of two strings by Hirschberg [3, 4], Hunt and Szymanski [5], and 
Needleman and Wunsch [14]. Bounds on the complexity of the LCS prob- 
lem have been given by Aho et al. [1]. In this context, it is noteworthy 
that  techniques similar to those described in [19] have been used in the 
correction of noisy strings, substrings, and subsequences [2, 8, 10, 11, 16, 
21, 22], both when the transmission channel is unrestricted and when the 
channel is restricted to not making consecutive errors [9]. In this case the 
dictionary is represented as a trie. 

All of the above-mentioned algorithms consider the editing of one string, 
say X, to transform it to Y, with the edit process being absolutely uncon- 
strained. Sankoff [17] pioneered the study of constrained string editing. His 
algorithm is an LCS algorithm which involves a specialized constraint that  
has its application in the comparison of amino acid sequences. Later in 
[25], Oommen presented the first known solution to the problem of editing 
X to Y subject to any general edit constraint which could be arbitrarily 
complex, so long as it is specified in terms of the number and type of edit 
operations to be included in the optimal edit transformation. Using the 
fundamental principles of constrained string editing and considering the 
properties of a noisy channel which can garble transmitted sequences, the 
first algorithm to correct noisy subsequences was presented in [21]. The 

• 1 These costs are called distances if they obey metric properties such as the triangular 
inequality. Note that the GLD obeys the triangular inequality even when the individual 
operation costs do not. 
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accuracy of the algorithm to correct long subsequences with low "signal- 
to-noise" ratios was demonstrated in [21, 22], and a related algorithm has 
also been applied in encryption [231. 

Research in editing typically approaches the problem from two distinct 
perspectives. In the first, the problem is one of finding a minimum cost 
series of edit operations transforming one string into the other. But if a 
character can be edited at most once in this series, a restricted form of 
editing results, usually called an alignment. Indeed, when the costs on the 
edit operations obey a triangular inequality, finding an optimal alignment 
is equivalent to finding an optimal series, since transforming a character 
several times is necessarily more costly than transforming a character once. 
Generally, except for the very first papers on string editing, the literature 
has not made an issue of the distinction between computing an optimal 
alignment and computing an optimal series, or between assuming the tri- 
angle inequality and allowing general operation costs. This informality 
is permissible because, when the edit operations are restricted to inser- 
tion, deletion, and substitution of characters, an algorithm that  computes 
a minimum cost alignment can be used to solve the minimum cost edit 
series problem even when the triangle inequality does not hold--given ap- 
propriate preprocessing. The preprocessing constructs a new set of costs 
that  do obey the triangle inequality by determining, for every pair (a, b) of 
characters, the minimum cost of a series to transform a to b. This can be 
carried out with an all-pair shortest path computation on a graph whose 
vertices correspond to characters in the alphabet, and whose edges are 
weighted by the original edit costs. 

In all the above-mentioned results, the types of edit operations (or gar- 
bling operations if the transmission channel is modelled as a garbling mech- 
anism) are the well-known substitution, insertion, and deletion operations. 
To our knowledge, there are only few reported papers which study the case 
when the set of edit operations is expanded [24, 26-28]. In [24], apart  from 
the latter three operations, the set of edit operations has been expanded 
to also include the transposition operation. The string editing problem 
with transposition of adjacent characters is NP-complete. When the prob- 
lem is restricted to series in which any character is edited at most once 
(this reduces to finding a minimum cost alignment), the problem can be 
solved in quadratic time. The complexity of the string editing problem 
with transposition of nonadjacent characters is open. 

As opposed to [24], in this paper we consider the problem of editing X to 
Y when the set of edit operations is extended to include the squashing anct 
expansion operations. Wherea~s in the squashing operation two (or more) 
contiguous characters of X can be transformed into a single character of 
Y, in the expansion operation a single character in X may be expanded 
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into two or more contiguous characters of Y. These extensions are appli- 
cable in the recognition of cm'sive script. This is because, in cursive script 
processing, various squashing and expansion scenarios are encountered: It  
is not uncommon for the letter "y" to be mistaken for the combination of 
the characters "i j"  and vice versa, and similarly, it is not uncommon for 
the letter "w" to be mistaken for the combination of the characters among 
which are "ui" or "iu" and vice versa. Similar examples of squashing and 
expansion are encountered in applications when the demarcat ion between 
the boundaries of the individual symbols is not apparent,  as in the recogni- 
lion of handwrit ing and phoneme sequences [18]. Indeed, in that  sense, our 
result is a genera l i za t ion  more in the flavor of [26] where the expansion and 
the squashing do not necessarily have to involve the same character. Our 
work is similar to the excellent results catalogued in [27], except tha t  we 
are more interested in the alignment problem as opposed to the problem 
of processing a series  of edit operations. Thus, we would require a rather 
straightforward tr iangular inequality which ensures tha t  a sequences of edit 
operations tha t  can be effected by a single operation does not have a lesser 
cost than  the single operation itself. The question of how our algorithms 
can be optimized in the fi'amework of [27] remains open. 

Without  a triangle inequality, however, finding a minimum cost series of 
edit operations, with squashing and expansion, is ill fact NP-complete.  To 
see this, note tha t  we can accomplish a transposit ion of adjacent symbols 
x, y by a squashing operation x y  ~ axy followed by an expansion operation 
axy ~ y z ,  where axy is a new alphabet  symbol. Let us suppose tha t  
we now assign these squashing and expansion operations the cost 0.5, all 
other squashing operations infinite cost, and the insertion, deletion, and 
substi tut ion operations a cost of unity. Then, an algorithm that  finds a 
minimum cost edit series with squashing and expansion operations will 
find a minimum cost edit series with transposit ion of adjacent symbols, 
which is NP-complete  [28]. 

In this paper,  we present a quadratic t ime solution to the problem of 
string alignment for the expanded set of edit operations. As a corollary 
to [29], our solution is optimal  for the infinite-alphabet case. The tech- 
nique to compute the opt imal  sequence of edit operations is also presented. 
Also, throughout  this paper, we shall consider the squashing and expan- 
sion operations to be such that  two contiguous symbols of one string can 
be transformed into a single symbol of the second. The case when multi- 
ple contiguous symbols (more than two) of one string can be t ransformed 
into a single symbol of the other can be generalized from the principles 
described here. 
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1.1. NOTATION 

Let A be any  finite a lphabet ,  and A* be the set of strings over A.  0, the 
null symbol  (0 ~ A) ,  is dist inct  from #, the empty  string. Let A = AU{0} .  

is referred to as the appended alphabet. A string X E A* of the form 
X = x l . . . X N ,  where each x~ c A,  is said to be of length IXI = N.  Its 
prefix of  length i will be wri t ten as X~, for 1 < i < N.  Uppercase  symbols  
represent  strings, and lowercase symbols,  elements of the a lphabet  under  
considerat ion.  

Let Z ~ be any element in A*, the set of strings over * .  The  compression 
operator 02 is a mapp ing  from A* to A*: 02(Z') is Z ~ with all occurrences 
of the symbol  0 removed. Note tha t  ff preserves the order of the non-0 
symbols  in Z ~. For example, if Z'  - fOoOr. ~ ( Z  ~) = for. 

1.2. THE E L E M E N T A R Y  EDIT DISTANCES 

As ment ioned earlier, t h roughou t  this paper,  we shall only consider the 
case when the  squashing and expansion operat ions  involve t ransforming 
two cont iguous symbols  of one string into a single symbol  of the  other.  
Bear ing this in mind, we now define the costs associated with the individual 
edit operat ions.  If  R + is the set of nonnegat ive real numbers,  we define 
the  e lementary  edit distances using five e lementary  functions ds (., .), d~(.), 
d~(., .), dsq(., .), and d ~ ( . ,  .) defined as follows: 

(i) ds(p,q)  is a map from A x A --~ R + and is called the subst i tu t ion 
map.  In part icular,  ds(a, b) is the distance associated with subst i tu t -  
ing b for a, a, b c A.  For all a C A,  d, (a, a) is generally assigned the 
value zero, a l though this is not  mandatory .  

(ii) di( ' )  is a map  from A -~ R + and is called the insertion map.  The  
quant i ty  di(a) is the distance associated with inserting the  symbol  
a ~ A .  

(iii) d,~(.) is a map  from A--~ R ~- and is called the deletion or erasure 
map.  The  quant i ty  d~(a) is the distance associated with deleting (or 
erasing) the symbol  a E A. 

(iv) dsq(" , ") is a m a p  from A 2 x A -~ R + called the squashing map.  
The  quan t i ty  dsq (ab, c) is the distance associated with squashing the 
s tr ing ab into a single character  c, where a, b, c ~ A.  

(v) d~x(-,.) is a map from A x A 2 ~ R + called the expansion map.  
The  quan t i ty  d~x (c, ab) is the distance associated with expanding  the 
character  c into the str ing ab, where a, b, c C A. 
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1.3. THE SET OF EDIT POSSIBILITIES: Fx,v 

For every pair (X, Y), X, Y c A*, the finite set Fx,v is defined by means 

of the compression operator g, as a subset of A* × A*, as 

Fx,y = {(X',  Y')I  (X',  Y') ~ A* × A*, and each (X',  Y') obeys 

(i) ¢ ( x ' )  = x ,  ¢ ( Y ' )  = Y, 
(ii) IX'I = IY'I, 

' = ' = e} .  (1) (iii) For all 1 < i < [X'I, it is not the case that  x i Yi 

By definition, if (X ' ,Y ' )  e Fx,z, then Max(IXl, lYI) _< IX'l  = IY'l -< 
f x l  + IYI. 

Viewed from the perspective of the three elementary operations, the 
meaning of the pair (X',  Y') C F x , z  is interesting. Indeed, every element 
in F x , z  corresponds to one way of transforming X into Y, using the edit 
operations of substitution, deletion, and insertion. The edit operations 

x t  t themselves are specified for all 1 < i < IX' I by ( i, Y~), which represents 
' to y~. The cases below consider the three edit the transformation of x~ 

operations individually: 

/ / / (i) If x i C A and Yi E A, it represents the substitution of y~ for xi. 
t I ! (ii) If x i E A and Yi = 0, it represents the deletion of x~. 
/ / (iii) If x i E 0 and y~ C A, it represents the insertion of y~. 

Px,y is an exhaustive enumeration of the set of all the ways by which 
X can be transformed to Y using these three elementary edit operations 
where a symbol which is obtained by an edit operation is not subsequently 
edited. However, on examining the individual elements of Px,y,  it becomes 
clear that  each pair contains more information than that.  Indeed, in each 
pair, there is also information about the various ways by which X can be 
edited to Y even if the set of edit operations is grown so as to include 
squashing and expansion. Thus, when (X',  Y') = (abO, cde), apart from 
the operations described above, the pair also represents the substitution of 
"a" by "c" and the expansion of "b" by "de." Observe that  the transfor- 
mation of a symbol a E A to itself is also considered as an operation in 
the arbitrary pair (X',  Y') C Fx ,y .  Finally, note tha t  the same set of edit 
operations (alignment) can be represented by multiple elements in Fx,y.  
This duplication serves as a powerful tool in the proofs of various analytic 
results [6, 7, 9, 10, 21, 25]. 

E X A M P L E  1. L e t X = f  a n d Y = g o .  Then, 

F x , y  {(fO, go), (Of, go), (f88, Ogo), (OfO, g8o), (88f, goO)}. 
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In particular the pair ( f f ,  go) represents the edit operations of inserting 
the "g" and replacing the " f"  by an "o." It also represents the expansion 
of " f"  to "go." 

Since the edit distance between X and Y is the minimum of the sum of 
the edit distances associated with operations required to change X to Y, 
this distance D ( X ,  Y )  has the expression 

D ( X , F )  = 

Min 
((x',Y')Erx.v) 

[ ~ ,  [distances associated with the in (X', Y')I| 
] 

operations 
J i = 1  

(2) 

where ( X  ~, Y ' )  represents J~ possible edit operations. 

2. THE RECURSIVE PROPERTIES OF THE EDIT DISTANCE 

Let D( X ,  Y )  be the edit distance associated with transforming X to Y 
with the edit operations of substitution, insertion, deletion, squashing, and 
expansion. In this section, we shall describe how D(., .) can be computed. 
To achieve this, we shall first derive the properties of D (X ,  Y )  which can 
be derived recursively in terms of the corresponding quantities defined for 
the prefixes of X and Y (Xi and Yj, respectively), with the assumption 
that  D(#,  #) is zero. Indeed, in this case, we first claim the following 
straightforward results. They can be proved in the identical way in which 
the analogous results are proved for the edit distance which entails only 
the three elementary edit operations [6, 7, 9, 10, 19, 21, 25]. They can also 
be proved by straightforward enumeration. 2 

LEMMA 0a. Let X = X~ = x l . . . x i  be the prefix of X and Y = #, 
the null string. Then D ( X i , # )  obeys 

D(Xi ,p )  = D ( X i - I , p )  + de(xi). 

LEMMA 0b. 
D ( # , Y j )  obeys 

Let X = #, and Yj = yl . . . Yj be the prefix of Y .  

D(#, Yj ) = D(#, Ys-1) + d,(yj ). 

Then 

*2All the following lemmas can be combined as special cases of Theorem 1. We have 
separated them just to distinguish the various cases encountered in implementing the 
algorithm. 
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LEMMA 0c. Let X = Xx and Y = Yl. Then D ( X , Y )  obeys 

D(X ,  Y) = Min [D(#, Y)  + de(x1), D(X,  #) + di(yl),  ds(xl ,  Yl)]. 

LEMMA 0d. Let X i : X l . . .  x i  with i > 2 be the prefix of X ,  and 
Y = Yl, the string consisting of the first character of Y .  Then D(Xi ,  Y )  
obeys 

D(X~, Y) = Min[D(Xz_l ,  Y) + de(xi), D(X~, p) + di(yl),  

D(X i -1 ,  #) ÷ ds(xi, Yl), D(X~-2, p) + dsq(Xi_lXi, Yl)]- 

LEMMA 0e. Let X = xl be the string consisting of the first character 
of X and Y = Yl . . .  yj be the prefix of Y with j > 2. Then D(X ,  Yj) obeys 

D ( X ,  Yj) = Min[D(#, Yj) + d~(xl), D(X ,  ~ - 1 )  + di(yj), 

D(p, Yj-1)  + d~(X l, yj ), D(#, Y j -  2) + d ~ (  xl ,  Yj-  lYj )]. 

We shall now state and prove the main result of our paper. 

THEOREM 1. Let Xi  = xl .. .  xi and Yj = Yl •. • Yj with i, j > 2. Also, 
let D(X i ,  Yj) be the edit distance associated with transforming Xi  to Yj 
with the edit operations of substitution, insertion, deletion, squashing, and 
expansion. Then the following is true: 

D(Xi ,  Yj) = Min[D(Xi_l,  Yj) + d¢(x~), D(Xi ,  Yj-1) + di(yj),  

D(Xi_ 1, Yj-1) ÷ ds(xi, yj), D(Xi_2, Yj-1) 

+ dsq(Xi-lXi, yj), D(X i -1 ,  Yj-2) + d~x(x~, Yj-lYj)]. 

Sketch of Proof." Let Fx~,y, be the set of all ways by which X~ can 
be edited into Yj defined as in (1) for Xi and Yj. Consider the distance 
D(Xi ,  Yj), which has the expression 

D(Xi, Yj) : 

Min 
(~x~,Y')~ r;,-.v) 

I~-~ [distances associated with operations in (X~, YJ~)]/ 1 
/ i ~ 1  
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where (X{ ,  Y j )  • Px , , y ,  represents J '  possible edit operations. Through- 
X '  out this proof, a we shall assume that  the arbitrary element ( i,Ya') E 

Fx,,yi is of length L and is of the form given as 

x ; = '  ' and ~/ . v ; , y ; : . . v ; ~ .  X i l X i 2  • . . .TiL ~ = . 

The proof itself is now tedious and involves partitioning the set Fx,,~<, 
into nine mutually exclusive and exhaustive subsets as follows: 

r~ , ,y ,  = 

p2 
Xi Y.; 

F3, ,z~ = 

F 4x , , v:~ = 

I'SX , ,v, = 

F 6,  ,~<~ = 

F 7 , , ~  = 

F8, ,v~ = 

rgx,,yj = 

{ ( X ~ , Y j ' ) I ( X ~ , Y j )  E F x , , y , ,  with X~iL_l 

O, XliL = O, Y S L - 1  = Y 3 - 1 ,  I~]SL =- Y j } ,  

{(X~, Yj')I (X~, ]77') ~ Fx,,y~, with X'iL_ 1 

o , < ~  ' ~ = o},  = x z , Y j L - 1  = Y j ,  9 k 

{(X~,Yj) [ (X~,Yj) C Fx ,  y , ,  with X'iL_ l 

O,X:L = "Ti,Y~L--1 = Yj - -1 ,  ~ L  = Y J } ,  

( (x ;U)  I (x ;  U) c r.~.,,~.,, with xk_ ,  

Xi ,  XliL ~- 

{ ( x ;  ~')  

Xi ,  2gilL = 

{(x;, U) 
! l 

X i _ _ l ~ X i L  = X i ~ Y j L _ _  1 

I I X ! ( ( x ~ , ~ ) l ( ~ , ~ ' )  • 

X~_l,<~ =x~,~_, 
((x;, ~')I ( x ;  ~') 

( X '  Y ~  X '  , ,, , ,1(  ~ , U )  c 
! ! 

Z i _ l , X i L  = 2 g i , Y j L _  1 

YaL- i = & YjL = YJ }, 

I(X¢, Yj') c rx, ,vi ,  with X'iL_ 1 

o,y~_l  = yj-~, ~G = yj}, 
X 1 / i( ~, Yj) C Fx,,z,,  with X'iL_ 1 

' = 0}, O, Y j L  

F x , , v , ,  with X'iL_l 
= o, y k  = y ,} ,  

Fx~,y,, with X'~L_ 1 

= yj, y~  = 0}, 

Fx~,v,, with Xt~n_l 

The proof now involves minimizing the terms over each of these sets. 

* 3This  n o t a t i o n  is not  re l ig iously  correct.  Indeed,  the  length  of the  a r b i t r a r y  e lement  

in F x i , y .  i shou ld  be L ( X ~ , Y j ' ) .  But  th i s  will  make  an a l ready  ted ious  n o t a t i o n  even 
more  cumbersome.  We reques t  the  reader  to pe rmi t  us th i s  breach in n o t a t i o n  wi th  t he  
u n d e r s t a n d i n g  t h a t  he r emember s  t h a t  L is dependen t  on the  e lement  itself. 



98 B . J .  OOMMEN 

We shall go through the mechanics of minimizing over F 1  Yi" In every 

pair in F~:~,y~, we know that  the last two elements of each string in the 
pair are 

' = 8 ,  ' = O,  ' XiL-1 XiL Y j L - 1  = Yj- t ,  YjL = Yj" 

Hence, 

min 
((x; X;)e rL,y. ~ 

IJ'l 
E [distances associated with operations in ~ *, a J~ 
i=1 

Id'l 
mm E [distances associated with operations 

((xs~')er~ r ) i=1 

(a) 

( X  I y~ ~I l in t iL-1, jL -1IJ  ~- di(YjL). (4) 

For every element in F I y j ,  there is a unique element in Fx ,y j_I  and 
vice versa, where Fx,,y,_l is the set of all ways by which Xi can be trans- 
formed into Yj-1 defined as in (1) for Xi and Yj-1. This unique element is 
obtained by merely reducing the length of the strings X~ and Yj' by unity. 
By the inductive hypothesis, the first term in (4) is exactly D(X~, Yj-1).  
Since  YjL = YJ' this tells that  the above expression simplifies to 

D(X.  ~-1) + d~(yD. 

In an analogous way, the following result for the other eight 
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minimizations: 

minimizing over F~ ,y ,  leads to D(X~_I,Yj) + de(xi), 
minimizing over F3,,y~ leads to D(X~_I,Yj-1) + ds(x~,yj) and 

D(X~-2, Yj-1) + dex(x~, Yj-lYj), 
minimizing over F4~,y~ leads to D(X~,Yj_I) + d~(yy), 
minimizing over F5. ,y~ leads to D(X~, Yj_ 1) + d~(yy) and 

D(X~_I, Yj-2) + d~x(x~, yj-lYy), 
minimizing over F6,,yj leads to D(Xi-I,Yj) + d~(xi), 
minimizing over F~,,y~ leads to D(X~-I,Yj-1) + ds(x~,yj) and 

D(X~_2, Yj-,) + d~q(x~_lxi, yj), 
minimizing over F s , ~  leads to D(X~-I,Yj) + de(xi) and 

D(X~_2, Yj-,) + d~q(X~-lXi, yy), 
minimizing over F9y.~ leads to D(X~_I,Yj-1) + ds(xi, yy). 

Combining these minimizations proves the theorem. 
A note about  the modus operandus of the proof of Theorem 1 is not out 

of place. Our result is not merely a direct application of dynamic program- 
ming to the current problem, for there is a very fine point in which our 
proof differs from the proofs currently described in the literature. Indeed, 
the filndamental difference is that  in the current proof, whenever the set 
over which the minimization is achieved is grown, it is not merely a single 
optimization scenario which is encountered. Thus in Case 3 of the proof, 
there are two possible scenarios by which the minimization can be achieved. 
The first of the scenarios appears again in the processing of Case 7 and in 
the processing of Case 9. The second appears again in the processing of 
Case 5. Thus the same five terms appear in their different combinations 
in various cases encountered in the minimization process. This makes our 
proof more interesting and a trifle more "intriguing" and different from the 
proof of [19, 27]. Rather, the concept seems to be reminiscent of a control 
system in which various outputs are computed in terms of the same state 
variables by using different "output functions." 

3. THE COMPUTATION OF D(X,Y) 

To compute D(X, Y), we make use of the fact that  this index has the 
recursive properties given above. The idea is essentially one of computing 
the distance D(X~, Yj) between the prefixes of X and Y. The computa- 
tion of the distances has to be done in a systematic manner, so that  any 
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quanti ty D(Xi ,  Yj) is computed before its value is required in any further 
computation. Just as in the case of the previous string edit algorithms 
[3-6, 10, 11, 13, 15, 18, 19, 21,251, this can be actually done in a straight- 
forward manner by tracing the underlying graph, commonly referred to as 
a trellis, and maintaining an array Z('t , j)  defined for all 0 < i < N and 
0 _< j _< M, when iXl = N and IYi = M. The quantity Z ( i , j )  is noth- 
ing but D(Xi ,  Yj). We will discuss the properties of our particular trellis 
subsequently. 

Initially, the weight associated with the origin Z(0, 0) is assigned the 
value zero, and the weights associated with the vertices on the axes are 
evaluated. Thus, Z(i,  0) and Z(0, j)  are computed using Lemmas 0a and 0b 
for all 1 < i < N and 1 _< j _< M. The value for Z(1, 1) is then computed 
as a special computation outside any loop. Subsequently, the values for 
the lines i = 1'and j = 1 are traversed, and the distances associated with 
the vertices on these lines are computed using the previously computed 
values and Lemmas 0d and 0e. Finally, the weights corresponding to strict 
"interior" values (i.e.. whenever z, .2 > 1) of the variables are computed. 

The algorithm to compute Z(-,-) is given below. 

ALGORITHM General izedDistance 

I n p u t :  The strings X = x l . . . X N  and Y = Yl..-YM, and the set 
of elementary edit distances defined using the five elementary 
functions ds(.,-), di(-), d~(.), dsq(., .), and d¢x(., "). 

O u t p u t :  The distance D(X,  Y)  associated with transforming X to Y us- 
ing the five edit operations of substitution, insertion, deletion, 
squashing, and expansion. 

Method:  
Z(O, O) ~-- 0 
F o r i ~ - I  t o N D o  

Z(i,O) ~-- Z ( i -  1 , 0 ) +  d~(xi) 
For  j+ - -1  t o M D o  

z ( o , j )  z ( o , j  - 1) + 
Z(1, 1) +- Min[Z(0, 1) + de(x1), Z(1,0) + di(yl),  

Z(0, 0) 4- ds(Xl, ,~11)] 
F o r  i *--- 2 to N Do  

Z(i,  1) ~- Min[Z(i - 1, 1) + d¢(xi), Z(i ,  O) + d~(yl), 
Z(i  - 1,0) +d~(x~,yl) ,  

Z(i  - 2, O) + dsq(Xi-lXi, Yl)] 
F o r j  ~ - - 2 t o M D o  

Z(1 , j )  ~-- Min[Z(0, j )  + d ~(x l ) ,Z (1 , j  - 1) + di(yj), 
Z(O,j  - 1) +d~(x l , y j ) ,  
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z(0 ,  j - 2) + d  (Xl, 
For  i ~-- 2 to N Do 

F o r j  ~-- 2 to M Do 
Z ( i , j )  ~-- Min[Z(i - 1,j)  + d~(xi),  Z ( i , j  - 1) + di(yj ) ,  

Z ( i  - 1 , j  - 1) + ds(x~,y j ) ,  
Z ( i  - 2, j - 1) + d~q(x i_ lx i , y j ) ,  
Z ( i  - 1 , j  - 2) + d~x(Xi , y j - l y j ) ]  

D ( X ,  Y )  ,-- Z ( N ,  M )  
E N D  ALGORITHM Genera l i zeDis tance  

The computational complexity of algorithms involving the string com- 
parison is conveniently given by the number of symbol comparisons required 
by the algorithm [1, 20]. In this case, the number of symbol comparisons 
(or more relevantly, the number of invocations of the functions de('), di(.), 
ds(',  ")dsq(', '), dex(', ")). required by ALGORITHM GeneralizedDistance is 
clearly quadratic. Note that  in the interior of the main loop, we will need 
at most five additions and the computation of the minimum of a fixed (at 
most five) quantities. 

The lower bound result claimed in [291 naturally implies that  our algo- 
rithm is optimal for the infinite-alphabet case. This is because, first of all, 
we have not placed any restrictions on the edit costs. Also, the lower bound 
of [29] applies to the more restricted problem of finding a minimum cost 
alignment. Finally, when squashing and expansions have infinite costs, our 
underlying problem contains the traditional string alignment problem as a 
special case. 

3.1. GRAPHICAL R E P R E S E N T A T I O N  OF THE A L G O R I T H M  

As mentioned earlier, in the computation of various string similarity 
and dissimilarity measures, the underlying graph that  has to be traversed 
is commonly called a trellis (or grid graph). This trellis is two-dimensional 
in the case of the GLD I2, 6, 13, 15, 18, 19], the length of the LCS [3- 
6, 12, 18], and the length of the shortest common supersequence [12] of 
two strings. Indeed, the same trellis can be traversed using various set 
operators to yield the set of the LCS's and the set of the shortest common 
supersequences [6]. The trellis becomes essentially three-dimensional when 
one has to compute string probabilities [10], constrained edit distances [25], 
and correct noisy subsequences [21, 22]. Although the trellis itself is two- 
dimensional in the former examples, because the graphs are cycle-free they 
can be represented and traversed by merely maintaining single-dimensional 
structures [4]. Similarly, space optimizations are possible in the case of 
computing string probabilities and constrained edit distances. 
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(o,o) 

(o,1) I 

J 

(1,0) (2,0) ¢3,0) 

(i-1, j-2) 

(i-2, j - l )  (i-l, j - l ) ~  (i, j - l )  

Fig. 1. The  Trellis tha t  has to be traversed in order to compute  D ( X ,  Y) .  Note tha t  the 
only edges terminat ing at ( i , j )  are those start ing at (i - 2 , j  - 1), (i - 1 , j  - 1), ( i , j  - 
1), ( i -  1 , j )  and ( i -  1 , j  - 2). 

Even though the set of edit operations has been expanded, the funda- 
mental properties of the underlying graph remain the same. In this case, 
the vertices of the graph are the pairs (i,j), where 0 < i < N, 0 < j < 
M. The edges from a valid node (i,j) are directed arcs from (i,j) to 
( i +  1,j) ,  ( i , j + l ) ,  ( i+  1 , j +  1), ( i + 2 , j + l l ,  and ( i+  1 , j + 2 ) ,  wherever the 
target  nodes are feasible. The graph essentially has arcs whenever a single 
edit operation can be applied. Indeed, the algorithm describes an efficient 
quadratic time scheme by which the trellis can be traversed. 

For the sake of clarity, a pictorial representation of the graph is given in 
Figure 1. 

3.2. COMPUTING THE BEST EDIT SEQUENCE 

Just as in all the edit processes studied in the literature [3-6, 12, 14, 15, 
18, 19], the traversal of the trellis not only yields the information about 
the distance between the strings X and Y. By virtue of the way the trellis 
has been traversed, the distances between the prefixes of the strings has 
also been maintained in the process of computation, and thus, the array 
Z contains information which can be used to compute the best edit align- 
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ment  which yields the optimal  edit distance. This is done by backtracking 
through the trellis from the array element ( N , M )  in the reverse direc- 
t ion of the arrows so as to reach the origin, always remembering the path  
tha t  was used to reach the node which is currently being visited. Tiros 
the actual sequence of edit operations can be printed out in the reverse 
order. Without  further comment~ we now present ALGORITHM Produce 
EditOperat ions,  which has as its input the array Z(. , . ) .  To simplify the 
backtracking, we exclude the possibility of encountering negative values of' 
i and j by rendering Z(-, .) infinite whenever any index is negative. 

ALGORITHM P r o d u c e E d i t  O p e r a t i o n s  

Input:  

O u t p u t :  

M e t h o d :  

The strings X --- x l . . .  XN and Y = Yl • • • YM~ the set of ele- 
mentary  edit distances defined as in Algorithm Generalized 
Distance, and the array Z. 
The best edit alignment tha t  can transform X to Y using the 
edit operations of substitution, insertion, deletion, squashing, 
and expansion. 

Define Z ( i , j )  ~ oc whenever i < 0 or j < 0. 
i ~ - - - N  

j ~ M  
W h i l e ( i ~ 0 o r j ~ 0 )  D o  

I f  ( Z ( i , j )  = Z ( i -  1,j  - 1) + d s ( x ~ , y j ) )  T h e n  
Print ("Substi tute" x~ "by" y j) 
i ~ - - i - 1  
j ~ - - - j - 1  

Else 
I f  ( Z ( i , j )  = Z ( i , j  - 1) ÷ d i ( y j ) )  T h e n  

Print("Insert"  yj  ) 
j ~---y - 1 

Else 
I f  ( Z ( i , j )  = Z ( i  - 1, j )  + d¢(x~)) T h e n  

Print( :'Delete" xi) 
i ~ - - - i - 1  

Else 
I f  ( Z ( i , j )  = Z ( i  - 2 , j  - 1) 

+ dsq(X~- lx~ ,  y j ) )  T h e n  
Print( "Squash" x ~ _ l x i  "into" Yi) 
i , - - - i - 2  

3 ' - - - j - 1  
Else 
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I f  ( Z ( i , j )  = Z( i  - 1, j  - 2) 
+ d e x ( x i , y j - l y j ) )  T h e n  

Print ( "Expand" xi "into" yj_  1Yj ) 
i ~ - - i - 1  
j ~ j - 2  

E n d I f  
E n d I f  

E n d I f  
E n d I f  

E n d I f  
E n d W h i l e  

E N D  ALGORITHM P r o d u c e E d i t O p e r a t i o n s  

A recursive version of the above which yields the edit sequence in the 
correct order can be easily written. A skeletal form of this procedure would 
be as follows: 

ALGORITHM R e c u r s i v e P r o d u c e E d i t O p e r a t i o n s  ( i , j )  

Input: 

O u t p u t :  
M e t h o d :  

The strings X = x l . . .  xN and Y = Yl - . .  YM, the set of ele- 
mentary  edit distances defined as in Algorithm Generalized 
Distance, the array Z, and the indices i and j .  
The best edit alignment tha t  can transform Xi to Yj. 

I f  ( Z ( i , j )  = Z ( i -  1 , j  - 1) + d s ( x i , y j ) )  T h e n  
RecursiveProduceEditOperat ions (i - 1, j - 1) 
Print  ("Substi tute" xi "by" yj) 

E n d I f  

E N D  ALGORITHM R e c u r s i v e P r o d u c e E d i t O p e r a t i o n s  

Throughout  this paper,  we have only considered the case when the types 
of expansion and squashing errors involve transformations from a single 
character in one string to two characters in the second. I t  is easy to vi- 
sualize the generalization of this when the number of characters involved 
in the squash/expand operations is a constant K ,  where K > 2. The re- 
sulting trellis then would have to be traversed in essentially the same way, 
except tha t  at every internal node, the minimization would involve the 
computa t ion  of 2K + 1 quantities. For example, if K is 3, the correspond- 
ing minimization in the interior of the trellis would involve the following 
expression: 
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Z ( i , j )  ~- M i n  [Z(i - 1 , j  - 1) + ds(x~, yj) ,  Z ( i , j  - 1) + di(y j ) ,  

Z ( i  - 1,j)  + d~(xi),  

Z ( i -  2 , j  - 1 ) +  dsq(Xi - lx i ,  y j ) , Z ( i -  1, j  - 2 )  

+ dex(zi ,  Y j - l Y j ) ,  

Z ( i  - 3 , j  - 1) + d s q ( X i - 2 X i - l x i , y j ) , Z ( i  - 1, j  - 3) 

+ dex(xi ,  Y j -2Y j - lY j ) ] .  

The algorithm would still be quadratic in tile lengths of the strings as long 
as K is independent of M and N, which is not an unreasonable assumption, 
especially as the types of errors tha t  are caused in a channel are typically 
not functions of the strings transmitted themselves. 

The GLD, defined in terms of the standard edit operations, has been 
used to perform the automatic correction of noisy strings [2, 9, 16, 18], 
substrings [8], and subsequences [21, 22]. We believe that  the distance 
defined using the expanded set operations can be used to perform analo- 
gous correction when the errors include the "bouncing" and "coalescing" 
of characters andphonemes .  These concepts can also be applied to the 
comparison of molecular sequences when a single amino acid can be de- 
composed as a sequence of two (or more) compounds, each of which is 
represented by a single symbol. 

4. CONCLUSIONS 

Let X and Y be any two strings of finite length. The problem of trans- 
forming X to Y using the edit operations of substitution, deletion, and 
insertion has been extensively studied in the literature [1, 2, 6-11, 13, 15, 
16, 18-21]. In this paper, we have considered the problem of editing X 
to Y when the set of edit operations is extended to include the squashing 
and expansion operations. In the squashing operation two (or more) con- 
tiguous characters of X can be transformed into a single character of Y, 
and in the expansion operation a single character in X may be expanded 
into two or more contiguous characters of Y. The case when the number 
of operations involved in the squash/expansion is two has been thoroughly 
analyzed, and the case when this number is larger than two has been al- 
luded to. A quadratic time solution to the problem has been presented. 
This solution is optimal for the infinite-alphabet case. 

I would like to thank John Andrusek  and Wil l iam Lee for  their help in 
preparing the manuscmpt .  I am especially grateful to an anonymous  referee 
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who provided me with various comments regarding complexity issues and the 
comparison of these results with existing results. 

REFERENCES 

1. A . V .  Aho, D. S. Hirschberg, and J. D. Ullman, Bounds on the  complexity of the 
longest common subsequence problem, J. Assoc. Comput. Mach. 23:1-12 (1976). 

2. P . A . V .  Hall and G. R. Dowling, Approximate string matching, Comput. Surveys 
12:381-402 (1980). 

3. D.S .  Hirschberg, Algorithms for longest common subsequence problem, J. Assoc. 
Comput. Mach. 24:664-675 (1977). 

4. D.S .  Hirschberg, A linear space algorithm for computing maximal common subse- 
quences, Commun. Assoc. Comput. Mach. 18:341-343 (1975). 

5. J . W .  Hunt and T. G. Szymanski, A fast algorithm for computing longest common 
subsequences, Commun. Assoc. Comput. Mach. 20:350-353 (1977). 

6. R.L.  Kashyap and B. J. Oommen, A common basis for similarity and dissimilarity 
measures involving two strings, Internat. J. Comput. Math.13:17-40 (1983). 

7. R.L.  Kashyap and B. J. Oommen, Similarity measures for sets of strings, Internat. 
J. Comput. Math. 13:95-104 (1983). 

8. R .L .  Kashyap and B. J. Oommen, The noisy substr ing matching problem, IEEE 
Trans. Software Engng. SE-9:365-370 (1983). 

9. R. L. Kashyap and B. J. Oommen, An effective algorithm for string correction 
using generalized edit distances--I .  Description of the algorithm and its optimality, 
Inform, Sci. 23(2):123-142 (1981). 

10. R .L .  Kashyap and B. J. Oommen, String correction using probabilistic methods, 
Pattern Recog. Lett. 147-154 (1984). 

11. A. Levenshtein, Binary codes capable of correcting deletions, insertions and rever- 
sals, Sov. Phys. Dokl. 10:707-710 (1966). 

12. D. Maier, The complexity of some problems on subsequences and supersequences, 
J. Assoc. Comput. Mach. 25:322-336 (1978). 

13. W . J .  Masek and M. S. Paterson, A faster algorithm computing string edit dis- 
tances, J. Comput. System Sci. 20:18-31 (1980). 

14. S . B .  Needleman and C. D. Wunsch, A general method applicable to the search 
for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 443-453 
(1970). 

15. T. Okuda, E. Tanaka, and T. Kasai, A method of correction of garbled words based 
on the Levenshtein metric, IEEE Trans. Comput. C-25:172-177 (1976). 

16. J . L .  Peterson, Computer  programs for detecting and correcting spelling errors, 
Commun. Assoc. Comput. Mach. 23:676-687 (1980). 

17. D. Sankoff, Matching sequences under delet ion/insert ion constraints, Proc. Nat. 
Acad. Sci. U.S.A. 69:4-6 (1972). 

18. D. Sankoff and J. B. Kruskal, Time Warps, String Edits and Macromolecules: The 
Theory and Practice of Sequence Comparison, Addison-Wesley, MA, 1983. 

19. R .A.  Wagner and M. J. Fischer, The string to string correction problem, J. Assoc. 
Comput. Mach. 21:168-173 (1974). 

20. C .K .  Wong and A. K. Chandra,  Bounds for the string editing problem, J. Assoc. 
Comput. Mach. 23:13-16 (1976). 

21. B . J .  Oommen, Recognition of noisy subsequences using constrained edit distances, 
IEEE Trans. Pattern Anal. Mach. Intell., PAMI-9:676-685 (1987). 



S T R I N G  A L I G N M E N T  W I T H  S U B S T I T U T I O N  OPERATIONS !07 

22. B. J. Oommen and E. T. Floyd, An improved algorithm for the recognition of 
noisy subsequences, Proceedings of the 1991 I A S T E D  International Symposium on 
Artificial Intelligence Applications and Neural Networks, Zurich, 1991, pp. 145- 
147. 

23. J. Golic and M. Mihaljevic, A noisy clock-controlled shift register cryptanaiysis 
concept based on sequence comparison approach, Proceedings of E U R O C R Y P T  
90, Aarhus, Denmark, 1990, pp. 487 491. 

24. R. Lowrance and R. A. Wagner, An extension of the string to string correction 
problem, J. Assoc. Comput. Mach. 22:177-183 (1975). 

25. B . J .  Oommen, Constrained string editing, Inform. Sci. 40:267 284 (1987). 
26. K. Abe and N. Sugita, Distances between strings of symbols Review and remarks, 

Proceedings of the Sixth International Conference on Pattern Recognition, (1982), 
pp. 172 174. 

27. E. Ukkonen, Algorithms for approximate string matching, Inf. Contr. 64:100 118 
(1985). 

28. R .A .  Wagner, On the complexity of the extended string-to-string correction prob- 
lem, Proceedings of the Seventh Symposium on the Theory of Computing, 1975, 
pp. 218-223. 

29. X. Huang, A lower bound for the edit distance problem under an arbitrary cost 
function, Inf. Proc. Lett. 27:319-321 (1988). 

Received 2 January 1993; revised 25 February 1994 


