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ABSTRACT 

This paper deals with the problem of estimating a transmitted string X, from the 
corresponding received string Y, which is a noisy version of X,. We assume that Y contains*any 
number of substitution, insertion, and deletion errors, and that no two consecutive symbols of 
X, were deleted in transmission. We have shown that for channels which cause independent 
errors, and whose error probabilities exceed those of noisy strings studied in the literature [ 121, 
at least 99.5% of the erroneous strings will not contain two consecutive deletion errors. The best 
estimate X * of X, is defined as that element of H which minimizes the generalized Levenshtein 
distance D( X/Y) between X and Y. Using dynamic programming principles, an algorithm is 
presented which yields X+ without computing individually the distances between every word 
of H and Y. Though this algorithm requires more memory, it can be shown that it is, in general, 
computationally less complex than all other existing algorithms which perform the same task. 

I. INTRODUCTION 

One of the problems encountered in text recognition is that of correcting 
misspelled words. Let Y be a misspelled (noisy) string obtained from a word X,, 
an element of a finite dictionary H. Various algorithms have been proposed to 
obtain an appropriate estimate of X, based on Y. 

Many researchers [7, 9, 10, 13, 211 have defined X+, the best estimate of X,, 
as that XE H which minimizes the Levenshtein distance D(X/Y) between X 
and Y. The standard technique (ST) of computing X+ requires the separate 
evaluation of the edit distance between Y and every element XEH. However, 
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the ST does not utilize the information it has obtained in the process of 
evaluating any one D( Xj/ Y), to compute any other D( X,/Y). Suppose X, and 
X, have the same prefix Xc’) = a,~~.. . up. Then the ST would compute the 

distance D(a, . . . a,/ Y) for both X, and X, and would thus unnecessarily repeat 
the same comparisons and minimizations for all r= 1,. . . ,P. Thus, the ST 
usually has many redundant computations. 

In this paper we present a new technique, called Algorithm I, to compute 
Xt EH which minimizes D( X/Y) for a given Y. In contrast to the ST, in 
Algorithm I we do not individually evaluate D(Xi/Y) for every X, EH. By 
treating the dictionary as one integral unit and by using dynamic programming 
principles, we compute the distances D( X/ Y) for all XEH simultaneously. In 
Algorithm I we take the maximum advantage of the information contained in 
the prefixes of the words of the dictionary. In other words, we make the most of 
the fact that the recognizer for a finite dictionary is a finite state machine (FSM) 
which has an inherent tree structure. The computational advantage of Algorithm 
I over other existing algorithms [7, 9, 10, 13, 20, 211 is considered in the 
companion paper [ iSI. 

The heart of the paper is the recursive computation of the distance D( X/ Y). 

To render the computation recursive, we introduce an auxiliary measure 
D,( X/ Y), termed the pseudodistance between X and Y, from which D( X/ Y) 

can be computed using one additional symbol comparison. The distance mea- 
sure 0,(X/Y) has some desirable properties. Let x”) be the prefix of X of 
length i, and let Y(j) be the prefix of Y of lengthj. The pseudodistance measure 
between Xc’) and Y(j) can be computed using only a fixed finite number of 
pseudodistances between the prefixes of XCi) and Y(‘-i) respectively. 

In Sec. II, we define the distance D(X/Y) and obtain an explicit expression 
for it. In the next section we prove its recursive properties. Using dynamic 

programming procedures [4], we proceed to show how X+ can be obtained 
recursively. The fact that the structure of this FSM that accepts H can be 
represented as a tree, is used in the companion paper [ 181 to study the 
computational complexity of Algorithm I. A comparison of Algorithm I with 
other existing algorithms is also found in [ 181. 

II. FUNDAMENTALS AND DEFINITIONS 

II.I. NOTATION 

An alphabet A is a finite set of symbols, and A* is the set of strings over A. 
ZEA* is a string of length 1 ZI. A dictionary H is a predefined set of J words: 

H= q=k$,xi,li=l ,..., J;xi,EA 

where II is a concatenation relation. 
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N, is the length of the longest word in W. The null string p is defined by (i) 
at,~=prx=a and (ii) pp=p, where arEA *. We disting~sh X, the null symbol, 
from p, the null string. Let 2 =A U (X}. a is called the uPPe~~e~ u~~~~~. 
Uppercase letters will be used to represent strings of symbols, and lowercase 
letters to represent elements of the alphabet under consideration. 

Let Z&.4* be a string of length R, RZO. Then Zp, the left derivative of Z of 
order one (or simply the left derivative of 2) is defined as the prefix of 2 of 
length R - 1, if R> 1, and as p if R=O. Zg, the left derivative of .Zp, is referred 
to as Z’s left derivative of order two. 

11.2. TRANSMISSION ERRORS 

Suppose a string X9 EN is the input to a noisy channel, and Y is the output 
noisy string. We assume that there are three types of errors in Y (let a, /3 EA* 
and a, bEA, where a#b): 

(i) Y has a substitution error if X, =a# and Y=ttbfi. 
(ii) Y has a deletion error if X, --aa/ and Y=@. 

(iii) Y has an insertion error if X, =a/3 and Y=@?. 

The following are the assumptions made regarding the properties of the noisy 
channel through which X, is transmitted. 

ASSUMPTION i. The noise that corrupts any xi in X, is independent of the 
noise that corrupts any other symbol xj in X,. 

CAPTION ii. The channel has the property that it does not delete two 
consecutive symbols of X,. In Sec. III.6 we relax the assumption and require 
that no P consecutive symbols of X, be deleted in the process of transmission, 
where 2<P<iV, (N, is the length of X,). 

We shall justify Assumption ii in See, III.5 

11.3. DISTANCES BETWEEN STRINGS 

Suppose we edit a received string WEA* and transform it to another string 
ZEA* by either replacing some of its symbols with other symbols in A, or 
inserting some new symbols in it, or deleting some of its symbols. We can then 
define a distance D( Z/W) between Z and W, based on the intersymbol 
elementary edit distance measure d( - / s) obeying the inequalities of Okuda et al. 
[ 131. The meaning of these intersymbol edit distances is given below. 

(i) d( u/b) is the edit distance associated with replacing a b in W with an Q to 
transform it to Z, Odd(afb)Gm. By definition d(afa)==O. 
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(ii) d(A/b) is the edit distance associated with deleting a b in W, where 
O<d(X/b)< co. 

(iii) d(b/h) is the edit distance associated with inserting a b in W, where 
Ocd(b,‘A)<co. 

The distance D(Z/ W) is defined as the minimum sum of the distances 
associated with the edit operations done on W to transform it to Z. We now 
obtain an explicit expression for it, Suppose that both 2 and Ware of the same 
length M. If ti and +vj (the ith symbols of 2 and W respectively) are such that 
d(z,/w,)<oc for all 
following expression: 

i=l,..., M, then the definition of D(Z/ W) yields the 

D( Z/W)= 5 d(Zi/Wi). 
i=I 

Suppose Z and Ware not of the same length. We can create two strings Z’ and 
W’, both of the same length L’, by inserting X’s between the symbols of Z and W 
respectively, and can set up a one to one correspondence between the symbols z,! 
and wi’, i= 1, 2 ,..., L’, the individual symbols of 2’ and W’ respectively. ‘Ibus 
with each such pair (Z’, W’) we can associate a unique set of edit opektions 
which is that of transforming each IV; to the corresponding z; , provided both are 
not simultaneously A. Further, with each pair we can associate a sum of 
distances given by 

5 d( z;/w;). 
i=I 

The minimum of the sum of the edit distances over all the possible pairs (Z’, 
W’) obeying Assumption ii is the distance D( Z/ W). A precise expression for it 
is given by 

D(z/wJ= (z’ yg&‘, [ j~,d(rl/w:)], z,wEA*, (2.1) 

where T” = {(Z’, W’)l Z’, W’ satisfying (a)-(c)} : 

(a) Z’ and W’ are strings obtained by inserting h’s in Z and W respectively, 
with no z; = w; =X. 

(b) The symbols in W’ corresponding to any two consecutive symbols of Z 
are not both A, due to Assumption ii. 

(c) max[R, KJ~IZ’I=(W’I=L’;sR+K-1, R=lZI, K=(WI. 

The above expression explicitly defines the generalized Lever&&in distance 
that has been used by previous researchers [4, 5, 7, 9, 13,21, 221. 
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III. THE COMFWTATION OF D( Z/ W) 

Our primary intention is to develop a recursive procedure to compute 
D( Z/W) which involves 003, a fixed finite number of the prefixes of Z and.the 
left derivative of W. To this end we introduce a distance measure, D,( Z/ W), 
referred to as the pseudo&stance between Z and W. The measure D,(Z/W) 
has the desirable properties that it can be computed recursively and that 
D( Z/ W) can be obtained from it using only one additional symbol compari- 
son. The pseudodistance 0,(2/W) between ZEA* and a received WEA* is 
defined as the minimum sum of the individual edit distances associated with the 
edit operations needed to transform a received W to Z gioen that the last symbol 
of Z was not inserted during editing. It can be evaluated by minimCng the sum 
of the edit distances over all pairs in T’ of (2.1) which do not require the edit 
insertion of Z,, the last symbol of Z. Thus, 

(3.1) 

where T, = {(Z’, W’)( Z’, W’ satisfying (a)-(c) below (2.1) and (d) below}: 

(d) If z( =zR then wi #A 

The relationship between D,( Z/ W) and D( Z/ W) is given by the following 
theorem, proved in the Appendix: 

THEOREM I. Let Z=II%“=, zi and W=IIz, wi. Let Zp be the left derivative of 
Z. Then the following distance equality is true: 

(3.2) 

Let YCK) be the prefix of Y of length K. We now derive the recursive 
properties of the pseudodistance between an arbitrary string ZEA* and YtK). 
The cases when 1 ZJ =OJ Z[=T, and j21&2 have been considered separately. 

Using the definition of p, we have the following expression: 

(3.3) 

Suppose we want to compute the pseudodistance between a single symbol b 
and YCK+‘). By the definition of the pseudodistance b could not have been an 
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inserted symbol. Using Lemma I and simple dynamic programming arguments, 

The expression for the pseudodistance between 2 and Y(K+‘) when 1 ZJ P2 is 
given by the following theorem proved in the Appendix: 

THEOREM IL Let Z, bc be an element of A*, b, cEA, and (Z, />O. Then 
D,(Z,bc/YfK+I)) can be eoafuated by the following equation: 

D,tZ&,‘Y ‘“+i))=min[{~,(Z,bc/Y’K))+d(h/y,,,)j, 

(ol(z,/Y’“‘)+d(b/h)+d(c/y,it,,f. (3.5) 

In the above expression the number of terms included to obtain the distance 
between 2, bc and YCK+‘) is merely three. Such a simplified expression is a 
consequence of (i) performing the recursion using the pseudodistance measure, 
and (ii) utilizing the fact that the channel obeys Assumption ii. It is exactly here 
that the distance computation presented here is superior to the one presented in 

[201- 

III.1. PRQCEDURE FOR OBTAhWG X+ 

Let V be the set of all the prefixes of H. Then a E V if and only if a is a 
concatenation of the first r symbols of some word in H. (rG N,,,, the length of 
the longest word in H.) Symbolically, 

Y= (alaj3EH; a,/3EA*}. 

We define RtK) as the set of all elements of I/ into which YtKK) can be 
transformed with finite pseudodistance. For all K= 1,. . . , A4 where M= ( Y (, 
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Similarly, we define ScK) as 

The reason why we have defined RCK) and StK’ in terms of the pseudodis- 
tances D,( Z,/Yr “j) is that they are recursively computable. Let us assume that 
we have the sets R(“’ and S fKK) obtained after editing the string YcK). Then, 
using Assumption ii, we can show that RtK+‘) can contain only terms of the 
form Z,, Zzc, Z,bc, where Z,, Z2 E RCK), b, CGA, and d(c/y,+ ,)< 00. Hence, 
the set RCK+‘) can be computed from a knowledge of just RCK), V, and the last 
incoming symbol yK+ [. This result is stated below and proved in the Appendix: 

THEOREM III. Let YcK) be t~epre~x of Y of le~gr~ K. If R’“) is the set uf all 
ZEV for which D~,(Z/Y(K))<co, then, using Ass~rnpt~a~ ii, RfK”f can be 
written as the union of three mutuaky exclusive sets: 

@K+I) =R(K) UR’UR”, (3.6) 

where, 

Combining the results of Theorem III and (3.3)-(3.9, one can see that 5”“) 
is also recursively computable. Using these results, we present Algorithm I that 
processes Y and yields as its output X+ . 

Initially we define R(O) = { p) and S”) = ((l,O)). From the results obtained 
above, we know that if the sets RcK’ and ,ScK) are known, and the incoming 
symbol yK+, is known, then the sets R(K-t’) and ScK+‘) can be computed 
directly. Thus, if (Y(= M, lTC,M) can be obtained recursively. After the whole 
string Y has been processed, we create two new sets R + and S ’ defined below: 

XP the left derivative of X} , 

S+={(X,u)\XER+,u=D(X/Y)}. 
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The set R+ has the property that every element in it is strictly an element of 
H and it satisfies the inequality D( X/Y)< cc. Similarly, in the set S + we retain 
only ‘the pairs (X, u), where XEH and u is the distance D( X/Y) -C co. By 
observing S +, the best estimate X+ EH which minimizes D( X/Y) can be 
obtained. The procedure verbally stated above is given algorithmically below: 

ALGORITHM I. 

1. Initialize R(‘)=(p), SCo)={(p,O)}. 
2. For K=O,...,M-I do 

(a) Compute RfK+‘) from RCK) and yK+ ,, using (3.6). 
(b) Compute S( K+ ‘) from S( K, and RCK+ ‘) as 

s(K+ 1) = ((Z,D,(Z/Y(K+')))IZER(K+')), 

where D,(Z/Y(K+‘)) is obtained using (3.3), (3.4), and (3.5) if IZl=O, 
IZ(=l, and 1Z1>2 respectively. 

3. Compute R+ and S+ from RfM) and StM) as: 
(a) R+={X(XER ‘?-IH} U{X(XEH,XqR(“),X,ER(M)} 

@) S+={(X,u)(XER+}, in which u is the distance D(X/Y) obtained 
using (3.2). 

4. Choose X+ E R + as the string which Y represents which minimizes D( X/ Y). 

1112. EXAMPLE 

To illustrate Algorithm I an example is given below for the dictionary H 
where 

H= { format, or}, 

A={a,f,g,m,o,r,t). 

Let the elementary edit distances be given by d( b/b) =O for all &A, d( f/g)= 
3.4, d(b/A)=2.3.for all bEA, d(h/b)=2.3 for all bEA. For simplicity we have 
assumed that all the other intersymbol distances associated with substitution are 
infinite. 

Suppose Y=gomzt. Without much comment, we briefly give the sets and 
complete the example. 

1, R”’ = {p} S’O’ = 

2. yl=‘ . 
g, Thus, {won- 
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3. y, =‘o’. Hence, 

4. ys =‘r’. 

sc3)={(for,3.4),(or,2.3),(fo,5.7),(o,4.6),(f,8.O),(CL,6.9)} 

5. y4 =‘m’. 

6. ys=‘t’. 

7. R+ = H, since no insertions can be made to create any new words which 
are not in R(‘) and yet are in H. Thus by observation D( format/gormt)= 5.7 
and D( or/gormt)=6.9, whence we decide that X+ =format. 

REMARK. Trimming the size of RcK) and ScK) by rejecting all states Z E RtK) 
for which D ,( Z/ YcK)) > D, (a threshold) considerably reduces the computation 
time. The threshold D,, can be either a constant or a function of K. 

111.3. A SIMPLIFIED VERSION OF ALGORITHM 1 

In this section we show that the recognizer for a finite dictionary is a finite 
state machine (FSM) which has an inherent tree structure. We then make use of 
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the fact that Algorithm I merely manipulates the nodes of this tree and present a 
simplified form of Algorithm I which is more easily programmable. 

Let H(‘) be the set of all the prefixes of H of length less than or equal to P. 
By definition, V is the set of all the prefixes of H. Thus, 

implying that 

H(ff=faIIapGP, @EN, a,#w*), 

y=~(%,). 

(3.7) 

(3.X) 

The FSM that accepts only words in H is given by the quintuple 
(A V T, f, H(O)), where: , , 

(i) A is the finite alphabet. 
(ii) Vis the set of states defined above. 
(iii) T is the set of final states=H. 
(iv) f is the transition function which defines the next state, if the present 

state and the input symbol b&4 are given. f is thus a map from VXA to V. 
f( a, b) =ab if and only if a is the present state, b is the input symbol, and both 
cuandabarein V. 

(v) H(O) is the starting state fi. 

We now explicitly define the tree structure of the FSM that accepts only 
words in H. Since H is a finite set, this FSM must have no cycles. Being a 
completely connected graph, the transition map of the FSM can thus be 
represented by a tree having the following features: 

(i) The nodes of the tree correspond to the elements of V. 
(ii) If 2 is a node of the tree, then by virtue of the transition function of the 

FSM, Zp will be the parent node of 2, and Zg will be the grandparent of Z. 
(ii) The root of the tree will be the node corresponding to p. 
(iv) The leaves of the tree will all be words in H (but the converse is not 

true). 

In future, we do not distinguish between the FSM and its corresponding tree. 
Neither do we distinguish between the nodes of the tree and their labels. 

With this tree structure as the basis we can now view Theorems II and III in 
a different way. Theorem III states that if a certamnode 2 of the tree is in R(jyt, 
then the nodes that are in RcK+ ‘) caused by Z are merely all the children and 
the grandchildren of Z. Similarly, Theorem II states that if the pseudodistance 
between a certain node Z and Y (K’ ‘) has to be computed, it can be done with 
merely a knowledge of the pseudodistances between each of 2, the parent of Z, 
the grandparent of Z, and the string Y(K) respectively. This justifies the 
simplified version of Algorithm I below. 
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Let a be an element of V whose left derivatives of order one and two are (Ye 
and 0~~ respectively. Further, for any XEH, let X, be its parent and xf its last 
symbol. Then Algorithm I can be seen to be equivalent to the procedure given 
below. 

SIMPLIFIED VERSION OF ALGORITHM I. 

Input: (1) The dictionary H in terms of the sets H(‘) for all i<N, (the length 
of the longest word in H) and the tree structure of the FSM that 
accepts H. 

(2) The garbled string Y. 

Output: The string X+ E H which minimizes D( X/ Y). 

Method: 
D,Q.&/Y’O’)=O, where Y(O) = II. 

for K= 1 to M do 
if (2K<N,) S=2K 
else S=N,,, 

for every a E H(') do 
if (D,(a/Y(K-‘)) or D,(aP/YcK-‘)) or D,(ag/Y(K-‘l))<oo) then 

ql=D,(a/Y(K-‘))+d(h/yK) 
q2=D,(a,/Y’K-‘))+d(a,/yK) 
q3=D,(ol /Y(K-‘))+d(ap,/X)+d(a,/ylr) 
D,(cu/Yc’))=Min[ql,q2,q3] 

end 
end tor every XEH do 

D(X/Y)=Min[D,(X/Y), Q(X,/Y)+d(x,/A)l 
end X’=ArgM$r[D(X/Y)) 

The “if” statement in the second “for” loop tests whether it is possible for a 
to be in RcK). Independent of d( a,/~~), D( U/Y(~)) is computed. If D( (r/ YcK)) 
= cc, then a will not be in RtK) and hence its contribution in the subsequent 
computations will be neglected. When all three, OL, OLD, ag 62 RcK-'), a can never 
be in RcK) and hence D( a/ YcK)) is not evaluated. The last “for” loop considers 
the possibility of x, being deleted in transmission. One can verify that, by virtue 
of the results of Theorems II and III, the above algorithm is equivalent to 
Algorithm I. 

111.5. JUSTIFICATION OF ASSUMPTION II 

In the formulation of Algorithm I we have assumed that in the process of 
transmission no two consecutive symbols of X, were deleted. In this subsection 
we justify this assumption. 
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Let pE be the probability of correctly transmitting any one symbol a EA. Let 
p,,, be the probability that the symbol is erroneously transformed into some other 
symbol b&4. Let pd be the probability that the symbol a is deleted. Since any 
transmitted symbol can either be correctly transmitted or erroneously trans- 
formed or deleted, 

Let us suppose that a string X of length N is transmuted. Let E, be the event 
that at least one symbol was erroneously transformed or deleted. Let E2 be the 
event that at least two consecutive deletions took place. Using Assumption i, 

P (all the symbols are correctly transmitted) =p,“. 

Hence, 

P(E,)=l-p,N. 

To evaluate P( E,), we observe that there are 2N distinct possibilities of either 
deleting or not deleting the N transmitted symbols. By enumerating the 2N 
possibilities and evaluating the probabilities of the individual elementary events 
that favor E2, P( Ez) can be computed. Since E, is a subevent of E,, P( E2/E,) 

is the ratio P( E,)/P( E,). 

The probability P( E2/E,) has been evaluated for various values of pc, pW, 

and pd for various values of N. For example, if pc = 0.955, pW = 0.040, pd = 0.005, 
and N=8, we obtain that P(E,/E,)=0.00057. This implies that 99.943% of the 

erroneotcs strings will not contain two consecutive deletions. Consider the case 
when p, =0.94, pW =0.05, pd =O.Ol, and N=6. The error probabilities in this 
case are higher than the average error rates considered by Neuhoff [ 121, and the 
length of the words is about the average length of the 1021 most common 
English words [23]. Even in this case, we obtain that 99.840% of the erroneous 
strings will not contain two consecutive deletions. Hence, if the noisy channel 
obeys Assumption ii, the algorithm presented here can be used to correct all the 
possible noisy strings. Even if Assumption ii is not exactly satisfied, by the 
results derived above, we believe that the algorithm can, on the average, be used 
to correct at least 99.5% of the erroneous strings. 

111.6. GENERALIZATION OF ALGORITHM I 

We shall now generalize Algorithm I for the case when the channel does not 
delete P consecutive symbols of X,. The fact that we have assumed that the 
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noisy channel obeys Assumption ii implies that the only term in RcKC1) 
obtained as a result of inserting a symbol after a E RcK) is crbc [where d( c/y,+ ,) 
(001. Suppose we relax the assumption to require that in the process of 
transmission no P consecutive symbols be deleted. In such a case if a~@~), 
terms in RcK+‘) caused by insertions are of the form ab,b,...b,_,c [where 
every bi EA, d( c/yK+ ,)< oo]. The upper bound for P is N, - 1, where N, is the 
length of X,. 

If Assumption ii were true, then to evaluate D,( Z/Y(K+‘)) the only distances 
we would need to know are D,(Z/Y’K)), D,(Z,/YcK)), and D,(Z,/YtK’), 
where Zp and Zg are the left derivatives of Z of order one and two respectively. 
Relaxing the algorithm to permit up to P- 1 consecutive deletions will imply 
that we have to consider all the left derivatives of order P. This will mean that 
the distance expression (3.5) will contain P+ 1 terms over which the minimum 
must be taken. We now present Algorithm I-G, a generalization of Algorithm I, 
which yields as its output Xf EH which minimizes the distance D( X/Y) 
subject to the constraint that no P consecutive symbols of X, were deleted in 
transmission. The proof that the sets RtK) and ScK) are correctly computed 
follows from a direct generalization of the results of Theorems II and III. 

/iLGORITHM I-G 

I. Initialize R”)={p}, S(‘)={p,O)}. 
2. For K=O,. . . , M- 1 do 

(a) For every CIER(~), add fl to RcK+‘), where /3E V has a as its prefix and 
satisfies Ifil<lal+P+l. 

(b) Compute ScK+ ‘1 from ScK) and RcK+ ‘) as 

where Dl( Z/ YcK+‘)) is obtained using (3.3), (3.4) if ) 21~0 and ) Zl= 1 
respectively. If IZIP~, let one possible representation of 2 be ala2c, 
where Ja,J<P. ThenD,(Z/Y cK+‘)) is the minimum of D,(Z/Y(K)) and 
P other terms each of which corresponds to the transformation of yK+ , to 
c, the insertion of a2, and the editing of YcK) to a ]. 

3. Compute R+ and S+ from RcM) and SCM) as: 
(a) R+={XIXER @‘h-W} U{XlXEH, X@RcM’, XpERtM)}, 
(b) S’~{(X,U)\XER+}, in which u is the distance D(X/Y) obtained 

using (3.2). 
4. Choose X+ E R + as the string which Y represents which minimizes D( X/ Y). 
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IV. CONCLUSIONS 

In this paper we have presented an algorithm, referred to as Algorithm I, 
which has as its input a misspelled string Y which represents some unknown 
word X, of a finite actions H. The best estimate X+ of X, is defined as that 
string X in H which minimizes the generalized Levenshtein distance o(X,/Y) 
between X and Y. Algorithm I yields X’ without individually evaluating every 

D(X/y)* 
By studying Algorithm I using the tree structure of the finite state machine 

that accepts H, we can show [18] that though it requires more memory, it 
minimizes the number of computations required to obtain X” . This is because it 
utilizes the maximum information obtained during the process of evaluating any 

one L3( Xi/Y) to compute any other D(Xj/Y). In the second part of this paper 
[18] it is shown that, in general, Algorithm I is computatioxally less complex 
than both the standard technique (ST) of obtaining X’ and the algorithm 
presented in [ZO]. Its superiority has been demonstrated for various dictionaries, 
including the dictionary consisting of the 1021 most common English words of 
Iength greater than unity. 

APPENDIX 

A. PROOF OF THEOREM I 

Consider the expression for D( Z/ W) given in (2.2). We have required that in 
every pair (Z’, I+“) in T”, (a) no .z,! = w! =A and (b) the symbols in W’ 

corresponding to any two consecutive symbols in Z be not both A. This 
wndition is irnp~~~y assumed in all the sets defined in this proof. To simplify 
notation, let Z,, =max[R, K] and L, =R+K- I. 

We partition T” into two mutually exclusive subsets T, and Tb as T” = T, U Tb, 
where 

T,={(z’, W’)l(z’[=(W’I=L’;,L, GL’GL,; and if z(=za, then wi#A}, 

T,k ((Z’, W’)fj Z’/ =/ W’/ =L’; L, GL’GL,; and if zf =zR, then wi =A>, 

Consequently, 
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But T, is identically equal to the set T, of (3.1). Hence the first term in (A.l) is 
0,(2/W). Since in every pair (Z’, W’) in Tb, the symbol zR is an inserted 
symbol, in view of Assumption ii, zR_, cannot be an inserted symbol. Let T; be 
the set 

where L’, =max[R- 1, K] and L; =(R- l)+K- 1. Then 

The first term on the right hand side of (A.2) is exactly Dt( ZP / W). Rewriting 
(A.1) using the simplified pseudodistance expressions for the individual terms, 
we obtain the result. 

The theorem is trivially true if D,( Z,~C/Y(~)) = co. We shall only consider 
the case when it is finite. 

For the sake of convenience, let Y, = YcK) = II,“= , y,, and let Y, = Y(Ki-‘) = 
rI;“Z’y,. If ]Z,]=R, we write Z, =II,k, zli. Since (Z,]=R, from (3.2) we express 
the pseudodistance D,( Z, / Yf K)) in terms of the individual edit distances as 

3= 

( Z; ?$E T4 [ 1 
s z;u; ) tB.1) 

where T4 = (( Z; , Y;)l Z; , Y( satisfying (a)-(c)} : 

(a) Z; and Y; are strings obtained by inserting h’s in 2% and Y, respectively, 
with no rii =yii =X. 

(b) If ziP=zR theny;,#X. 
(c) max(R,K]~IZ;I=IY;(=L’~R+X-1. 

Conditions (a) and (b) regarding the position of X will hereafter be taken for 
granted. 
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Let 2, = 2, bc. Then since 12, { I=: R + 2, using (3. I), 

03.2) 

where T5={(Z~,Y~)IZ;,Y; satisfying(a)-(c)): 

(a) 2; and,Y; are strings obtained by inserting h’s in Z, and Yr respectively, 
with no z& =y& =h. 

(b) If zib =zs then yip #X. 
(c) max[Rhlf2,K+lJb{Z;I=lY;I=L’~R+K+2. 

Noting that c and yK+ , are the last non-h symbols of Zi and Y;, the set of all 
possible pairs (Z;, Y;) can now be partitioned into five mutually exclusive and 
exhaustive subsets (A}- {E} (in all the subsets, the index nt is arbitrary): 

(A) contains the pairs in which c is to the left of yK+ , : 

z; =( Z,bc)‘X, 

03.3) 

{B} contains the pairs in which c and y,, , are in identical positions. It can 
further be partitioned into two mutually exclusive and exhaustive subsets { Bl } 
and (B2). (Bl } contains those pairs of {B} in which the last non-X symbol of 
Y; lies to the left of b in Z;: 

z; =z;bc, 

Yz’ = Y)ly*+, . (B.4) 

(B2) contains those elements of (B) in which at least one non-h symbol of Y; is 
either identically placed as, or is to the right of, b in Z;: 

Z; =(Z;‘bKl)c, 

K = (y:)YK+ I fB-5) 
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{C] contains all pairs in which yK+ , lies between b and c: 

2; = (Z;bW)Xc, 

ys =fmYK+& (Bd 

{D} contains the pairs in .which b and yK+ , are identically placed: 

2; =Z;bc, 

Y; = Y{y,+,h. (B-7) 

{E} contains the pairs in which yK+ , is to the left of b: 

Z; =( Z;)bc, 

ri =wYK+,w. (B.8) 

No element of either {C}, {D}, or {E} will be admissible in T,, since every 
element in these sets requires the insertion of c, the last symbol of Z,k. Every 
element in {E} requires that both b and c be inserted, and this further violates 
Assumption ii. 

Thus the pseudodistance O,( Z2/Y(K+“) can be written as 

From (B.3), 

e [s,;,;] =o,(z,bc/Y,)+d(h/y,+,). (B.lO) 

From (B.4), 

~[s,;,]=~,(Z,/Y,)+d(b/X)+d(c/y~+,). 

From (ES), 

~~[s,,,,]=D,(Z,b/Y,)+d(c/y,+,). 
I 

Rewriting (B.9) using (B.lO)-(B.12) proves the theorem. 

(El 1) 

(B.12) 
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C. PROOF OF THEOREM III 

We recall the definition of RCK+‘) as 

R(K+‘)={ZID,(Z/Y(K+‘))<oo}. 

We partition RcK+ ‘) into two disjoint sets as 

RcK+‘)=R,,UR,, (C.1) 

where 

and 

We further partition R, into two mutually exclusive subsets R 2 and R,: 

and Z=Z2c, where Z, ER’~)}, 

andZ=Z,c,whereZ,BRCK)}: 

The set R, can be equivalently written as 

R,={Z,bclD,(Z,~c/Y’K+“)<co,D,(Z,bc/Y’K’)=w, 

D,( Z,b/Y'K))=OO}. 

The expression o,(Z/YcK))<cc implies that D,(Z/YCKt’))<co. Hence the 

set R, is identically equal to RcK). 
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Consider the set R 2. Since Z,c E R (‘+I), the pseudodistance D,( Z,C/Y(~+‘)) 
is finite. Further, since D,(Z/Y(K)) is infinite, and since c, the last symbol of Z, 
must have been a substituted symbol, it must have been substituted for by yK+ , . 
Consequently, R, can be equivalently written as: 

which is identical to R’ of (329. 
Consider the set R,. Since D,(Z,~C/Y(~“))<M), and since both 

&( Z,~C/Y’~)) and &( Z,t?/YcK’) are infinite, c must have been a substituted 
symbol, substituted for yK+ 1. If b were a substituted symbol, then Z, b would 
have been an element of RtK). Hence b must have been an inserted symbol. 
Since b’is an inserted symbol, by virtue of Assumption ii, the last symbol of Z, 
must not be an inserted symbol. Thus, since (i) c is substituted for yK+ , , and (ii) 
b is an inserted symbol, and (iii) d( Z, bc/ YCK+‘)) < 00 we conclude 
that due to (C.3), D,( Z,/YcK’) is finite, and 

D,(Z,bc/Yf”+“)cD,(Z,/Y’K’)+d(b/X)+d(c/y,,,). (C.3) 

Hence Z, is an element of R (~0 Thus the set R, can be rewritten as . 

I),(z,b/Y’K’)=~,I),IZ,bc/Y’~‘f=ac,andd(c/y~,,)cco), 

(C.4) 

which is the set R” of (3.6). 
Combining (C.l)-(C.4), the theorem is proved. 
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