Secure Software Installation on Smartphones

David Barrera, P.C. van Oorschot
Carleton University

November 3, 2010

1 Introduction

Smartphones — mobile phones with advanced features
such as always-on Internet connectivity, full-featured web
browsers and multimedia capabilities — have become
extremely popular. Smartphone manufacturers and mo-
bile operating system (OS) vendors are reporting record
number of units sold, and thousands of developers are
forming communities around each of the popular smart-
phone platforms. Recent trend analysis anticipates that by
2015, more users will be accessing the web through smart-
phones than through desktop systems [2]. It isn’t entirely
surprising to see this shift taking place. Smartphones to-
day are more powerful than desktop computers were 10
years ago; they are more portable, have fast CPUs, large
amounts of RAM, and high-speed Internet connectivity.
These desktop-like characteristics, coupled with endless
innovation from developers, make smartphones a promis-
ing platform for the future.

Smartphone OSs ship with applications that provide
core phone functionality to the device (e.g., applications
to send and receive text messages, make phone calls,
etc.). Additional applications such as games, productivity
and communications applications are typically written by
third party developers. Third party application develop-
ment has become a key factor in determining a platform’s
commercial success. This has led major smartphone OS
vendors to provide open development tools such as a set
of application programming interfaces (APIs), emulators
and tools to build applications, even in those cases where
the platform itself is not fully open.

There are currently thousands of applications (apps)
available for the top smartphone platforms which can usu-
ally be installed through an on-device store with a few key
presses. Allowing such a large number of applications
from a variety of developers to be installed with such ease
raises security issues. Can this app be trusted? Can this
developer be trusted? Will this app break other apps I
have installed?

This article summarizes how popular smartphone OSs

handle the installation of third party applications. We also
provide an overview of the common security features in
smartphones related to application installation and isola-
tion, present a generalized classification of software in-
stallation approaches, and discuss security implications.

1.1 Security Considerations for Smart-
phones

Mobile phones have traditionally been simple devices ca-
pable of performing only basic phone functions. With the
release of newer smartphone OSs, mobile phones have
started to include advanced desktop-like features, which
has caused users (and forced app developers) to think dif-
ferently about these devices. It is unclear whether users
think of their smartphones as computers, since typical
computer activities such as installing and updating soft-
ware are present (albeit simpler), but other activities such
as running anti-virus or a firewall on a smartphone are
currently uncommon.

Due to their extensive feature-sets, smartphones tend
to store more personal data (e.g., pictures, messages,
detailed contact information) than their Plain Old Cell-
phone (POC) precursors, making privacy and data leak
risks more serious in the smartphone world. Further-
more, always-on connectivity and cloud synchronization
facilitates the propagation of locally corrupted data to
other synchronization end-points. Blackberry’s Enter-
prise Server (BES!) and Android’s contacts applications
are good examples of where syncing results in contacts
and email being stored on remote servers and thus offer-
ing additional attack points. Malware infecting the phone
could propagate to the cloud and in turn modify contacts
on other cloud-connected hosts.

Many smartphones also include GPS receivers to help
users get directions and find nearby attractions. Malicious
applications can potentially use location information to
track or spy on users, leading to serious privacy concerns.

'http://na.blackberry.com/eng/services/
business/server/full/

Smartphone OS || 2Q 2010 Global Market Share [6]
iPhone 14%
Android 18%
Blackberry 18%
Symbian 44%

Table 1: Second quarter global market share (units sold)
of smartphone platforms

The issues mentioned above are by no means exhaus-
tive, but do provide a flavor of the types of security con-
cerns that can arise from the increasing use of third-party
applications. Shabtai et al. [5] provide a comprehensive
list of smartphone threats (and their applicability to An-
droid devices).

2 Current Smartphone Platforms

This section reviews the most popular smartphone plat-
forms as of 2010. It includes a brief history, the pro-
gramming language used in third-party application devel-
opment and unique features. The platforms discussed ac-
count for approximately 94% of the global smartphone
market (see Table 1).

2.1 iPhone

iPhone OS (renamed to iOS in July 2010) is Apple’s Mac
OS based operating system for their line of mobile de-
vices. The iPhone, iPod Touch and iPad run iOS, al-
lowing developers to easily write applications that run
on all supported devices. iOS applications are written in
Objective-C and are capable of communicating with hard-
ware through a set of published APIs. iOS offers several
layers of abstraction to easily create on-screen menus that
interact with the user, 2D and 3D graphics, location ser-
vices and core OS functionality such as threads and net-
work sockets. Application separation and isolation on iOS
is achieved through a sandboxing mechanism similar to
that of Mac OS X, in which a policy file restricts access to
certain device features and data [3]. By default no third-
party application can read or write data outside its own di-
rectory, which include system files, resources and the ker-
nel. Restricting applications this way requires developers
to use registered APIs to access protected resources.
Developers wishing to publish i0OS applications must
submit them to Apple for approval. While Apple has not
published detailed information regarding the criteria un-
derlying its approval process [1], it is generally believed
that the company performs a combination of automated

and manual verification of submitted apps. If the appli-
cation is categorized as suitable for public distribution, it
is digitally signed by Apple and released to Apple’s soft-
ware clearinghouse, the iTunes App Store. Apple rejects
applications that it finds violate intellectual property or
go against developer terms of service. Developers have
reported cryptic and seemingly subjective rejections for
some applications, supporting the consensus that there is
at least some manual verification of submitted apps.

2.2 Android

The Open Handset Alliance’s Android platform (mainly
backed by Google) is an open source Linux-based middle-
ware that runs on top of a Linux kernel. Android powers
a variety of devices (over 60 smartphones models, tablets
and netbooks as of July 2010) produced by a large num-
ber of manufacturers. Hardware support is provided by
Linux, while Android provides a device-independent API
and user interface. Since the announcement and first re-
lease of Android in October 2008, the code base has seen
very rapid development, with 3 major releases in 2009
alone.

Applications for Android are written in Java and run in
a custom virtual machine called Dalvik. Process and file
system isolation is primarily provided by making each ap-
plication run as its own user (standard UNIX UID). By
default, applications only have read and write access to
files in their own directory. While Dalvik provides some
isolation as well, Android makes no security claims or as-
sumptions that the VM itself provides security. This is
because application developers can create and invoke li-
braries written in C/C++, which are run natively, beyond
VM boundaries.

A feature that makes Android unique in the smartphone
space is that the OS allows applications to interact and
use system resources based on a list of permissions la-
bels. The permission-based architecture requires devel-
opers to declare any special functionality their apps might
need (camera, GPS, access to messages or contact data,
etc.). Application developers can specify (in a manifest
file) permission labels which protect their own interfaces,
or labels to request access to another application’s pro-
tected interfaces. Inter-process communication (IPC) is
allowed if the callee application has made available un-
restricted access to its APIs, or if the calling application
has defined necessary permissions in its manifest to access
remote APIs. Enck et al. [4] discuss Android’s security
model including IPC and permission architecture.

Applications for Android can be downloaded through
the “Android Market” (Google’s controlled app market),

or obtained directly through a developer’s site or third
party app market (also known as sideloading). Google
has minimal involvement when applications are uploaded
to the Android Market and no involvement when ap-
plications are distributed from a third party developer
site. Google only removes applications from their Market
when content is found to violate terms of use or upon con-
firmation of reported malicious activity. A major distinc-
tion from Apple is that Android developers do not have to
wait for external approval before their apps become gen-
erally available, and banned (removed) Android applica-
tions can still be distributed outside the Market.

2.3 Blackberry

Blackberry OS was developed by Research in Motion
(RIM). The OS runs on a large number of Blackberry
models, and has historically been heavily targeted towards
enterprise customers by including features such as push
email and groupware support (Microsoft Exchange, Lo-
tus, Novell GroupWise, and BES support).

Blackberry OS supports third party developed applica-
tions written in Java. The OS uses sandboxing for isolat-
ing applications at runtime, achieved through the Java Vir-
tual Machine (JVM). Developers traditionally wrote Java
applications for Blackberry and distributed them through
web sites without RIM approval. This changed with the
introduction of Blackberry AppWorld (April 2009), where
users of newer Blackberry models can access a repository
of RIM-approved applications through an on-device ap-
plication. Even though RIM must approve each submitted
application for inclusion in AppWorld, developers are free
to host their applications on other servers. Unlike Apple’s
approval model, having an app approved by RIM is only
beneficial for distribution purposes, as apps that are not
approved can still be distributed outside the market.

A Blackberry OS feature designed for the enterprise
market is the fine-grained control that a company can en-
able on the devices it hands out to employees. Policies
can be “pushed” to Blackberry devices allowing adminis-
trators to restrict the functionality that is available to the
end-user. For example, policy administrators may decide
that applications downloaded from third party web sites
are not allowed, but those installed through AppWorld are.

2.4 Symbian

Nokia’s Symbian is the world’s most widely used smart-
phone OS, with a smartphone market share of 44% world-

2Some vendors and carriers customize Android to disable the ability
to sideload apps. If sideloading is allowed, however, apps are still subject
to the standard Android OS permission model and isolation features.

wide [6]. The operating system has existed since the early
1990s and is now deployed on hundreds of smartphone
models. Symbian used to be a proprietary platform, but
was open-sourced by Nokia under the Symbian™3 brand-
ing in February 2010. The OS was designed with in-
tegrity, security and low resources in mind (in contrast
to the gigahertz chips seen on newer smartphones). While
the Symbian platform has been targeted by malware in the
past, most attacks have relied on social engineering or di-
rect manipulation of users (e.g., the Cabir’> worm where
users must click “yes” to allow a malicious program to
run, and are prompted repeatedly until they do) as op-
posed to the exploitation of software flaws.

Symbian mandates that all applications be digitally
signed, but not all signatures have to be issued by the
Symbian Foundation. Developers can self-sign their ap-
plications, allowing them to access “user capabilities”,
which include making phone calls, initiating network con-
nections, and accessing device location data. Applications
that need to modify system settings or access core OS files
(also known as “system capabilities”) must be submit-
ted to the Symbian Signed* program for approval. Users
can configure Symbian phones to check an online server
for the validity of a certificate. While unsigned applica-
tions may have limited access to advanced functionality,
they can still behave maliciously and cause denial of ser-
vice by executing code repeatedly to drain the battery, or
even leak private information. Some carriers disable non-
Symbian signed certificates entirely, allowing only signed
applications to run on devices controlled by those carriers.

3 Common Security Features

Process and File System Isolation. All smartphone plat-
forms discussed in this article were designed to include
some form of application isolation to help protect appli-
cations from each other. Isolation refers to the separa-
tion of processes and file system access so that each ap-
plication can run within its own context while remaining
unaffected by other (including potentially malicious) ap-
plications. On Blackberry and Android, process isolation
is provided (at least partially in the case of Android) by
the virtual machine (JavaVM and Dalvik, respectively).
When running native applications (i.e., not interpreted by
a VM), iOS and Symbian provide process isolation at the
system level. File system access on smartphones is typi-
cally different than on desktop systems. Applications can
only read and write data in their own context. POSIX file
permissions limit access to files on Android, which uses

3http://www.f-secure.com/v-descs/cabir.shtml
“http://www.symbiansigned.com

traditional read, write and execute bits as well as user and
group identifiers (UIDs and GIDs). iOS enforces simi-
lar restrictions through sandbox policy files. Some smart-
phones include a memory card slot, which generally takes
a FAT32 formatted card. Since FAT32 does not have file
access control (i.e., the rwx bits), applications that can
read or write to the card have access to all contents, not
just data in the application’s context.

Application or Code Signing. Code signing involves
an authority (in this case the developer of an applica-
tion or the operating system vendor) digitally signing an
application so that at a later time, signature verification
can validate that the application was not tampered with
and that it originates from the intended author (via pri-
vate/public keys). While code signing has been adopted
by all four smartphone platforms, each platform uses this
feature slightly differently to accomplish different goals.
Android applications must be self-signed (i.e., develop-
ers generate their own keys and sign their applications
without Google’s involvement) to support verification that
subsequent updates of the apps were written by the same
developer or organization. This is used for continuity of
software updates, but not for initial installs (i.e., there is
no signature to compare against on initial installs) and also
supports some forms of IPC where the developer wishes
to restrict access to calls only to applications signed with
the same private key.

On iOS, applications that aren’t digitally signed by Ap-
ple cannot run on the device. This policy is enforced by
the operating system. Apple digitally signs all applica-
tions that are approved by their vetting process, giving
Apple the final say as to which applications can be dis-
tributed on to iOS devices.

The Symbian foundation (through the Symbian Signed
program) also performs code signing of applications after
a vetting process, but the platform allows the user to con-
figure whether unsigned applications should be allowed
always, never, or whether to prompt the user for permis-
sion each time. Since end-users have control over what
type of code to accept, Symbian does not ultimately have
control. Additionally, applications can be self-signed if
they require fewer privileges.

Blackberry uses code signing for tracking use of their
restricted APIs. Certain APIs on the Blackberry OS are
restricted, meaning that only signed binaries can make use
of the features provided by those APIs. When developers
need to use restricted APIs, they purchase a signing key
from RIM. Unique keys are generated for each developer,
allowing the company to tie billing information to devel-
opers and applications, and, if necessary, update certifi-
cate revocation lists (checked periodically by devices) to

block certain applications from running.

ROM, Firmware and Factory Restore. Today’s smart-
phones may have many of the features of a desktop sys-
tem. However, one of the key differences is the notion of
a firmware. The smartphone platforms reviewed in this
article have a read-only portion of memory (ROM) that
holds the operating system (i.e., the firmware). This area
of memory cannot be modified by user-space applications,
leading to a much more resilient architecture that is less
susceptible to corruption of core system files and libraries.
Vendors typically distribute software updates in the form
of a firmware that is flashed on to the ROM. Most vendors
distribute firmware as downloadable files that can be sent
to the phone through a USB connection and specialized
software. Android handsets can receive and apply over-
the-air updates while other platforms require a desktop
computer to transfer the updated OS onto the smartphone.
Users can also restore their smartphones to factory set-
tings by deleting all user stored preferences and reading
all configuration settings from ROM.

Kill switches. Remote application revocation and unin-
stallation, also known as a kill switch, is a powerful fea-
ture in many smartphone OSs. Kill switches allow the
manufacturer to remotely (potentially without user inter-
action or approval) uninstall or disable an application on
a user’s smartphone. Typically working closely with the
platform’s application store or market, kill switches of-
fer a mechanism to control the spread of malicious ap-
plications, but can also facilitate excessive control (or
what might be viewed by some as censorship or anti-
competitive practices) by vendors. iOS and Android have
kill switches that work in conjunction with their applica-
tion stores. It is unclear whether Blackberry and Symbian
have a similar system in place.

4 Classification of Software Instal-
lation Models on Smartphones

To better understand and compare different systems, we
find it useful to reference a common framework. To that
end, we present a classification of software installation
models for third party applications on smartphones. When
smartphones are shipped, their initial factory configura-
tion generally includes basic phone software and core ap-
plications. The classification below applies to software
(i.e., third party software) beyond core vendor-provided
apps.

We see three generic models for software installation,
classified by the level of control the smartphone OS or
hardware vendor has over software installation and man-

agement. The walled garden model provides the vendor
with the most control. In the end-user control model, the
vendor has practically no control over software once the
phone is sold. The guardian model is a middle ground
that can be adapted to several environments. We argue
that no smartphone OS falls under a single category, and
each category has advantages and disadvantages.

4.1 Walled Garden Model

The walled garden model gives the smartphone vendor
full control over third party installation of software on
end-user devices. Users can only install software that has
been approved and made available through a vendor’s app
market or clearinghouse. Applications can be removed
from the clearinghouse by the vendor, as well as remotely
uninstalled or disabled on user’s devices (see Kill switches
in Section 3). Code signing is an essential part of this
model, since it provides a reliable technical mechanism to
prove that an app was accepted by the vendor and has not
been modified. The walled garden model leaves most of
the security decisions and testing up to the vendor, giving
even non-technical users a (perhaps unfounded) worry-
free experience of smartphones.

While this model is subject to controversy due to the
vendor’s totalitarian control over the user experience on
the device, it provides a strong set of tools to control plat-
form security. In the event that a malicious application
is detected (even post-vetting), it can be uninstalled from
all devices. The vetting process itself, in conjunction with
the single point of software entry on to the device, also al-
lows the vendor to monitor trends and tightly control use
of features on the device.

4.2 Guardian Model

In the guardian model, security decisions are delegated
to a knowledgeable third party (i.e., the guardian). The
guardian role can be assigned to a variety of entities rang-
ing from the OS vendor (in which case the guardian model
becomes more similar to the walled garden model), the
mobile phone carrier, an acknowledged expert acting on
behalf of a less knowledgeable group of users, or an en-
terprise system administrator who already controls policy
on other devices. The guardian is typically in charge of
making most of the fundamental security decisions (e.g.,
which apps are allowed to be installed, what services they
are allowed to access on the device); end users are min-
imally involved with making decisions thereafter. The
guardian may also perform a less rigorous application vet-
ting process (e.g., banning applications that violate cor-
porate policy). This method provides a flexible middle

ground for software installation that can be fine-tuned ac-
cording to the required level of security. If the guardian
role is assigned to the end-user, this model moves closer
to the end-user control model.

4.3 End-user control Model

In this model, the user is responsible for all software in-
stallation and software security decisions. Users are free
to install software from any source (website, memory
card, application marketplace), understanding the risk that
any or all applications could be malicious since there is no
application vetting. The end-user control model should
ideally enforce any available strong operating system se-
curity features such as application isolation to limit the
negative impact of malicious applications on user experi-
ence. This is a difficult balance to reach, since users may
be required to answer puzzling questions (e.g., questions
which users do not have the technical expertise or detailed
knowledge to answer) about software either at install time,
or at resource access time (e.g., “Do you want to allow
application A to read phone state?”’). Third party appli-
cations are distributed to end users with minimal involve-
ment from the phone vendor or carrier, reducing overhead
costs.

4.4 Classifying Existing Systems

Walled Garden Guardian End-user Control

Apple iOS Blackberry OS

POCs Feature Phones Symbia

<« »
More control More open

Figure 1: Approximate binning of smartphone platforms
across the three generic software installation models.
Plain old cellphones (POCs) and feature phones are listed
for reference.

The software installation models presented are fairly
generic, and as such, mobile platforms will not fit per-
fectly into any single one. Figure 1 shows an approximate
binning of platforms into the different models.

Apple iOS falls mostly into the walled garden model,
since Apple ultimately has decisive power over what ap-
plications are made available on their App Store. How-
ever, i0S isn’t entirely a walled garden OS; for example
in some instances the user is prompted to make security
decisions (e.g., allowing access to geolocation data). The
OS itself is also preloaded with policy files, resembling a
(quite restrictive) guardian model.

Android is at the other end of the spectrum, fitting
tightly into the end-user control model and relying heavily
on users to keep their devices clear of malware. Some car-
riers might choose to ship a branded version of Android
which is customized to their specific needs. In these cases,
Android moves more towards the guardian model (where
the guardian is the carrier). Of course, since the Android
OS is open source, customization can result in variations
yet to be seen. Finally, Google can (and has) made use of
the remote kill switch,’ showing some resemblance to the
properties of the Walled Garden.

Blackberry OS most closely resembles the guardian
model. Depending on the environment, the guardian may
play an important role in configuring policy for Black-
berry devices (typical corporate use). The guardian could
be the carrier as well, configuring the device for more flex-
ible use and involving the user only under certain condi-
tions.

Symbian falls somewhere between guardian and end-
user control, but it is more difficult to locate on the con-
tinuum of Figure 1. Many of the OS security features are
configured by Symbian, but some (such as bypassing un-
signed application warnings) are user-configurable.

We list plain old cellphones (POCs) as the canonical
example of the walled garden model, since manufactur-
ers and carriers do not typically allow or support any
phone modification (including app installation) post-sale.
We also place feature phones between the guardian and
walled garden models, since these devices allow app in-
stallation, but carriers will often act as guardians disabling
features and services on the device as they see fit.

5 Controlled markets for third

party applications

A trend in the smartphone space has been for each smart-
phone vendor to provide a third party application repos-
itory (i.e., a controlled market) that acts as a central lo-
cation for application vetting, application (sales and) dis-
tribution, or both. Depending on the software installation
model used, the market may have a rigorous vetting pro-
cess in order to get apps included. Other markets might
be used for end-user convenience only, providing an on-
device location for searching, rating and buying additional
applications.

There is an important difference between the vetting
process for app inclusion in a controlled market and the
way ‘approved status’ is denoted. Having an app appear

Shttp://android-developers.blogspot.com/2010/
06/exercising-our-remote-application.html

in a market (as is the case in the Android Market) does not
imply that the app has undergone substantial vetting. Ap-
proval status can be denoted by a digital signature, verified
by a corresponding public key on the device; or allowing
placement in a closed market, verified by validating the
software source (e.g., through SSL or other types of end-
point verification); or alternatively, both methods can be
used in parallel.

5.1 Controlled markets under each model

Depending on the software installation model, controlled
markets may be used for different purposes. In each of the
previously defined models, the market acts as a repository
which allows an on-device application to conveniently
search for, install and rate applications. Controlled mar-
kets also help developers reach a large number of users by
allowing the upload of their application to a central loca-
tion, reaching customers in many countries, carriers, and
devices.

In the walled garden model, the application market has
a secondary purpose: it acts as a choke point for allowing
or rejecting applications, giving the OS vendor full con-
trol over what applications are available to end-users. The
added control comes at the cost of scalability and thor-
oughness in testing.

The end-user control model uses a controlled market
only for distribution purposes. Thus, third-party markets
such as those provided by carriers are possible under this
model. The OS vendor will rarely be involved in app
testing or vetting, allowing developers and users to inter-
act more freely. Due to a minimal involvement policy,
end-user model app markets might rely more on crowd-
sourced vetting or recommendation systems.

The guardian model uses the market for some control,
but has a heavier focus on behaving as an application dis-
tribution platform. The app market allows download, but
the installation is still controlled by configurable policy
on the phone itself. While there could be an application
approval process, developers can still (policy permitting)
distribute applications outside the controlled market (e.g.,
through their own website). Controlled markets on plat-
forms using the guardian model may serve as a repository
for “premium” applications that have undergone some
form of testing (some of which are described in Section
5.2).

5.2 Application Vetting Tests

This section describes some of the reported tests that ven-
dors run on applications during the app vetting process.
This includes information obtained informally and from

anecdotal reports; most smartphone OS vendors do not
publicly explain their testing process. Of the platforms
considered herein, only Symbian publishes a list of tests
performed,® and only compiled binaries (i.e., not source
code files) are reviewed by vendors.

Smoke tests. These tests usually involve a quick overview
inspection of the application to ensure that it does not
catastrophically fail. Generally this is not a thorough test,
but rather an initial sanity check to verify that the appli-
cation is worth the full testing process (provided there is
one). Smoke tests help filter out broken applications sub-
mitted by mistake, as well as poorly written applications.
This type of test must be simple to perform in an auto-
mated fashion, reducing costs albeit sometimes at the ex-
pense of accuracy. It is our understanding that all con-
trolled markets perform at least basic smoke testing on
submitted applications.

Hidden API checks. Mobile operating systems, like their
desktop counterparts, contain APIs that are reserved for
system applications. These APIs are generally hidden
from developer documentation, and intended to be used
only by the OS vendor. Developers sometimes use hid-
den APIs (by either guessing function names in a com-
mon namespace or reverse engineering the OS) to obtain
direct access to low-level functionality or to speed up their
application by avoiding unnecessary layers of abstraction
(especially in graphics and media code). Developer use of
hidden APIs is regarded as a poor programming practice,
since these APIs could change with future OS releases.
Static code analysis and debugging can help identify use
of hidden APIs, but all instances might not be revealed.
Manual testing and fuzzing may be required for this test.
Functionality checks. These tests verify that the appli-
cation being submitted is capable of undergoing “typi-
cal expected use” without interfering with other installed
applications. Details of how such tests are performed
are not always made available by smartphone vendors,
but we expect manual testing is required. Functionality
tests involve simulated real word application use to ensure
the application opens, closes, does not crash, etc. Other
checks may include verifying that an application does not
disrupt basic phone functionality (e.g., the ability to re-
ceive a phone call or message) or drain the battery. Some
vendors might also perform “second-stage” testing on the
most popular applications in their application repository.
Intellectual property, liability, and TOS checks. These
checks involve verifying that the submitted application
does not violate Terms of Service (established by the
OS vendor or carrier) or infringe on intellectual prop-

Shttps://www.symbiansigned.com/app/page/
overview/testcriteria

erty. Tests in this category are usually performed to limit
the vendor’s liability in the event of a legal dispute sur-
rounding the application once it has been approved. Such
checks can be partially automated by looking for specific
trademarked keywords or files, but likely require some
manual inspection if searching for objectionable content
or simply rely on independent notification or complaints
by third parties.

User interface checks. Some vendors place heavy em-
phasis on the user interface of the application in an at-
tempt to deliver a more consistent user experience. For
these vendors, testing the user interface (i.e., the place-
ment of buttons, color schemes, navigation within the ap-
plication, etc.) is important. Failure to comply with estab-
lished UI guidelines could result in the application being
rejected from a vendor’s controlled market. Checks in this
category are believed to be done manually rather than in
an automated way.

Bandwidth checks. Using excessive amounts of band-
width can severely impact a network. Applications that
stream Internet radio or download large files may be fur-
ther tested to see if they operate within a network opera-
tor’s infrastructure constraints.

Security checks. Until concrete evidence becomes avail-
able, the most prudent course is to assume that no
security-specific tests are performed by any vendors dur-
ing the vetting stage.

6 Conclusions

We have presented an overview of how software installa-
tion is handled by four of the most popular smartphone
operating systems. To help differentiate the systems, we
have presented a classification for the different software
installation models on smartphones, each offering advan-
tages and drawbacks in the smartphone marketplace. De-
pending on the environment where smartphones are de-
ployed, one model may be more appropriate than another,
but there is no perfect one-size-fits-all approach. Factors
to consider when selecting a smartphone platform or soft-
ware installation model include the type of environment
the phone will be used in (e.g., corporate, personal), the
level of expertise users have, and their usage patterns (e.g.,
novice, expert, frequent users).

Smartphones are currently not high targets for mali-
cious software, but as their popularity continues to in-
crease (including as both payment devices and for access
to sensitive information), the value of exploiting smart-
phones increases. Secure software installation and control
mechanisms will play a key role in helping smartphones
avoid replication of many security issues that currently

plague desktop systems.

References

(1]

(3]

Apple Answers the FCCs Questions.
http://www.apple.com/hotnews/
apple—-answers—-fcc—questions/ Retrieved
Nov 2, 2010.

Morgan Stanley Internet Trends. http://www.
morganstanley.com/institutional/
techresearch/pdfs/Internet_Trends_
041210 .pdf Retrieved May 10, 2010.

J. Anderson, J. Bonneau, and F. Stajano. Inglorious
Installers: Security in the Application Marketplace.
In Proceedings of the 9th Workshop on the Economics
of Information Security, 2010.

(4]

(5]

(6]

W. Enck, M. Ongtang, and P. McDaniel. Under-
standing Android Security. IEEE Security & Privacy,
7(1):50-57, 2009.

A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, and C. Glezer. Google Android: A Com-
prehensive Security Assessment. [EEE Security &
Privacy, 8(2):35 —44, Mar. 2010.

Tomi Ahonen. Final Numbers Q2 of
2010 for Smartphone Market Shares.
http://communities-dominate.
blogs.com/brands/2010/08/
final-numbers—-g2-0f-2010-for—
smartphone—market-shares.html Re-

trieved Aug 30, 2010.

