
Mitigating Network Denial-of-Service through

Diversity-Based Traffic Management

Ashraf Matrawy, P.C. van Oorschot, and Anil Somayaji

Carleton University, Ottawa, ON K1S 5B6, Canada,
amatrawy@sce.carleton.ca, {paulv,soma}@scs.carleton.ca

Abstract. In this paper we explore the feasibility of mitigating net-
work denial-of-service (NDoS) attacks (attacks that consume network
bandwidth) by dynamically regulating learned classes of network traffic.
Our classification technique clusters packets based on the similarity of
their contents—both headers and payloads—using a variation of n-grams
which we call (p, n)-grams. We then allocate shares of bandwidth to each
of these clusters using an adaptive traffic management technique. Our
design intent is that excessive bandwidth consumers (e.g. UDP worms,
flash crowds) are segregated so that they cannot consume bandwidth to
the exclusion of other network traffic. Because this strategy, under con-
gestion conditions, increases the packet drop rate experienced by sets of
similar flows and thus reduces the relative drop rate of other, dissimilar
flows, we characterize this strategy as diversity-based traffic management.
We explain the approach at a high level and report on preliminary results
that indicate that network traffic can be quickly and concisely learned,
and that this classification can be used to regulate the bandwidth allo-
cated to both constant packet and polymorphic flash UDP worms.

Keywords: network denial of service, flash worms, traffic shaping, net-
work security, diversity

1 Introduction

In recent years the stability and usability of the Internet has been challenged
by numerous uses and abuses unforeseen by its original designers. Peer-to-peer
applications saturate links with searches and file transfers. Web servers and small
service providers are overwhelmed by flash crowds initiated by the rapid spread
of ideas and links on the “blogosphere” while email servers are flooded with vast
quantities of unsolicited commercial email. Most disturbingly, self-replicating
autonomous programs (worms and viruses) flood network connections through
scans and infection attempts, some spreading worldwide in seconds [1].

Many researchers have chosen to address each of these issues as isolated
problems; we believe, however, that progress can also be made by recognizing
what these problems have in common. In all of these situations, the actions of
a few applications can consume all available bandwidth and in so doing prevent
other hosts, applications, and users from communicating. While the denial-of-
service (DoS) problem in general has received much attention in recent years,

this type of bandwidth-consuming network DoS (NDoS) has received less study.
NDoS is the one problem, however, to which no host or network is immune—no
matter how well it is otherwise protected. Fundamentally, bandwidth forms a
commons, in that it is a resource used by all but is completely controlled by
nobody. Although it is possible to create mechanisms to allocate the bandwidth
commons, such allocations will impose some limitations on communications—
the primary purpose of the Internet. The question we pursue is that of how
bandwidth may be allocated in a way that better reflects the differing needs of
Internet users and applications. In doing so we try to prevent the actions of a
few categories of excessive bandwidth consumers from disrupting the activities
of other, more moderate consumers.

Rather than attempting to specifically identify undesirable sets of packets
(whether they be malicious or simply less important by some measure), our
approach is to allocate bandwidth on the basis of packet similarity. In some
circumstances these commonalities may be shared destination ports or host IP
addresses; in others, it may be recurring payload substrings. In our approach,
packets sharing relatively high-frequency patterns (in header and/or payload)
are identified as a set, and each of these sets is limited to a controlled frac-
tion of network bandwidth. So long as such a set is “adequately represented” in
the network flow, its bandwidth limit does not shrink—nor grow. Thus, while
such sets are guaranteed representation in the outgoing packet stream, in the
case of bandwidth starvation they must also share bandwidth with other identi-
fied packet sets. Because this strategy tends to increase the diversity of packets
within a given network connection (under saturation conditions), we refer to it
as diversity-based network traffic management.

To study the feasibility of this bandwidth management strategy, our research
has focused on a simple pattern schema that we call (p, n)-grams. Like the better-
known n-grams (cf. Section 2.2), (p, n)-grams are fixed-length strings of byte-
length n; unlike n-grams, they are at a fixed offset p within a packet—thus
allowing for very efficient pattern matching, even within payloads. More specifi-
cally, our work includes: (1) studying the patterns of (p, n)-grams present in cap-
tured network traffic; (2) creating and analyzing high-speed online algorithms
for extracting sets of (p, n)-grams suitable for dividing packets into similarity
sets; and (3) developing an architecture for dynamically allocating bandwidth
between sets of similar packets.

Our Contributions. In this paper we propose that network denial-of-service
attacks can be mitigated by adaptively clustering network packets and by allo-
cating bandwidth on the basis of such clusters. To implement this strategy, we
propose a new measure of packet similarity, namely (p, n)-grams, and a simple
feedback algorithm for learning sets of (p, n)-grams that can be used to subdi-
vide network traffic. We also propose an architecture for using this algorithm
to regulate network traffic so as to minimize the impact of large aggregates of
similar packets in congested conditions. We then present experimental data that
indicates that the proposed algorithm can quickly and concisely learn the pat-
terns of normal network traffic. With the injection of simulated worm traffic

into live captured network data, we also show that the proposed mechanisms
can limit the bandwidth allocated to both constant and random-payload UDP
flash worms automatically and autonomously.

Outline. In what follows, Section 2 presents related work. Section 3 discusses
the rationale for diversity-based network traffic management and our architec-
ture for managing network traffic. Section 4 describes our approach to (p, n)-
gram packet analysis. Section 5 presents the results of preliminary experiments.
Concluding remarks in Section 6 include a discussion of ongoing challenges and
plans for future work.

2 Related Work

Although it has been generally realized that network traffic must be managed
to prevent communication disruptions, no central strategy has emerged that is
effective at dealing with all aspects of the problem. Instead, researchers have
developed many different mechanisms, each designed to address certain circum-
stances. To organize our review of past work, we divide these mechanisms into
two classes: those that address the congestion control problem by managing
overly aggressive bandwidth consumers, and those that identify and respond to
malicious network traffic.

2.1 Congestion control for aggregates of flows

Congestion control has been a basic design principle of the Internet from its
earliest days. Indeed, the robustness of the Internet can be attributed in part to
the end-to-end congestion control mechanisms built-in to TCP [2]. End-to-end
congestion control, however, is based on the assumption that implementors of
network protocols and applications are willing to cooperate to maximize network
efficiency and fairness. While such assumptions were once well-founded, this is
no longer the case.

Perhaps the first signs of trouble were in the form of UDP-based media ap-
plications. Early versions of these systems were not good network citizens, in
that they would not throttle their communications in response to developing
congestion. Therefore, they would gain an unfair share of bandwidth when com-
peting with TCP streams that would honor such implicit congestion messages.
The situation was even worse for multimedia multicast applications. These issues
motivated a new area of research and development: unicast [3] and multicast [4]
TCP-friendly protocols and applications. While the performance of these TCP-
friendly mechanisms is satisfactory in some cases, the growing need for better
congestion management has resulted in the development of mechanisms such as
Explicit Congestion Notification [5] and Random Early Detection Gateways [6]
where the network provides some congestion control support to end systems.

The main characteristic of the above architectures and mechanisms is that
they are targeted at misbehaving individual flows. A flow is normally defined as
a set of IP packets that are exchanged on fixed TCP or UDP ports between two

IP addresses. As noted by Estan and Varghese [7], a large fraction of network
bandwidth is sometimes consumed by a few large flows (e.g. by large file transfers,
multimedia streams, etc.). In such situations, a sampling strategy can be used
to find these “heavy hitters”; in the case of flash crowds and distributed network
denial-of-service attacks, though, there are no such heavy hitters to identify. To
address this limitation, network analysis systems such as AutoFocus [8] cluster
flow state descriptors in order to discover sets of shared features in the high-
dimensional space defined by IP addresses, protocols, and ports.

Rather than focus on network analysis, others have developed tools with
which to manage network bandwidth. Systems such as Diffserv [9, 10] label and
prioritize traffic according to pre-negotiated quality of service classes. Traffic
shaping mechanisms [11, 12] can be used to limit the bandwidth allocated to
specific quality-of-service classes, hosts, and/or ports. Existing traffic shaping
systems are very good at managing traffic according to pre-established policies;
however, static rules are not sufficient to manage the transient problems created
by flash crowds, worms, or NDoS attacks.

Other researchers have recognized these limitations and have sought solu-
tions. In particular, Mahajan et al. [13] (see also [14]) proposed that DDoS at-
tacks be dealt with as an aggregate congestion control (ACC) problem. They com-
bined a local mechanism (at the routers) to detect signatures of flow aggregates
that are causing congestion, and a co-operative mechanism—called pushback—
to notify other routers of these signatures so that they may take action against
these aggregates to limit their impact. The local mechanism uses the destination
address to detect high-bandwidth aggregates, which are represented using con-

gestion signatures; these signatures are passed to other routers by the pushback
mechanism when it is deemed necessary to communicate a deteriorating conges-
tion status at a certain router. The intent is to stop the spread of high-bandwidth
aggregates as close as possible to their source. As originally conceived, pushback
would seem to require routers to store large amounts of information on flow
state; work such as that by Yaar et al. [15], however, shows that this need not
be the case if end points explicitly manage their bandwidth commitments.

While pushback has the potential to stop certain classes of NDoS, it also has
some fundamental limitations. First, pushback requires that routers coordinate
their responses to misbehaving flows. A large number of routers would need to
adopt the pushback mechanism for it to be effective; such adoption may not be
wise, however, since if the pushback communications channel is compromised,
pushback itself could become a very effective tool for NDoS. A more fundamental
issue, though, is that there may not be any identifiable set of flows (at least at
the level of IP addresses and ports) that are responsible for observed congestion.
Such a situation may arise if the congestion comes from a flash crowd or a rapidly
propagating worm.

2.2 Network-Level Anomaly Detection

Another perspective for addressing the DoS problem arises from the observation
that malicious network traffic typically has different structure and content from

non-malicious traffic. If all non-malicious traffic can be profiled as “normal,”
then any observed abnormal traffic can be classified as malicious. While there
are many methods for detecting security violations at the network level, anomaly
detection is arguably the approach that is most capable of detecting attacks that
exploit previously-unseen vulnerabilities. Because malware developers discover
new vulnerabilities on almost a daily basis, and because attacks by worms and
viruses are both fast and automated, there is a pressing need for methods that
can both detect and respond automatically to such “zero-day” threats.

One of the earliest methods for detecting anomalous network traffic was
Heberlein et al.’s Network Security Monitor (NSM) [16]. Their system used a cen-
tralized monitoring host to record the 5-tuples associated with normal network
flows. After a training period, any new 5-tuples were classified as an anomaly.
In 1999, Hofmeyr developed LISYS [17], an intrusion detection system similar
to NSM except that its architecture permitted the set of normal network flows
to be distributed across a set of hosts. While this model of intrusion detection
is useful in a relatively static network environment, the rapid evolution of new
services, protocols, and servers on today’s Internet means that the presence of a
novel 5-tuple connection is not sufficient to indicate malicious traffic.

More recently several approaches to automatically characterize and respond
to rapidly propagating worms have been proposed. Among the most promising
is Singh et al.’s EarlyBird system [18, 19], which relies on two basic observations
associated with fast worm propagation: (1) most such worms produce a sub-
stantial volume of traffic containing identical payload substrings; and (2) these
similar packets are relayed between an increasing number of distinct source and
destination addresses. With these heuristics and a combination of several highly
efficient, scalable algorithms such as Rabin fingerprints [20], EarlyBird is able to
automatically identify packets with common substrings and worm-like propaga-
tion patterns. Once a worm has been identified, the observed payload substrings
are then used to block subsequent worm packets. In online experiments over the
course of several months, their system is reported to have detected many pre-
viously known worms along with new, previously unseen worms, all with zero
false positives. However, in order to avoid false positives, they had to create
a packet “white list” that included such patterns as the protocol identification
strings of HTTP and SMTP and the repeated packets corresponding to some
BitTorrent-based P2P file sharing.

While EarlyBird is (to our knowledge) the first to report a working online im-
plementation, similar systems are in development. Kreibick and Crowcroft’s [21]
Honeycomb system also detects worms by extracting high-frequency substrings
within packets; a novel aspect is to extract common substrings only in honeypots

to increase the likelihood of finding malicious traffic. A similar system also based
on packet content inspection, Autograph [22], uses a simple port-scan-based flow
classifier to reduce the amount of traffic on which signature extraction is applied.

In another approach to network intrusion detection, Wang and Stolfo [23]
propose a system which builds byte distributions (taking into consideration port
number and packet length) of “normal traffic”. Incoming packets are compared

with these distributions to measure their similarity with normal traffic. Packet
similarity is measured by computing the Mahalanobis distance [24] between dis-
tributions.

While these systems use packet classification methods ranging from simple
heuristics to complex statistical models, what they have in common is that they
classify network traffic into two groups: legitimate and illegitimate traffic. The
difference between these two classes, however, is not always obvious even to a
human observer. For example, “legitimate” flash crowds can be created mali-
ciously, e.g. by posting a targeted web server’s home page to a popular weblog.
This ambiguity has been one of the prime motivators for our research.

3 Diversity-Based Traffic Management

While many of the known approaches to managing network traffic have appeal-
ing characteristics, we believe current approaches will fail to address the threats
of tomorrow, especially as attackers adapt and attempt to subvert deployed
anomaly detection systems—especially those targeted at flash worms [25] (see
[26]). One way to avoid the trap of attacker innovation is to simply re-frame
the problem by dividing it in two. Proceeding in this direction, we separate the
problem of protecting vulnerable hosts from that of managing network band-
width. For host protection, many mechanisms are at our disposal: virus scanners,
automated code patches, buffer overflow defenses, code diversity, and even host-
based (personal) firewalls and intrusion prevention systems. Some combination
of these and future technologies should be adequate to provide a reasonable level
of practical protection for any host that a user chooses to secure. To protect the
network from less well-maintained systems, though, we need mechanisms that
prevent any collection of hosts or services from consuming an excessive share of
bandwidth.

General Approach. With this framework, security threats such as flash
worms and distributed denial-of-service attacks simply become additional types
of overly aggressive applications, ones that can potentially be managed in the
same way as flash crowds, spam, and peer-to-peer file sharing systems. An ini-
tial thought might be not trying to determine “good” versus “bad,” but rather
“disruptive” versus “non-disruptive” traffic. However, this change in perspec-
tive does not necessarily make the problem easier. By our definition, disruptive

network traffic is that which prevents the transmission of other packets due to
congestion. Because disruptive traffic can only be recognized in relation to other
traffic flows, it is defined by context, not content. Moreover, that context im-
plies a value judgment that some are the “disruptors” while others are “being
disrupted.” As with the problem of identifying worm traffic, it can be danger-
ous for an automated system to make value judgments; it can be too easy for a
computer to make a mistake.

Thus, what we really want is a technique for managing disruptive network
traffic without ever having to explicitly identify what is disruptive. One gen-
eral way to accomplish this goal is to classify packets (as explained below) into

multiple sets and then apportion bandwidth between these sets. If attackers do
not know the (current) basis upon which packet sets are defined, or if they can-
not create packets belonging to arbitrary sets, then attackers cannot consume
all available bandwidth; instead, they can only consume the bandwidth fraction
that is assigned to the sets in which their packets fall.

Rather than using an explicit, static tag (as in Diffserv [9, 10]), we propose to
classify packets using their “intrinsic” properties. We assume that attackers can
create and inject arbitrary packets into network connections, and thus we cannot
consistently use features such as source IP addresses to sort packets—otherwise
an attacker could consume an arbitrary fraction of bandwidth by injecting pack-
ets with those same features. Instead, we dynamically choose classification pat-
terns from those present in observed traffic. If we assume that an attacker cannot
observe or accurately model most traffic at a given Internet routing nexus, then
the hope is that such a bandwidth allocation scheme cannot be directly sub-
verted by an attacker.1 Our research, then, has been focused on methods for
grouping packets on the basis of features present in actual network traffic, with
the goal of using these groupings to manage bandwidth allocation.

Since we allocate bandwidth on the basis of packet features, our strategy
is designed to give small sets of packets with unusual shared features a larger
share of bandwidth than they would normally be allocated under link saturation.
Because outgoing packets will have a higher frequency of such unusual patterns
than they would otherwise (when congested), we characterize our method as
increasing the diversity of packets. Thus, we avoid the problems of distinguishing
between disruptive and non-disruptive traffic by favoring increased diversity of
network flows.

Architecture. Recall that we are not differentiating between legitimate and
illegitimate traffic; we cannot simply drop certain kinds of packets. Rather, we
characterize packets (see above, and below) and then forward them based upon
their class membership. To do this, we propose to use traffic shaping mechanisms
to differentially queue and forward packets. Traffic shapers [11, 12] are typically
used to allocate bandwidth between ISP customers or to limit commonly used
applications that are heavy bandwidth users (e.g. multimedia streaming, peer-
to-peer file sharing)—in other words, they are used to regulate traffic based
upon port and IP address patterns. We propose to augment such traffic shaping
mechanisms with more flexible and adaptive methods for classifying packets.

To be more specific, consider the traffic shaping architecture in Figure 1.
In the context of a simple LAN connected to the Internet, our traffic shaping
mechanism would be implemented on the LAN’s local router (to manage outgo-
ing packets) and on the Internet Service Provider’s router (to manage packets
inbound to the LAN). As packets arrive, they are placed by the classifier into
one of a number of packet queues associated with an outbound interface. Packets
from these queues are chosen for forwarding in a round-robin fashion. Periodi-
cally the classification rules are updated by a traffic analysis module that runs
in parallel and works on periodically sampled packets. While this basic archi-

1 As suggested by the wording, we have yet to prove this.

shaped
traffic

queues

analyzer

traffic sampler

...

properties

traffic

and packet
packet

classifier scheduler

Fig. 1. Typical architecture for an adaptive traffic-shaping system.

tecture implies that all packets are to be forwarded on a best-effort basis, we
can also support multiple quality-of-service bands by replicating this system for
each band; similarly, more complex topologies can be accommodated by placing
a shaping module in front of any outbound interface within a given router.

Given a sufficiently efficient packet classification mechanism, this architec-
ture can be implemented both at core routers and edge routers. In either case,
it will help the router manage network bandwidth in the face of a surge in dis-
ruptive traffic. Currently this architecture is more appropriate for bandwidth-
limited edge routers rather than the (apparently) over-provisioned core of the
Internet. However, the introduction of new bandwidth-demanding applications
may increase the utility of bandwidth management schemes such as ours in core
routers.

Given this simple architecture, we next need a packet classification method
that can group packets quickly (at router speeds) but in a way that cannot be eas-
ily predicted by an attacker. Although our classification may be approximate—it
need not divide packets into any human-recognizable categories—our chances of
limiting bandwidth allocation to disruptive traffic will be higher if packets within
a given queue are somehow related (e.g. worm packets ideally should be classified
within a set distinct from non-worm traffic, and to limit the worm bandwidth
allocation to that allocated to one queue, or at worst a small number of queues).
Thus, we have focused on developing an online method for finding common fea-
tures between packets—features that can be used to assign packets to queues.
The method we chose to develop is based on a simple scheme, which we call
(p, n)-grams.

4 Packet Classification using (p, n)-grams

We now describe how we use a variation of n-grams to classify traffic, and explain
our variation of traffic shaping using a set of queues managed adaptively, based
on the continuous analysis of incoming traffic.

4.1 The introduction of position p into n-grams

As described earlier, a (p, n)-gram is a byte string of length n located at an offset
p in a packet within a data stream. Other systems (see Section 2.2) classify pack-
ets using the presence of substrings or the the relative distribution of 1-grams;
in contrast, we combine substrings and offset positions in our representation for
two reasons.

First, position matters in the context of an IP packet, especially within IP,
TCP, UDP, and application-level protocol headers. For example, a four-byte
IP address within a packet can have many different meanings depending upon
its position within the packet: it can represent an IP source address, an IP
destination address, a HTTP referrer host, or even a distant SMTP relay. Thus,
by including position we have a method for capturing the important semantic
features of IP packets.

Our second motivation for using an offset is speed for the online classification
stage. To check for the presence of a (p, n)-gram in our system, one needs to
perform a position computation (to find the offset p within the packet) and
then a comparison of n bytes. (Note that such an offset/substring comparison is
what a router does when identifying the destination address of an IP packet.) In
contrast, typical position-independent n-gram techniques require a comparison
with every byte within a packet. Techniques such as Rabin fingerprints [20] can
significantly reduce the cost of multiple n-gram comparisons; nonetheless, (p, n)-
gram comparisons are simple and efficient enough to scale to high speed links.

4.2 Adaptive learning and classification

While it is necessary to have a simple pattern schema (such as (p, n)-grams)
with which to classify incoming packets, such a schema is not sufficient for our
purposes. Because we have no pre-specified notion of how packets should be
classified, we also need a learning algorithm that can discover appropriate classes
autonomously. While this learning algorithm need not run at wire speeds, it must
be fast enough that it can update the set of patterns frequently (e.g. every few
minutes). While there are numerous classification and clustering algorithms in
the literature, for performance reasons we have focused on a simple feedback
learning strategy based on candidate (p, n)-grams extracted from samples of
incoming packets. When the existing set of classification (p, n)-grams are not
matching incoming traffic with sufficient fidelity, appropriate candidate (p, n)-
grams are chosen as supplements and replacements.

More specifically, our system iteratively builds up a set of (p, n)-grams that
allow network traffic to be partitioned into multiple “equivalence classes”. The
(p, n)-grams selected are initially those having the highest frequency in recent
traffic; by merging sets of (p, n)-grams describing small aggregates and splitting
ones describing large aggregates, though, this method attempts to converge on
a description of “normal network traffic”. When bandwidth becomes scarce, this
iterative process is halted and the learned (p, n)-gram sets are used to (implicitly)
decide which packets get dropped, i.e. the unserviced packets in long queues.

For example, assume we have a router with interfaces A and B, and we wish
to shape traffic coming in from A and out to B. To do this shaping, we establish
a fixed number q of queues Q associated with the outgoing interface B. When a
packet is received on A that is destined for B, it is placed in one of the queues.
Packets from the queues are selected in a round-robin2 fashion and are sent out
interface B.

Associated with each queue Qi ∈ Q is a bounded set of (p, n)-grams. Note
that the position p in a (p, n)-gram may specify anywhere in an IP packet, in-
cluding in protocol headers and application-level payloads. To choose the queue
in which to place a packet s, we first see whether any of the (p, n)-grams asso-
ciated with Q0 is present in s; if so, then s is placed in queue Q0. Otherwise,
test the next queue in the same fashion. Queue Qq−1 (called the default queue)
is special, as it has no (p, n)-grams associated with it; if s is not placed into any
of the other queues, it is placed in Qq−1.

Initially, each queue is associated with a recently observed frequent (p, n)-
gram. At fixed time intervals (e.g. every five minutes), the performance of the
selected (p, n)-grams is examined and the system determines whether too many
packets are falling into the default queue, and whether the distribution of packets
between the queues is too imbalanced. If the currently selected (p, n)-grams are
performing poorly according to this criteria, and if we have not dropped any
packets over another fixed time interval (e.g. one hour), we then re-balance
the queues (with respect to future traffic) by updating the sets of (p, n)-grams
associated with each poorly-performing queue. Alternately, if we have dropped
packets by exceeding the maximum length of any queue, then we do not re-
balance the queues.

The sets of queue-associated (p, n)-gram sets are updated in three ways. First,
small queues are enlarged through merging: the (p, n)-gram sets associated two
or more small queues are merged to form one new queue. Second, to reduce
the number of (p, n)-grams in the system, when necessary the least frequently
used (p, n)-grams are removed from the system. The third way (p, n)-gram sets
are updated is through splitting: large queues are split through the creation
of a new (p, n)-gram set that matches a subset of the large queue’s traffic. To
this end, we maintain a buffer of recent packets (e.g. the past 1000) that were
placed within each queue. To split a queue, the (p, n)-grams contained within
the queue’s buffer are extracted and sorted by frequency. One or more of these
(p, n)-grams are then selected such that they match a significant fraction, but
not all, of the packets within the queue’s buffer (e.g. (p, n)-grams that together
match more than 20% but less than 50%). These new (p, n)-grams are then used
to create a new queue. Splitting and merging are depicted in Figure 2.

As should be apparent, there are a number of parameters and implementa-
tion details that are not specified in the above description. Indeed, here we have
defined an entire class of learning algorithms. Section 5 describes preliminary re-

2 Currently we use round-robin to allocate an equal share of bandwidth to every queue.
Later we plan to study the effect of the service mechanism and the effect of the drop
policy (currently we are using simple drop-tail).

Large queue: analyze queue

packets, if a new (p,n)-gram can

extract part of the queue then split

and then update (p,n)-grams list.

Example: (p,n)
k can extract 40%

of the packets in Q
j then split into

Q
j and Q

k.

Small queues:

if merging required then merge

and combine (p,n)-grams

Q
0 Q

j

Q
1

Q
i

D
ef

au
lt

Q
u

eu
e

(p,n)0 (p,n)1 (p,n)i (p,n)j

Before After

D
ef

au
lt

Q
u

eu
e

Q
1

(p,n)1

Q
0

(p,n)0

and

(p,n)i

Q
k

Q
j

(p,n)j (p,n)k

Fig. 2. The adaptive split/merge operation of queues

sults obtained with one instance of this class. While the tested instance performs
well in many respects, ongoing work is focused on studying other variants.

4.3 Malicious encrypted and polymorphic traffic

The use of position in (p, n)-grams introduces the specific drawback that a small
change in a string’s position will prevent a match. This problem would be very
significant if we were concerned about adversaries attempting to evade our packet
classification system using encrypted or polymorphic traffic. However, so long
as there are sufficient number of high-frequency (p, n)-grams present in other
packets, we believe such behavior will actually hurt, not help an adversary, as
now explained.

Packets with random contents (both header and payload) are highly unlikely
to match any of the (p, n)-grams associated with queues; thus, streams with
encrypted payloads and no repeated header patterns—e.g. a polymorphic flash
worm—will be assigned to the default queue. At the same time, we expect that
by construction normal traffic (future packets) will match many of the selected
(p, n)-grams, and thus will be allocated most of the router’s outgoing bandwidth.

An attacker wishing to consume a maximal amount of bandwidth may pur-
sue a strategy of trying to construct packets that match at least one (p, n)-gram
assigned to each queue—perhaps by adaptively constructing packets or by some-
how causing the classification algorithm to replace (p, n)-grams matching normal
traffic with ones matching malicious traffic. So long as selected (p, n)-grams are

dependent on the specifics of local network traffic to which the attacker has no
direct access, we believe it will be very difficult for an attacker to predict the
constantly-changing set of (p, n)-grams corresponding to normal traffic. It may
be possible for an attacker, however, to gradually train the system to increase
his bandwidth allocation; we plan to study such adaptation (and appropriate
algorithmic countermeasures) in future work.

5 Preliminary Experiments

To date we have focused on using offline experiments to evaluate the feasibility
of (p, n)-grams for managing network traffic. In particular, we have focused on
three central questions. First, are there a sufficient number of high-frequency
(p, n)-grams (both in headers and in payloads) to enable the partitioning of
network traffic? Second, does there exist a feedback learning algorithm that
is able to learn a relatively small set of (p, n)-grams with which to partition
network traffic? And finally, would this algorithm properly manage flash worm-
like activity?

Run# Capture Date Packets % UDP % TCP % Other

1 Aug. 16, 2004 3437573 52% 16% 31%
2 Aug. 17, 2004 2156483 83% 16% 2%
3 Aug. 18, 2004 1283486 25% 71% 3%
4 Aug. 19, 2004 1006355 33% 63% 4%

Table 1. Details of selected data sets analyzed.

To address these questions, we have studied the distribution of (p, n)-grams in
packets captured on the link between the outside world and one of our small labs
of seven Linux workstations, three Windows XP workstations, and four Linux
servers. (Packets travelling from our network to the Internet were not analyzed,
but only downstream ones.) For this paper, we report analysis of four days
of captured traffic, the details of which are listed in Table 1; graphs presented,
however, are based on the traffic of August 17, 2004. Data from other days shows
a similar level of variability. Because this lab is essentially self-contained and is
used for common tasks such as email (using an independent email server within
the lab) and web surfing, traffic on our uplink, while not generally representative
of Internet traffic, nevertheless has proven to be a rich data source that has
helped us test and refine our ideas.

To understand the feasibility of using (p, n)-grams to classify network traf-
fic, we first studied the distribution of (p, n)-grams. This distribution is best
characterized as a “heavy-tail” distribution, with a few members having very
high frequencies but most having relatively low frequencies (see Figure 3). We
have found that high frequency (p, n)-grams typically match structural features

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 m

at
ch

es

Top 500 pngrams

Fig. 3. Frequency graph of the 500 most frequent (p, n)-grams, with p allowed to vary
over the entire packet length. Graph is based on the August 17, 2004 dataset with
n = 4.

of packets such as the IPv4 version number and padding fields. Such structural
patterns are the exception, though—most (p, n)-grams present in a fixed data
set will be located in the payload (assuming payloads are on average signifi-
cantly longer than the IP headers), and most of these (p, n)-grams will match
the payloads of a small number (perhaps no more than one) of these packets.

While such analysis told us something about the data, it could not directly
tell us whether traffic could be effectively classified using (p, n)-grams. So, we
then proceeded to implement a version of our feedback learning algorithm suit-
able for simulating queuing behavior using an offline data set. Our implementa-
tion reads in packet capture files in libpcap format, one file at a time, classifies
these packets into (p, n)-gram queues, and rebalances the queues before reading
the next file. Since our captures are stored in 10-minute increments, this means
that rebalancing happens at the same time intervals.

The classification program fixes n = 4 and starts with 50 queues, with the
1000 frequent (p, n)-grams (from an earlier day) initially assigned to these queues
(most frequent (p, n)-gram to least, highest priority queue to lowest, assigned in
a round-robin fashion one (p, n)-gram at a time). Traffic is then classified in 10-
minute intervals, with (p, n)-gram frequency statistics being preserved for the
most recent 3 hours of traffic. After processing a file, all queues are examined. If
a queue received more than 2% of recently observed packets (i.e. within the past
3 hours), it is split. Similarly, queues are merged with the nearest lower priority
queue if they each have received less than 0.25% of recently observed packets.
The default queue is never merged with any other queue; however, it is split
if the 2% threshold is exceeded. To prevent the accumulation of non-matching
(p, n)-grams, ones that have not matched any packets for the last 3 hours are
deleted.

When a queue is split, the program looks for a (p, n)-gram present in the last
10 minutes of packets placed in the queue (up to 1000 packets) that matches at
least 20% of these packets but no more than 50%. (The search proceeds from the
most frequent to the least frequent (p, n)-gram.) If no such (p, n)-gram is found,
the queue is not split during the current time slice (but it may be split on the
next time slice). When the new queue is created, we do not have a history of its
behavior; thus, we allow it to exist for three hours (our history window) before
allowing it to be merged or deleted.

Note that in this implementation there is not a fixed number of queues, and
further there is not an upper bound on the total number of queues that may
be created; however, in practice the merge/split bounds regulate the number of
queues, as will be seen.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100 120 140 160

%
 o

f t
ra

ffi
c

in
 d

ef
au

lt
qu

eu
e

Time (10 min intervals)

Fig. 4. Percentage of packets placed in the default queue. Despite the variation, note
that the default queue is almost always below the target of 2% (the maximum value
on the vertical axis). Graph is based on the August 17, 2004 dataset with n = 4.

We found that this feedback algorithm was able to successfully subdivide
traffic on a regular basis. As indicated in Figure 4, the default queue size re-
mained consistently small. Occasionally surges of traffic would appear within it;
if they persisted or were large, then an attempt was made to split the default
queue to bring it back down to a reasonable size. We were concerned that the
system might accumulate an excessive number of low-traffic queues; even with
the 3-hour minimum queue lifetime, however, the system used between 100 and
200 queues at any given time, with approximately 10 (p, n)-grams per queue
on most time intervals. Thus, the feedback algorithm was able to consistently
learn a relatively small set of (p, n)-grams with which to describe recent network
traffic.

Note that the above results are for n = 4. By reducing the size n of matching
substrings, we should be able to reduce the number of (p, n)-grams necessary to

describe normal network traffic. We plan to study alternative learning algorthims
that automatically adjusts the size of n so as to minimize the number of (p, n)-
grams needed to divide network traffic into a fixed number of queues.

Simulated UDP worm. To examine how the system might respond to a
surge of malicious traffic, we simulated the activity of a constant payload UDP
worm (such as SQL Slammer [27]) and a random payload (pseudo-polymorphic)
UDP worm. For each case, we generated UDP packets using the nemesis packet
generation tool using random source ports, source IP addresses, and destination
IP addresses. The constant payload worm had a fixed (random string) payload
of 714 bytes and a constant destination port of 1434. The random payload worm
had a payload size between 357 and 1434 bytes and a random destination port.

As we expected (and hoped), both simulated worms initially saturate the
default queue. On the first split operation, the constant-payload worm is placed
in its own queue. On subsequent iterations (over the next 30–60 minutes), with no
simulated packet dropping, every other non-default queue is merged into a second
queue (pairwise merging happens on every time step). This merging happens
because the large number of “worm” packets distort the overall packet statistics.
By instead simulating dropped packets from overflowing queues, though, the
program turns off rebalancing and keeps the (p, n)-gram assignments from before
the attack, and the worm stays in the default queue.

The random payload worm behaves much the same; however, because it has
no high-frequency (p, n)-grams, even without finite queues its packets remain
in the default queue. Like the constant-payload worm, though, without finite
queues the large number of worm packets bias the queue statistics and cause all
remaining normal traffic to be placed into one queue after several iterations of
the algorithm.

These results suggest that (p, n)-grams can be used to regulate network traf-
fic, at least in the case of traffic destined for a small network. Further, this
regulation appears to be effective at limiting the bandwidth that would be allo-
cated to simple flash worms, even if they were polymorphic. While these results
do not necessarily generalize to the behavior of larger, more complex networks,
they are promising enough to warrant further experimentation and research.

6 Discussion and Concluding Remarks

We start this discussion by summarizing the methodology we are using in this
approach. We have proposed to address the NDoS problem by adaptively learning
sets of network traffic and then apportioning network bandwidth between these
sets. We have also hypothesized that network traffic can be flexibly subdivided
through the (p, n)-gram measure of packet similarity. Even though our framework
and algorithm do not distiguish between malicious and non-malicious network
traffic, nonetheless they appear to be able to mitigate the effects of some kinds
of flash worms. We also hypothesize that the same mechanisms will be able to
moderate the bandwidth consumption of other disruptive traffic such as flash
crowds and high-volume spam.

Given the results of the previous section, we believe that there is much po-
tential in our approach to managing network traffic. However, as itemized below,
a number of important issues require further attention.

a) The nature of (p, n)-gram learning: For diversity-based traffic management
to work against a hostile adversary, it is essential for normal traffic to be
partitioned into groupings that are non-random yet cannot be easily pre-
dicted or overly affected by an attacker. If the partitioning is random, then
malicious traffic will be placed into many different queues, thereby negating
the advantage using separate queues; if the partitioning is too predictable,
then an adversary may be able to increase his bandwidth allocation by con-
structing packets that will match many queues; if the partitioning can be
too easily influenced, then the attacker can change it to suit his needs. The
input dependence and non-linear feedback of our current algorithm seems
to preclude simple analysis and would seem to require significant effort for
an attacker to overly influence; nevertheless, we do not have enough data
to ascertain how our algorithm will behave in practice. We are encouraged,
though, that our offline experiments indicate that this algorithm tends to
find fuzzy groupings that vary over time.

b) The impact of packet re-ordering: Since TCP and UDP flows are sometimes
split across multiple queues, it is likely that packets within such flows will
be re-ordered and differentially delayed. We have not specifically studied
this issue, but we do not think that such perturbations will significantly
impact end-to-end performance in non-congested situations. If it does turn
out to be a concern, then such reordering can be eliminated by using the
queue structure only to determine which packets should be dropped (with
no congestion, packets would be relayed in the order received).

c) Randomized payloads: If a polymorphic worm has no repeated pattern of
inter-packet (p, n)-grams, then our classifier will place most worm packets
into the default queue. Since other encrypted traffic, such as the payloads
in SSH and SSL, will also lack such structure, the worm may end up over-
whelming such legitimate connections. One way to minimize this problem
is to partition encrypted packets by header (p, n)-grams which match on IP
addresses and ports. It remains to be determined whether special code will
be needed to do such partitioning, or whether such patterns will be learned
automatically.

d) The composition and distribution of (p, n)-grams in more complex envi-

ronments over longer time periods: Are there a sufficient number of high-
frequency (p, n)-grams such that the traffic of an enterprise or a university
can be effectively partitioned? If we have sufficient (p, n)-grams, then is it
also feasible for an attacker to predict which (p, n)-grams we will choose?
It is possible that the greater sample sizes of larger networks will cause our
method to always find similar sets of (p, n)-grams across different networks.
If this turns out to be the case, then we may need new strategies for core
Internet routers.

e) Conflict with existing network policies: One capability that we may need to
provide is the ability for network administrators to intervene in the automatic
learning and classification process to change the allocation of (p, n)-grams
to queues. This would allow administrators to enforce certain policies in
cases where the automatic learning and classification process contradicts
established service provider’s policies.

Despite the number and magnitude of questions that remain unanswered,
we are optimistic that diversity-based traffic management holds the promise
to address problems that other approaches cannot. As a community, we will
have to develop strategies for managing overly aggressive bandwidth consumers
within an environment where nobody has complete control over the hardware,
network software, or applications; at the same time, though, we cannot make
a priori decisions as to what traffic patterns and uses are permissible without
jeopardizing the very flexibility that has fueled the net’s growth. The Internet
needs to be able to automatically and autonomously balance the myriad demands
placed upon it by both malicious and non-malicious applications. We believe that
our (p, n)-gram approach to diversity-based traffic management is a small step
towards meeting this need.

Acknowledgments. We thank Evan Hughes and James Kelly, especially for
their implementation and analysis work related to (p, n)-grams. We thank Miguel
Vargas Martin and Tao Wan for their many contributions to this project, in-
cluding work on earlier reports. We also thank Jean-Marc Robert and Emanuele
Jones, for their guidance, many helpful discussions, and literature references.

We would like to acknowledge Alcatel and Canada’s MITACS program for
funding the initial stages of this project. We also wish to acknowledge Canada’s
National Sciences and Engineering Research Council (NSERC) for providing all
three authors with NSERC Discovery Grants. The second author also wishes to
acknowledge NSERC for funding his Canada Research Chair in Network and
Software Security.

References

1. Staniford, S., Moore, D., Paxson, V., Weaver, N.: The Top Speed of Flash Worms.
In: Proceedings of ACM Workshop on Rapid Malcode (WORM). (2004)

2. Floyd, S., K.Fall: Promoting the Use of End-to-End Congestion Control in the
Internet. IEEE/ACM Transactions on Networking 7 (1999) 458–472

3. Widmer, J., Denda, R., Mauve, M.: A Survey of TCP-Friendly Congestion Control.
IEEE Network (2001)

4. Matrawy, A., Lambadaris, I.: A Survey of Congestion Control Schemes for Mul-
ticast Video Applications. IEEE Communications Surveys and Tutorials 5 (2003)
22–31

5. Floyd, S.: TCP and Explicit Congestion Notification. ACM Computer Communi-
cations Review (1994) 10–23

6. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Trans. on Networking (1993) 397–413

7. Estan, C., Varghese, G.: New Directions in Traffic Measurement and Accounting:
Focusing on Elephants, Ignoring the Mice. ACM Trans. on Computer Systems 21

(2003) 270–313
8. Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource

Consumption in Network Traffic. In: Proceedings of ACM SIGCOMM’03, Germany
(2003) 270–313

9. Clark, D., Fangand, W.: Explicit Allocation of Best Effort Packet Delivery Service.
IEEE/ACM Trans. on Networking 6 (1988) 362–373

10. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services. RFC 2475 (1988)

11. Georgiadis, L., Guérin, R., Peris, V., Sivarajan, K.N.: Efficient Network QoS Pro-
visioning Based on Per-Node Traffic Shaping. IEEE/ACM Transactions on Net-
working 4 (1996) 482–501

12. Elwalid, A., Mitra, D.: Traffic Shaping at a Network Node: Theory, Optimum
Design, Admission Control. In: Proceedings of IEEE InfoCom’97. (1997)

13. Mahajan, R., Bellovin, S., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Con-
trolling High Bandwidth Aggregates in the Network. Computer Communications
Review (2002)

14. Ioannidis, J., Bellovin, S.: Implementing Pushback: Router-based Defense against
DDoS Attacks. In: Proceedings of NDSS’02. (2001)

15. Yaar, A., Perrig, A., Song, D.X.: SIFF: A Stateless Internet Flow Filter to Mitigate
DDoS Flooding Attacks. In: IEEE Symposium on Security and Privacy. (2004)

16. Heberlein, L., Dias, G., Levitt, K., Mukherjee, B., Wood, J., Wolber, D.: A Network
Security Monitor. In: Proceedings of the IEEE Symposium on Security and Privacy.
(1990)

17. Hofmeyr, S.: An Immunological Model of Distributed Detection and its Application
to Computer Security. PhD thesis, University of New Mexico (1999)

18. Singh, S., Estan, C., Varghese, G., Savage, S.: The EarlyBird System for Real-time
Detection of Unknown Worms. Technical report - cs2003-0761, UCSD (2003)

19. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated Worm Fingerprinting.
In: Proceedings of OSDI ’04, San Francisco CA (2004)

20. Rabin, M.: Fingerprinting by Random Polynomials. Technical report 15-81, Har-
vard University (1981)

21. Kreibich, C., Crowcroft, J.: Honeycomb - Creating Intrusion Detection Signatures
Using Honeypots. In: Proceedings of HOTNETS-II. (2003)

22. Kim, H., Karp, B.: Autograph: Toward Automated, Distributed Worm Signature
Detection. In: Proceedings of the 13th Usenix Security Symposium. (2004)

23. Wang, K., Stolfo, S.J.: Anomalous Payload-based Network Intrusion Detection.
In: Proceedings of RAID’04. (2004)

24. Mahalanobis, P.: On the generalized distance in statistics. Proc. Natl. Institute of
Science of India 2 (1936)

25. Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in Your Spare
Time. In: Proceedings of the 11th USENIX Security Symposium. (2002)

26. Matrawy, A., Somayaji, A., van Oorschot, P.: The Threat of Attacker Innovation
to Flash Worm Defenses. Manuscript in Preparation (2005)

27. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: The
Spread of the Sapphire/Slammer Worm. Technical report, CAIDA et al. (2003)
http://www.caida.org/analysis/security/sapphire/.

