
Network Scan Detection with LQS:
A Lightweight, Quick and Stateful Algorithm

Mansour Alsaleh, P.C. van Oorschot
School of Computer Science

Carleton University, Ottawa, Canada
{malsaleh, paulv}@scs.carleton.ca

ABSTRACT
Network scanning reveals valuable information of accessi-
ble hosts over the Internet and their offered network ser-
vices, which allows significant narrowing of potential tar-
gets to attack. Addressing and balancing a set of sometimes
competing desirable properties is required to make network
scanning detection more appealing in practice: 1) fast de-
tection of scanning activity to enable prompt response by
intrusion detection and prevention systems; 2) acceptable
rate of false alarms, keeping in mind that false alarms may
lead to legitimate traffic being penalized; 3) high detection
rate with the ability to detect stealthy scanners; 4) efficient
use of monitoring system resources; and 5) immunity to eva-
sion. In this paper, we present a scanning detection algo-
rithm designed to accommodate all of these goals. LQS is
a fast, accurate, and light-weight scan detection algorithm
that leverages the key properties of the monitored network
environment as variables that affect how the scanning de-
tection algorithm operates. We also present what is, to our
knowledge, the first automated way to estimate a reference
baseline in the absence of ground truth, for use as an evalu-
ation methodology for scan detection. Using network traces
from two sites, we evaluate LQS and compare its scan de-
tection results with those obtained by the state-of-the-art
TRW algorithm. Our empirical analysis shows significant
improvements over TRW in all of these properties.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.3 [Network Operations]: Net-
work monitoring

General Terms
Security, Algorithms

Keywords
Scanning Detection, Port Scanning, Host Discovery Tech-
niques, Reconnaissance

This is the authors’ version of the work. It is posted here by permission
of the ACM for your personal use. Not for redistribution. Thedefinitive
version was published in ACM ASIACCS’11, March 22–24, 2011,Hong
Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

1. INTRODUCTION
Network scanning continues to be a common reconnais-

sance technique that precedes many of today’s Internet at-
tacks. Many botnets and network worms scan various IP
address ranges to locate vulnerable machines to attack [14,
15, 24]. Scanning is also an effective way to search for poten-
tial weaknesses in dedicated servers since pull-based infec-
tion techniques (e.g., drive-by downloads) and other infec-
tion techniques that require user interaction (e.g., opening
malicious email attachments) are not applicable.

A single scan activity attempts to connect to a specific
port in a host either to find out if the host is active or if
the port is open and what service it offers. Given that the
objective of network scanning is to find responsive services,
scanners cannot avoid making failed connection attempts.
Therefore, detection approaches based on a remote’s failed
connection attempts offer more promise where other detec-
tion features can be evaded by informed adversaries.

Most post-detection responses (e.g., limiting the amount
of information that a scanner can learn about the monitored
network by blocking some of their inbound network traffic)
require fast, real-time detection of scanners. The fewer failed
connection attempts by a remote host required by a detec-
tion algorithm to flag the remote as a scanner, the faster
the scan detection and the more stealthy scanners are de-
tected. In addition to the challenge of selecting an appropri-
ate trade-off between the false positive rate and the number
of required failed connection attempts, it is also important to
balance between efficient use of monitoring system resources
and reasonable accuracy of the detection algorithm.

In this paper, we propose a lightweight quick and stateful
(LQS) real-time network scanning detection algorithm for
external scanners. LQS leverages key properties of the op-
erating environment that impact the detection performance
such that they are incorporated into operational parame-
ters of the algorithm. Our analysis and empirical evaluation
finds that while LQS requires a small memory footprint to
operate, its detection accuracy and speed outperforms the
TRW algorithm [9]. Unlike TRW, LQS can detect vertical
scans and it has a greater immunity to evasion from scan-
ners who have a priori knowledge of some available services
in the target network.

Contributions. Our main contributions are the following:

1. Lightweight Quick and Stateful Online Scan

Detection Algorithm: We propose a lightweight
network scan detection algorithm (LQS) that detects
scanners as early as from their second connection at-

1

tempt to the monitored network. Unlike previous scan
detection approaches (e.g., [9, 19]), LQS keeps the
state of offered network services over time to evaluate
inbound connection attempts.

2. Empirical Evaluation: We evaluate the performance
of LQS on two datasets from two qualitatively differ-
ent network environments and compare its results to
those obtained by TRW.

3. Scan Detection Evaluation Methodology: We
present an evaluation methodology for scan detection
schemes in which remote hosts contacting the moni-
tored network are classified after monitoring their net-
work traffic over a relatively long period of time (as op-
posed to a short monitoring window in real-time scan
detection to make a fast decision, as in the LQS al-
gorithm). The new methodology provides a reference
baseline for evaluation for each dataset studied, in the
absence of ground truth.

Our implementation of LQS (Section 3.2, Algorithm 1) as a
policy in the Bro IDS [1] is available at http://lqs-bro.

sourceforge.net/. Our empirical evaluation shows that
LQS both detects scanners earlier than TRW and has higher
detection accuracy (e.g., in one dataset, LQS detection rate
is 76% vs. 12% in TRW).

Organization. We discuss identification of scanners in Sec-
tion 2. Section 2.1 describes the datasets used and their
network environment. Section 2.2 presents a new method-
ology to obtain a reference baseline for evaluating network
scanning detectors. Challenges in real-time scan detection
are discussed in Section 2.3. We present a design overview
of LQS in Section 3. Section 4 explores the advantages of
LQS relative to TRW discussing the features and capabili-
ties of both. Section 5 evaluates LQS on two datasets from
different sites; scan detection results of both the LQS and
TRW algorithms are given and analyzed. Section 6 discusses
related work. Section 7 concludes.

2. IDENTIFICATION OF SCANNERS:
ANALYSIS OF SCANNING PATTERNS

Typically, network scanners tend to probe a range of net-
work addresses in search of active services of particular inter-
est to the scanners. Unlike legitimate network traffic, most
scanners’ connection attempts are expected to fail since the
density of network services (i.e., the ratio of open ports to
closed ports of all Internet-addressable local hosts) in a given
network is very small. Using failed connection attempts as
a sign of scanning intent seems effective, as scanners cannot
evade probing non-existing network services.

To use a network service remotely, the common way for a
regular user to locate the IP address of the server in question
is through DNS requests. Users usually enter the human-
readable host name of the required server in the used ap-
plication (e.g., entering a URL in a browser) which in turn
sends a DNS request to obtain the corresponding IP address.
The application often determines the appropriate destina-
tion port to contact the corresponding server. While it may
seem unlikely for a benign remote host to make unsuccessful
connections, in practice, there are several inevitable benign
reasons to generate failed connection attempts (e.g., network

failures, outdated DNS entries, and temporarily unavailable
network services).

In Section 2.2, we study failed connection attempts in two
datasets and propose a scan detection evaluation methodol-
ogy. An overview of these datasets is first given in Sec-
tion 2.1 below. Section 2.3 discusses challenges in real-time
scan detection.

2.1 Overview of Datasets
Dataset I. The dataset is a full capture network trace
collected at a class C university network with 62 Internet-
addressable IP addresses. The trace was gathered over the
period of Jan 28 to Mar 13, 2007 (45 days). The size of the
dataset is 41 gigabytes. The active IP addresses during the
capture period were 30. The network firewall allows inbound
connection attempts to closed ports and unassigned IP ad-
dresses. Since local hosts respond to inbound connection
attempts that are sent to closed ports, most inbound timed-
out TCP connection attempts are destined to unassigned IP
addresses (or turned off machines). Note that about 95%
of inbound TCP connections in Table 1 are rejected (i.e.,
RST packet is sent by the destination) suggesting a high-
volume of network scanning traffic. Few IP addresses used
P2P file sharing over short bursts of the log capture period.
Connection attempts to unavailable peers contributed to the
rejected and timed-out outbound TCP connections.

To identify the network protocols running in the open
ports in this network without relying on the port number, we
used a signature-based detection method based on Ethereal
display filter reference [2]. Six open ports (in three dedi-
cated servers) were identified running the following network
protocols: HTTP, HTTPS, SSH, SMTP, IMAPS, and IPP.

Dataset II. This is a network trace of packet headers col-
lected at a class C university network (a network different
than that of dataset I) with 254 Internet-addressable IP ad-
dresses. The trace was gathered over the period of Jun 17
to Jul 4, 2010 (18 days). The size of the dataset is 188
gigabytes. The active IP addresses during the capture pe-
riod were 223. Inbound connection attempts to closed ports
or unassigned IP addresses were not allowed by the net-
work firewall. About 70% of inbound TCP connections are
timed-out (i.e., did not go through the firewall) suggesting
a high-volume of network scanning traffic.

Network protocols running in the open ports were iden-
tified by the same signature-based method used in the first
dataset. Only protocol signatures located in the first bytes
of the TCP payload data for packets with shorter than max-
imum header size are identified. The open ports fall into the
following categories: (a) 180 ports running Sophos antivirus
remote management system (port 8194); (b) 170 ports run-
ning Microsoft Directory Service (Microsoft-DS; e.g., SMB
protocol); (c) 12 ports running Line Printer Daemon proto-
col (LPD; port 515); (d) 10 ports running Telnet protocol;
(e) 7 ports running SSH protocol; and (f) 72 various other
services mostly on ephemeral ports. There were no P2P
protocols observed during the capture period.

2.2 Evaluation in the Absence of Ground Truth
A labeled dataset is often used to validate an intrusion

detection technique. Accurate labeling of a dataset requires
either unique signatures to match against or artificially cre-
ated or injected intrusion traffic. A network scanning event

2

http://lqs-bro.sourceforge.net/
http://lqs-bro.sourceforge.net/

Dataset I Dataset II

Number of: Inbound Outbound Inbound Outbound

a) Flows (TCP, UDP, and ICMP) 4,011,132 828,988 660,877 27,868,693

b) TCP connections (flows) 3,857,660 719,273 207,988 22,747,160

i) Successful TCP connections (percentage of b) 4.2% 57.2% 29.2% 71.7%

ii) Rejected TCP connections 95.79% 12.9% 2.2% 20.2%

iii) Timed-out TCP connections 0.01% 29.9% 68.6% 8.1%

c) Source IP addresses initiating TCP connections 7,031 30 28,922 223

Table 1: Datasets statistics (dataset I of Jan 28 to Mar 13, 2007; dataset II of Jun 17 to Jul 4, 2010)

could resemble legitimate traffic depending on (unknowable)
intent, and thus general signatures for all network scanning
events do not seem possible. Given the difficulty of gener-
ating synthetic traffic that represents all forms of network
scanning, and that is distinguishable from legitimate traf-
fic, simulation and emulation approaches that involve gen-
erating scanning events appear challenging for validation.
Alternatively, aggregate behaviour of multiple events (e.g.,
frequency, rate, and the number of distinct destination IP
addresses the remote made failed connection attempts to)
from the same source can be used to infer scanning intent
and to provide a reference baseline, that while not repre-
senting a solid ground truth of scanners, may give a limited
form or an estimated ground truth.

Unlike real-time scan detection algorithms, which are typ-
ically designed for fast detection upon observing as few as
possible connection attempts from remote hosts, the full net-
work traffic of remote hosts (of a particular dataset) is avail-
able to establish a reference baseline of scanners. Although
monitoring network traffic over a relatively long period of
time (e.g., few days) gives us more confidence in identifying
scanners, those with few connection attempts remain hard
to identify.

Given the possible change of state in a remote host from
benign to scanner and vice versa, the aggregate behaviour
of the remote host over a relatively long period of time may
seem inaccurate. Thus, it is important to consider the time
parameter in which the remote is classified as a scanner for
some time periods and benign for others. However, in a
given remote host, the probability that both a scanning mal-
ware (e.g., a worm) and a legitimate software (e.g., brows-
ing a Web site) contact the same network is low. Therefore,
considering the change of state is not necessary in such a
classification.

For the two datasets in Section 2.1, we attempt to generate
a reference baseline (RB) for each remote host based on the
following metrics:

1. the number of distinct {local IP address, destination
port} pairs that the remote host initiates successful
connection attempts to over the entire dataset capture
period;

2. the number of distinct {local IP address, destination
port} pairs that the remote host initiates unsuccessful
connection attempts to over the entire dataset capture
period; and

3. whether any local host initiates a connection attempt
to the remote host.

Figure 1 shows the number of remote hosts for each num-
ber of distinct {local IP address, destination port} pairs that

 1

 10

 100

 1000

 10000

 100000

 10 30 64 128 0 20 40 60 80 100 120 140

n
o
.

o
f

r
e
m
o
t
e

h
o
s
t
s

(
l
o
g
s
c
a
l
e
)

no. of distinct {local IP address, dst port} pairs

Dataset I
Dataset II

Figure 1: Number of remote hosts vs. the num-
ber of distinct {local IP address, destination port}
pairs that these remotes initiated failed connection
attempts to. (y axis in log scale; best viewed in
color)

these remote hosts made unsuccessful connection attempts
to (y axis in log scale). Approximately 78% (5,092 out of
6,562) and 9% (2,351 out of 26,859) of the remote hosts
in the first and second datasets respectively, that initiated
inbound connection attempts, made only successful connec-
tion attempts. Note that remote hosts which local hosts ini-
tiated outbound connection attempts to are excluded. The
percentage of remote hosts that made only one unsuccess-
ful connection attempt is approximately 14% (922 out of
6,562) and 88% (23,542 out of 26,859) in the first and sec-
ond datasets respectively. In contrast, the percentage of re-
mote hosts that made two unsuccessful connection attempts
is only 1.6% and 2.3% in the first and second datasets re-
spectively. While the decline in this percentage is sharp from
one to two unsuccessful connection attempts, it is minor for
more than two unsuccessful connection attempts. In fact,
the percentage of all remote hosts that made two or more
unsuccessful attempts is only 8.4% and 3.6% in the first and
second datasets respectively. Note the two peaks at 64 and
128 in the x-axis, presumably due to scanners probing a
range of IP addresses.

To see the distribution of remote hosts that made two or
more unsuccessful connection attempts, Figure 2 plots the
cumulative distribution for the number of remote hosts over
the total number of distinct {local IP address, destination
port} pairs that these remote hosts initiated failed connec-
tion attempts to (x axis in log scale). Note that more than
91% and 96% of remote hosts made at most one failed con-

3

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 4 8 16 32 64 128 256 512

C
D
F

o
f

t
h
e

n
o
.

o
f

r
e
m
o
t
e

h
o
s
t
s

no. of distinct {local IP address, dst port} pairs (logscale)

Dataset I
Dataset II

Figure 2: Cumulative distribution for the number
of remote hosts and the total number of distinct
{local IP address, destination port} pairs that these
remotes initiated failed connection attempts to. (x
axis in log scale; best viewed in color)

nection attempt in the first and second datasets respectively.
However, while almost 93% did not make failed connection
attempts with more than three local IP addresses (including
those that made no failed connection attempts) in the first
dataset, almost all remote hosts (> 99%) did not in the sec-
ond dataset. The variation between the two datasets in the
distribution of the number of unsuccessfully contacted {local
IP address, destination port} pairs for each remote host are
due to several factors including: (i) the volume of scanning
activity; (ii) the availability of offered network services; and
(iii) the IP range of the monitored network.

Jung et al. [9] suggested using the ratio of the number
of local hosts that a remote host unsuccessfully attempted
to connect with vs. the total number of local hosts that the
remote host contacted (either successfully or unsuccessfully)
as a way to identify scanners. We define a similar ratio that
also takes into account the contacted port; i.e., the number
of distinct {local IP address, destination port} pairs that the
remote host initiated failed connection attempts to vs. the
total number of distinct pairs the remote contacted either
successfully or unsuccessfully.

Figure 3 plots the cumulative distribution of this ratio
for all remote hosts, excluding remote hosts that local hosts
initiated outbound connection attempts to. The first obser-
vation is that the connection attempts for most remote hosts
are either all successful or all unsuccessful. While this might
seem a straightforward way to obtain a reference baseline in
the absence of ground truth, we must differentiate between
remote hosts that contact few or many local IP addresses.
For example, in the second dataset, 96% of the remote hosts
with a ratio of one (i.e., all their connection attempts failed)
made only one failed connection attempt.

We employ these observations to derive a fine-grained clas-
sification of remote hosts based on the number of distinct
{IP address, destination port} pairs that a remote host un-
successfully contacted and the number of distinct {IP ad-
dress, destination port} pairs that the remote host success-
fully contacted. For a remote host R, the following notation
is used:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D
F

o
f

t
h
e

n
o
.

o
f

r
e
m
o
t
e

h
o
s
t
s

% of failed attempts to all attempts (per host)

Dataset I
Dataset II

Figure 3: Cumulative distribution for the number of
remote hosts and the ratio of the number of distinct
{local IP address, destination port} pairs that each
of these remotes initiated failed connection attempts
to vs. the total number of distinct pairs the remote
contacted either successfully or unsuccessfully.

RinboundS
the number of distinct {IP address,
destination port} pairs the remote host
initiated successful connection attempts to.

RinboundF
the number of distinct {IP address,
destination port} pairs the remote host
initiated failed connection attempts to.

Routbound the number of distinct {IP address,
destination port} pairs that initiated
connection attempts (whether successful or
unsuccessful) to R.

Rφ RinboundF
/(RinboundS

+ RinboundF
)

Classification Criteria:

benign : ((Routbound ≥ 1) ∨ (RinboundS
≥ 3)) ∧

(RinboundF
≤ 1)

likely benign : (Rφ < 0.25)

scanner : (Routbound = 0) ∧ (RinboundF
≥ 3) ∧

(RinboundS
= 0)

likely scanner : (Routbound <= 1) ∧ (Rφ ≥ 0.75) ∧
(RinboundF

≥ 2) ∧ (RinboundS
≤ 2)

unknown (Routbound = 0) ∧ (RinboundF
= 1) ∧

(one failed): (RinboundS
= 0)

unknown
(others): the remainder of remote hosts

The benign rule requires that R makes successful connec-
tions with at least three distinct {IP address, destination
port} pairs and failed connection attempts with at most one

4

pair. The host will also be considered benign if both at least
one local host initiates an outbound connection attempt to R
and R does not make failed connection attempts with more
than one pair. R is classified as likely benign if it makes only
successful connection attempts with at least 75% of distinct
{IP address, destination port} pairs it contacts. This seems
reasonable since remote hosts’ traffic is monitored for a rel-
atively long time (the dataset duration). Note that these
rules are matched in order from benign to unknown such
that if a remote host matches one category it will not be
matched with the following rules.

The scanner rule applies to remote hosts that make only
failed connection attempts with at least three distinct pairs.
Also, there should be no outbound connections (whether
successful or unsuccessful) made to these remote hosts from
any local host. Such a strict heuristic is based on the as-
sumption that it is unlikely for a benign remote host to
make only failed connection attempts with three or more
services in the monitored network, given that there is no
outbound connections to the remote host. If R unsuccess-
fully contacts at least two distinct pairs and has a ratio of
at least 0.75, then it is considered a likely scanner, even if it
makes successful connections with up to two distinct pairs
or if there is at most one outbound connection attempt to
R (note that if RinboundS

= 2, then RinboundF
must be 6).

While the scanner heuristic captures the typical scanning
pattern of probing non-existing network services (including
stealthy scanners), the likely scanner heuristic captures for-
tuitous scanners that have found one or more active network
services or that have been contacted by local hosts.

The first unknown rule is for remote hosts that make failed
connection attempts with only one {IP address, destination
port} pair and there is no outbound connections to them.
Those remote hosts are hard to classify since failed attempts
with one network service is not enough evidence of malicious
intent. Causes of such cases include: (i) misconfiguration in
the remote host; (ii) local servers or network failures; or (iii)
very stealthy scanning (due, for example, the availability of
many IP addresses for the scanner to scan from). The last
unknown rule is for remote hosts that do not match any of
the previous rules. It also includes backscatter traffic (e.g.,
the connection attempt starts with a SYN-ACK or a RST
packet sent by the remote).

The probability of a scanner (with no prior knowledge of
the targeted network) initiating a successful connection re-
lies on the density of the offered services in the monitored
network. Note that RinboundS

thresholds rely on the as-
sumption that the density of the offered services (i.e., the
number of open ports) in most of today’s networks is usually
very small with respect to the network’s IP address range
and the total number of possible services at each address
(as it is the case in both datasets we study). The more lo-
cal IP addresses offering the same network service (i.e., the
same port number is open), the higher the probability of a
scanner of this port making successful connections. To ac-
curately evaluate successful inbound connection attempts in
this case, each successful connection attempt is assigned a
weight from 0 to 1 based on the density of the connection’s
destination port in the target network as follows:

weight = 1 −
number of local hosts with the port open

number of local IP addresses

For example, if port 80 is open on 100 machines in a class C

Classification Dataset I Dataset II

Benign (4.51%) 317 (4.52%) 1,308
Likely Benign (72.34%) 5,086 (8.13%) 2,351
Scanner (5.33%) 375 (1.05%) 304
Likely Scanner (2.93%) 206 (1.6%) 464
Unknown (one failed) (11.75%) 826 (79.9%) 23,109
Unknown (others) (3.14%) 221 (4.79%) 1,386

Total 7,031 28,922

Table 2: Classification of remote hosts as a reference
baseline.

network, a successful connection attempt made to this port
is given a weight of 1-(100/254) ≈ 0.6.

Table 2 shows the classification results of both datasets.
The variance between the two datasets in the percentages of
remote hosts in each category is due to several reasons in-
cluding: (i) the volume of scanning activities; (ii) the num-
ber of offered network services; and (iii) the volume of in-
bound traffic.

2.3 Challenges in Real-Time Scan Detection
In our analysis in the previous section, we had access to

remote hosts’ traffic over a relatively long period of time and
there were no time or computational resources constraints.
In the following, we discuss challenges involved in detecting
scanners in real-time.

Detection Accuracy. The typical trade-off in intrusion
detection between the rate of false alarm and the rate of de-
tection is a challenging problem. The priority is to reduce
false alarms while maintaining an acceptable detection rate.
For a scan detector to have a reliable detection performance
in terms of false and true positive rates over various environ-
ments, properties of the monitored network that may impact
the detection must be considered by the scanning detection
algorithm. It is also desirable to automate the process of
setting the algorithm parameters so that the network ad-
ministrator has minimal settings to manually configure.

Computational Resources. An accurate scan detection
algorithm that consumes considerable resources of the mon-
itoring system may not be applicable in practice. Therefore,
it is important that the detector requires reasonable compu-
tational resources in terms of memory, processing time, and
disk space. However, there is usually a trade-off between
efficient use of monitoring system resources and reasonable
accuracy of the detection algorithm.

Fast Detection. Post-detection responses, in general, are
more effective if scanners are detected early. This requires
making a decision upon observing a few number of failed
connection attempts. However, the fewer the number of
required observations of a host’s behaviour, the less evidence
of malicious intent is available. Hence, it is very challenging
to set an appropriate trade-off between the false alarm rate
and the number of connection attempts that scanners can
perform before being classified as scanners.

Detecting Stealthy Scanners. To detect stealthy scan-
ners [4], the state of external hosts must be kept for a
long period of time (e.g., few days) after which the state
is cleared, as long as there is no sufficient evidence to de-
clare the remote host as a scanner. Thus, the memory foot-
print of the scan detection algorithm can easily increase to

5

an unmanageable size. The challenge is to keep a state (of
external hosts contacting the monitored network) that is as
small as possible and to classify external hosts from as few
connection attempts as possible.

Immunity to Evasion and Gaming. It is essential that
the scan detection algorithm is as immune to evasion as pos-
sible, even for adversaries with a priori knowledge of the
monitored network. It is also important to be resistant to
DoS attacks where adversaries can manipulate the algorithm
to flag innocent remote hosts as scanners.

3. LQS: ONLINE SCAN DETECTION
ALGORITHM

Here we present the LQS scan detection algorithm. A de-
scription of the algorithm design and the algorithm pseudo-
code are given.

3.1 Overview
The algorithm depends on failed connection attempts as

an indication of network scanning activity as discussed in
Section 2. The LQS algorithm uses the exposure maps tech-
nique [25] as a decision oracle to determine whether a new
connection attempt is potentially malicious. In this tech-
nique, a table of the services offered by a particular network
is built automatically based on how internal hosts respond to
incoming connection attempts. If a new connection attempt
is destined to an entry in the services table, the connection is
considered successful. Otherwise, the attempt is considered
unsuccessful until its status is determined.

Unlike the exposure maps technique, however, LQS uses
two tables (OPS and CPS; see output in Algorithm 1) that
are updated continuously on-the-fly to keep the state of run-
ning services (i.e., open ports) in the monitored network: (i)
the OPS table contains a list of active local network services;
and (ii) the CPS table contains a list of local network ser-
vices that were previously active and later became inactive
(i.e., the most recent response from the corresponding port
indicates that it is closed). Connection attempts to network
services not in the OPS or CPS tables are immediately
counted as scan events.

A remote host r is flagged as a scanner (i.e., inserted in
the table S) in the following cases: (i) r has initiated un-
successful connection attempts to at least k (default value
2) distinct local hosts (i.e., the case of horizontal or strobe
scans); or (ii) at least 4k − 3 (i.e., 1 + 4(k − 1)) unsuccessful
connection attempts are initiated by r to the same local host
but on different destination ports (i.e., the case of vertical
scans). In other words, r is flagged as a scanner if it has
initiated failed connection attempts to at least k unique {IP
address, port} pairs. The FC table contains counts of failed
connection attempts for remote IP addresses that made at
least one failed connection attempt.

If a local host initiates a connection to a remote host, the
IP address pair is added to the whitelist CR such that failed
connection attempts from the remote will not be considered
if destined to the same local host (i.e., the remote’s count in
FC will not be increased as explained further below).

Each entry in the OPS, CPS, FC, CR, and S tables has
a “write-expiry” interval such that the entry is deleted when
the given period of time (I1, I2, I3, or I4) has lapsed since
the last time the entry was inserted or modified.

The LQS algorithm does not flag remote hosts that make
several successful connections as benign. Two advantages
are gained by not whitelisting what appears as benign re-
mote IP addresses: 1) avoiding possible evasion (see, e.g., [10]);
and 2) quickly capturing a remote host change in state (i.e.,
being compromised).

3.2 Design Details
Pseudo-code of LQS is given in Algorithm 1. The function

NewConnection in line 2 returns true only if a new TCP
or UDP connection is initiated (e.g., the first SYN packet
from a remote host is seen for the TCP protocol). Note
that if only SYN-ACK or RST packet is received from the
remote, the connection will not be considered new to avoid
backscatter traffic.

The SuccessfulConnection function in line 22 returns
true when the destination host responds positively to the
source request indicating an open port (for the TCP proto-
col, a SYN-ACK packet indicates an open port). For each
successful inbound connection (indicating an open port in
the local network), the {local host IP address, destination
port} pair is added to active network services table OPS or
the corresponding entry is refreshed if it is already in OPS
(line 23). If the pair exists in the CPS table, this means
that the network service was previously available (i.e., was
in the OPS) and then deleted from OPS and added to CPS,
due to a previously rejected connection (RST packet) by the
same pair. Therefore, in line 25, the corresponding entry is
deleted from CPS. On the other hand, by receiving a RST
packet from a previously open port (e.g., as a response to
a TCP SYN packet) sent from a local host (as in line 39),
indicating that the host is alive and the port is closed, the
corresponding entry in the OPS table is moved to the CPS
table. Entries in the CPS table are kept for a shorter inter-
val I2 (I2 << I1), as in lines 40 and 41.

For each remote host r contacting the monitored net-
work, a counter (FC[C.srcIP].count) is updated for each
new connection attempt as follows: if r attempts a connec-
tion (e.g., sending a SYN packet) to a local host l for the
first time (where the contacted IP/port is not in the OPS
table or the CPS table), this counter is incremented by one
point (line 9). If r has previously contacted l and then at-
tempts a new connection with l, but on a new destination
port, then the counter is incremented by a quarter point
(line 12). Note that each remote IP address (i.e., an entry
in FC) is linked to a set of contacted local IP addresses
(FC[C.srcIP].Contacted). Also, each local IP address in
this set is linked to a set of destination ports contacted by
the remote host (FC[C.srcIP].Contacted[C.dstIP] .P orts).

Making a connection attempt to a {local host IP address,
destination port} pair contacted previously by the same re-
mote host will not increase the remote host’s counter. Only
the first k unique {local host IP address, destination port}
pairs are kept per remote host in the table FC. A remote
host with a set of k entries is reported as a scanner and
added to the table S, as in line 15. LQS returns true only if
a new scanner is identified as in line 16.

Once a connection is successful, in addition to updat-
ing OPS and CPS accordingly, FC is updated as follows:
1) the contacted port is removed from the corresponding
Contacted list as in line 28; and 2) if r did not previously
contact any other port in l (Count(FC[C.srcIP].Contacted
[C.dstIP].P orts) = 0) then r’s counter is decremented by

6

INPUT:
C //a table of current connections
I1 (def=168 hr), I2 (def=24 hr), I3 (def=24 hr), I4 (def=1 hr)
k (def=2) //number of unique (IP,port) pairs contacted unsuccessfully before declared as scanner

OUTPUT:
OPS (global variable, def=∅, expires after I1) // table of open ports (including their IPs)
CPS (global variable, def=∅, expires after I2) // table of previously open ports (RST seen)

FC (global variable, def=∅, expires after I3) // table of IP addresses with failed connections1

CR (global variable, def=∅, expires after I4) // table of {local host, contacted remote} pairs2

S (def=∅, expires after I3) // table of scanners’ IP addresses.

begin1

if NewConnection(C) then2

if IsLocalAddress(C.dstIP) ∧ [C.dstIP,C.dstPORT] /∈ (OPS ∪ CPS) ∧ [C.dstIP,C.srcIP] /∈ CR) then3

if ([C.srcIP] /∈ FC) then add new entry for index C.srcIP into FC4

if (FC[C.srcIP].count < k) then5

if (C.dstIP /∈ FC[C.srcIP].Contacted) then6

add new entry for index C.dstIP into FC[C.srcIP].Contacted7

add new entry for index C.dstPORT into FC[C.srcIP].Contacted[C.dstIP].P orts8

FC[C.srcIP].count ⇐ FC[C.srcIP].count + 1 //src,dst didn’t contact previously9

else if (C.dstPORT /∈ FC[C.srcIP].Contacted[C.dstIP].P orts) then10

add new entry for index C.dstPORT into FC[C.srcIP].Contacted[C.dstIP].P orts11

FC[C.srcIP].count ⇐ FC[C.srcIP].count + 0.25 //src,dst contacted previously12

end13

if FC[C.srcIP].count = k then14

add new entry for index C.dstIP into S15

return (True)16

end17

end18

else if IsLocalAddress(C.srcIP) ∧ (C.dstIP /∈ S) ∧ (RST /∈ C.flags) then19

add new entry for index C.srcIP,C.dstIP into CR20

end21

else if SuccessfulConnection(C) ∧ IsLocalAddress(C.dstIP) then22

add [C.dstIP,C.dstPORT] to OPS23

if [C.dstIP, C.dstPORT] ∈ CPS then24

delete [C.dstIP,C.dstPORT] from CPS25

end26

if (C.dstPORT ∈ FC[C.srcIP].Contacted[C.dstIP].P orts) then27

delete FC[C.srcIP].Contacted[C.dstIP].P orts[C.dstPORT]28

if (Count(FC[C.srcIP].Contacted[C.dstIP].P orts) > 0) then29

FC[C.srcIP].count ⇐ FC[C.srcIP].count− 0.2530

else31

delete FC[C.srcIP].Contacted[C.dstIP]32

FC[C.srcIP].count ⇐ FC[C.srcIP].count− 133

end34

if ([C.srcIP].count = 0) then35

delete FC[C.srcIP]36

end37

end38

else if (RejectedConnection(C)) ∧ ([C.dstIP, dstPORT] ∈ OPS) ∧ IsLocalAddress(C.dstIP) then39

add add new entry for index [C.dstIP, C.dstPORT] into CPS40

delete OPS[C.dstIP,C.dstPORT]41

end42

return (False)43

end44

Algorithm 1: LQS (returns True when a new IP address is classified as a scanner)

one point (line 33); otherwise, r’s counter is decremented by
a quarter point (line 30).

If one or more packets with control flags set are missed
due to network or host failures at either end, for a detector,
an outbound connection may appear as either an inbound
connection or as two connections: 1) an outbound connec-

1
This table contains remote IP addresses having at least one failed

connection attempt. Each remote IP address (i.e., an entry in the ta-
ble) is linked to a set of unsuccessfully contacted local IP addresses.
Each contacted local host is linked to a set of destination ports tar-
geted by the remote host. Only the first k unique pairs are kept where
remote hosts with sets of size k are considered scanners.

tion; and then 2) an inbound connection during the lifetime
of the same TCP or UDP flow. To overcome this limitation,
LQS considers any remote host r that is not flagged as a
scanner and that a local host has initiated a connection to
as a non-malicious remote host (the corresponding IP ad-
dress is kept in the table CR) for a time period determined
by I4, during which failed connection attempts initiated by
r to the same local host will not be considered (as in lines
19 and 20).

2
Every local host in this table have sent a non-RST packet to the

corresponding remote host.

7

3.3 Parameterization
Choosing an appropriate value for I1 depends on the prop-

erties of the monitored network and the type of offered net-
work services, where I1 should reflect the approximate du-
ration of inactivity, after which a network service is most
likely being stopped or removed permanently from the mon-
itored network (from various experiments on several sites,
the one week default value appears appropriate). Similarly,
the value for I2 represents the expected duration of possi-
ble legitimate inbound activity after the port is closed (the
default value of I2 is one day).

The value of k should be set according to the stability
and availability of the offered services in the target network.
A higher value of k (than the default value) will result in
fewer false positives since a remote host must make more
first-contact failed connection attempts with local network
services (i.e., contacting more {local host IP address, desti-
nation port} pairs) in order to be classified as a scanner. In
contrast, the higher k is the greater the number of false neg-
atives since scanners who contact fewer than k unique pairs
within I3 time window will not be reported. Given that a
connection attempt destined to a pair in neither the OPS
nor CPS tables is immediately considered a failure, even if
the connection might be successful once a positive response
is observed, setting k = 1 could yield a high false positive
rate. In this case, the number of changes in the state of local
hosts’ ports from closed to open represents a lower bound
on the number of false positives.

Testing on various traces from diverse network environ-
ments, we empirically determined a default value of 2 for k
(this is also based on manual inspection of many samples).
The reason that k = 2 represents a good threshold is be-
cause the probability that a benign remote host r contacts
two local hosts on ports in neither the OPS nor CPS tables
during I3 time window is low. Therefore, given that failed
connection attempts are inevitable, even in stable networks,
a remote host making a failed connection attempt will be de-
clared as a scanner only if it makes another failed connection
attempt with a different local IP address. k can also be set
to a number slightly above the median number of contacted
local services by a single source address (e.g., the median +
1). In fact, k can be seen as a trade-off between fewer false
positives and the ability to detect stealthy scans, or detect
scanners faster from fewer connection attempts.

Scanners typically target a particular vulnerable port over
a range of IP addresses, and thus unsuccessful connection at-
tempts to the same local host are considered less malicious,
even if destined to different ports. Therefore, by default,
LQS flags a remote as a scanner only if it makes at least
five failed connection attempts to the same local host but
on different destination ports. This threshold is found em-
pirically to provide fast detection of vertical scanners while
significantly reducing the number of false positives.

3.4 Further Discussion
While IDS network sensors may skip packets that can-

not be processed in real time, LQS keeps the state of open
ports in the local network in the OPS and CPS tables so
that a connection attempt that the scan detector missed
one of its handshaking packets (e.g., uncaptured SYN-ACK
packet) will not be interpreted as an unsuccessful connec-
tion. However, excessive skipping of packets by IDS sensors
will increase the probability of generating false positives due

to erroneously interpreting some outbound connections as
inbound connections.

Setting up the scan detector behind the monitored net-
work firewall leads to detecting only the scanning activity
that made it through the firewall rules. Thus, the scan de-
tector will capture more scanners if it is located at the gate-
way of the network. However, if the detector is located at
the gateway, false alarms are expected for some network ser-
vices. For example, in some applications (e.g., VoIP clients,
IM, and P2P) a local host initiates a connection first to a
server, which for some operations may request the client ap-
plication in the local host to listen on a specific port for
incoming connections initiated by other remote hosts for a
specific period of time. Although the local host will open
the required port, connection attempts from remote hosts to
this port will fail if the network firewall is blocking inbound
connections. Therefore, such failed connection attempts will
appear as scanning activity.

To overcome this limitation, an active detector could send
a TCP SYN packet (or empty UDP packet) directly to the
target port without going through the firewall to find out
whether the port is open or closed. If the port is open, failed
connection attempts destined to this port must be ignored
(i.e., not added to the FC table).

4. ADVANTAGES OVER TRW
This section illustrates the advantages of LQS over the

TRW algorithm [9]. TRW classifies remote hosts as either
benign, scanner, or pending according to the ratio of remote
host’s successful or unsuccessful connection attempts in the
inbound network traffic within a specified time frame. The
following metrics are compared for each algorithm.

Scan detection capability and the minimum num-
ber of connection attempts. While LQS can detect both
horizontal (i.e., probing multiple IP addresses for the same
port) and vertical scanning (i.e., probing a set of ports on the
same IP address), TRW is designed to detect only horizontal
scanning. For detecting a horizontal scanner, as a function
of the TRW default parameters, TRW requires at least four
consequent failed connection attempts initiated to four dis-
tinct local hosts within a given time window for a remote
host to be classified as a scanner. In LQS, only two failed
connection attempts initiated to two distinct local hosts are
necessary to classify a remote host as a scanner. However,
in case of vertical scanning, LQS requires five failed con-
nection attempts initiated to five distinct ports in the same
local host to classify a remote host as a scanner.

While the LQS algorithm will operate in a similar way to
TRW (in the default setting) for detecting horizontal scan-
ners when k is set to 4, first-contact successful connection
attempts initiated by the scanners will not delay detection
in LQS as in TRW. The fast detection in LQS makes it po-
tentially suitable for fast post-detection responses.

False negative and false positive rates. In LQS, detect-
ing scanners after their second failed connection attempt sig-
nificantly decreases the false negative rate; i.e., the number
of distinct IP addresses of scanners that were erroneously
missed by the algorithm. Only those scanners that probed
a single local host (and less than five distinct destination
ports in this host) within I3 time window will not be de-
tected by LQS. In comparison, as a function of the TRW

8

default parameters, TRW misses scanners that do not make
four consecutive failed connection attempts within a given
time window with no successful connection in between.

Given that hosts are usually configured using domain names
and not IP addresses, causes of failed connection attempts
from a benign remote host are often due to: (i) some of the
contacted network services are temporarily unavailable; (ii)
maintenance in the hosting servers; (iii) network failures;
or (iv) outdated DNS entries. In LQS, failed connection
attempts to previously offered services are not considered
as the OPS and CPS tables keep track of previously open
ports in the monitored network. Therefore, the high detec-
tion rate in LQS is not at the cost of high false positive rate
(the same can also be inferred from our empirical evaluation
on both datasets; see Section 5).

Suitability for worm detection. The TRW algorithm
must wait for each new connection attempt to check whether
it is successful or not. While a TCP connection status can be
determined as successful after the remote host completes the
3-way establishment handshake, determining that the con-
nection failed (in case of an unanswered connection due to a
closed port, a non-existing host, or a firewall rule) might re-
quire waiting for a TCP timeout (two minutes is the default
timeout value). For UDP, the fact that a local host responds
with a UDP datagram to a remote host who initiated the
exchange with a UDP packet indicates that the UDP port
is open, and thus the connection is successful. Otherwise, if
there is no UDP reply from the local host for a specific time
(two minutes is the default timeout value) the connection is
considered unsuccessful. Therefore, TRW is not designed to
detect scanning worms that attempt to quickly propagate
for which fast response is vital. Unlike the TRW algorithm,
LQS does not wait for the connection state to be known;
instead, it immediately assumes the connection is a failure
if the {destination IP address, destination port} pair is in
neither the OPS nor CPS tables.

Schechter et al. [21] proposed a hybrid approach that com-
bines a variation of TRW and a credit-based connection rate
limiting algorithm. The new variation detects fast scan-
ning worms that can generate thousands of connection at-
tempts (to find vulnerable machines) before being caught
if only TRW is deployed for scan detection. Also, Jung et
al. [8] proposed combining TRW with a rate-based sequen-
tial hypothesis testing algorithm that identifies if the rate
at which a host initiates connections to new destinations is
high. In addition to the drawback that limiting the rate at
which first-contact connections can be initiated could block
some legitimate hosts, these approaches are unable to detect
stealthy worms.

Immunity to evasion and the ability to detect stealthy
scanners. Since TRW must wait for a connection state
to be known (two minutes is the default timeout value in
TCP/UDP as discussed above), a single remote host can
send thousands or millions of first packets (e.g., SYN pack-
ets) in the first two minutes to different local hosts and re-
ceives responses from open ports in the target network before
being detected by TRW. If LQS is used, the remote host will
be caught from the second connection attempt (e.g., imme-
diately after sending the second SYN packet to a different
local host).

Since TRW credits a remote host making successful con-
nections by reducing its likelihood ratio towards being clas-

sified as benign, an adversary with knowledge of some avail-
able services in the target network can make successful con-
nections to these services, while scanning the network to
delay detection [10]. This feature in the TRW algorithm
aims to avoid flagging a benign host that makes some failed
connection attempts as a scanner. However, in addition to
the possible evasion vulnerability, this feature is unnecessary
in LQS to reduce the false positive rate since LQS takes into
account various possible cases of benign failed connection at-
tempts (i.e., those that have a high probability of not being
a scan activity).

In the default setting, LQS is able to detect stealthy scan-
ners after only two failed connection attempts to two dis-
tinct local hosts, even if the same remote host made suc-
cessful connections before or between these failed attempts.
In contrast, with the default parameters, TRW requires four
consecutive failed connection attempts to classify a remote
as a scanner. Also, the default time windows used in LQS
to keep the state of the remote hosts are of longer duration
than those used in TRW.

TRW has a list of friendly remote hosts similar to LQS
non-malicious remote hosts table, CR. However, in TRW,
if a remote host is added to the friendly list, any further
connection attempts initiated by this remote to any local
host will not be examined by TRW. Therefore, if a local host
initiates a connection to a malicious remote host, the remote
can scan the network without being detected. In LQS, only
connection attempts to the same local host by the remote
are not examined for possible scan activity. Therefore, a
malicious remote that was previously contacted by a local
host will only be able to scan the same local host without
being detected.

Required Computing Time and Space In LQS, the
number of entries in the OPS and CPS tables is bounded
by the number of offered network services (during I1 and
I2 time periods respectively) which is expected to occupy
an insignificant amount of RAM (for example, < 5k in both
the datasets studied; see Section 2.1). Both the LQS and
TRW algorithms keep an individual set for scanners and also
for non-malicious remotes that have been contacted by local
hosts. TRW keeps an additional set for benign remotes.

The most expensive operations (e.g., insert and lookup) in
LQS are those related to the FC table which contains remote
IP addresses having at least one failed connection attempt.
LQS keeps a list of up to k destination IP/port pairs a re-
mote host unsuccessfully attempted to contact where the list
is incremented only if the remote unsuccessfully contacts a
new pair. Each remote IP address (i.e., an entry in the ta-
ble) is linked to a set of unsuccessfully contacted local IP
addresses. Also, in this set, each contacted local host is
linked to a set of targeted destination ports by the remote.

Let L be the number of available local IP addresses and
R be the number of remote hosts contacting the monitored
network in a given time window. Also, let Rfailed be a
subset of R for those remotes making at least one failed
connection attempt and Rsuccess be a subset of R for those
remotes making at least one successful connection. Assum-
ing that the used data structure needs 4 bytes to store one
IP address and 2 bytes to store the port number, the max-
imum required space for FC in LQS is when every remote
host in Rfailed is vertically scanning a single local host:
Rfailed((4 + 2) + (k − 1)(4 × 2)) = Rfailed(8k − 2) bytes.

9

Dataset I Dataset II
RB Classification RB count TRW LQS RB count TRW LQS

Benign 317 0 0 1,308 0 0
Likely Benign 5,086 0 0 2,351 0 0
Scanner 375 346 367 304 94 272
Likely Scanner 206 69 111 464 6 308
Unknown (one failed) 826 0 0 23,109 0 0
Unknown (others) 221 1 2 1,386 5 3

Total 7,031 416 480 28,922 105 583

Table 3: The distribution of the detected scanners by TRW and LQS among the categories of RB.

The table S requires at most 4Rfailed bytes. Given that CR
contains only active local hosts initiating outbound connec-
tions and that its write-expiry interval is short (one hour by
default), the required space for CR is relatively small. For
the default value k = 2, the maximum required space for
LQS is approximately 18Rfailed bytes. Therefore, the re-
quired RAM for LQS is bounded by a function which grows
linearly with the number of remote addresses contacting the
monitored network. The number of local IP addresses has
no effect on the LQS RAM footprint (except the CR table).

In contrast, given that TRW requires that a remote host
makes at least j (4, with the default parameters) consec-
utive failed attempts to j local hosts to be classified as a
scanner (and likewise for benign hosts), the minimum re-
quired space for TRW is when the first j connection at-
tempts for any given remote to unique local hosts are ei-
ther all successful or all unsuccessful, and when the remote
hosts in Rsuccess contact only one local host. TRW stores
{remote IP address, local IP address} pairs for both suc-
cessful and failed inbound connection attempts (8Rsuccess

bytes, and (8j)Rfailed bytes), a table of scanners’ IP ad-
dresses (4Rfailed bytes at most), a table of benign remotes
(for small space, but complex to compute precisely, the re-
quired space is omitted), a table of remotes’ IP addresses
that have been contacted by local hosts (similar to CR in
LQS, we omit the space required for this table), and a table
of likelihood ratios of remotes that contact the monitored
network (requiring (4+2)R bytes; assuming 2 bytes to store
the ratio). For j = 4, the minimum required space for TRW
is then: 36Rfailed + 8Rsuccess + 6R bytes.

Therefore, the maximum required memory footprint for
LQS is smaller than the minimum required for TRW. Also,
in practice, a significant percentage of remotes (including
benign and scanners) are expected to make both successful
and failed connection attempts, and thus L will have an ef-
fect on the required space by TRW. Notice that while TRW
must keep a state for each remote that initiates a connection
attempt (whether successful or failed) to the local network,
LQS keeps a state only for remotes that initiate failed con-
nection attempts.

Both algorithms must be called for each new connection
attempt. In LQS, the most expensive operation is the lookup
operation in the FC table. The processing time for such
lookup (and insertion operation if required) depends on the
data structure used and the number of entries. The ideal
data structure to lookup entries in LQS tables is a hash
table. The most expensive lookup in the TRW algorithm
is to determine if the destination IP address has previously
contacted the source IP address. In both algorithms, if hash
tables are used, the computational cost is constant for one
call of the algorithm and the number of calls is linear to the
number of inbound connections.

5. EMPIRICAL EVALUATION
We have implemented LQS in the Bro language (Bro 1.4

NIDS [1]) and used the TRW implementation of Bro. For
the purpose of comparison with LQS, the TRW algorithm
was configured to monitor remote hosts’ behaviour over a
one day time window (similar to LQS) rather than the 30
minutes default value. While this configuration enables the
TRW algorithm to detect more stealthy scanners, it increases
the required memory footprint. The write-expiry interval in
TRW detected scanners list was removed to keep track of
all detected scanners by TRW over the entire dataset cap-
ture period. Using our reference baseline (see Section 2.2),
we measure the performance of both algorithms using the
following metrics:

1. True Positive Rate (i.e., detection rate): is the propor-
tion of the distinct IP addresses of scanners that are
correctly reported by the detector:

TP rate =
no. of true pos.

no. of true pos. + no. of false neg.

2. False Positive Rate: is the proportion of the distinct
IP addresses of non-scanners that are erroneously re-
ported as scanners by the detector:

FP rate =
no. of false pos.

no. of false pos. + no. of true neg.

3. Efficiency: is the proportion of the reported scanners
by the detector that are true positive:

Efficiency =
no. of true pos.

no. of true pos. + no. of false pos.

For any intrusion detector, if the number of true negative
samples is significantly larger than the number of true posi-
tive samples, the FP rate is expected to be small, regardless
of the detector performance, and therefore calculating the
efficiency (or the false discovery rate which is 1−efficiency)
is a more meaningful performance metric than the FP rate.
Similarly, if the number of true positive samples is signifi-
cantly larger than the number of true negative samples, the
TP rate is expected to be large, regardless of the detector
performance, and thus calculating the false omission rate
(i.e., no. of false negatives/(no. of false negatives + no. of
true negatives)) is a more meaningful performance metric
than TP rate. Based on the datasets studied in the litera-
ture (e.g., [3]) and our datasets, network scanning activity
is often of the former case.

Table 3 shows the distribution of TRW and LQS detected
scanners among the categories of our reference baseline. TRW
detected 416 and 105 scanners, whereas LQS detected 480
and 583 scanners in the first and second datasets respec-
tively. None of the remotes in the benign or likely benign

10

Performance Dataset I Dataset II
Metrics TRW LQS TRW LQS

RB1

TP rate 0.7143 0.8227 0.1302 0.7552
FP rate 0.0002 0.0003 0.0002 0.0001
Efficiency 0.9976 0.9958 0.9524 0.9949

RB2

TP rate 0.9227 0.9787 0.3092 0.8947
FP rate 0.0002 0.0003 0.0002 0.0001
Efficiency 0.9971 0.9946 0.9495 0.9891

Table 4: Performance evaluation.

categories were marked by any of the algorithms as a scan-
ner. Also, remotes that made only one failed connection
attempt were not flagged as a scanner since both algorithms
require more than one connection attempt for any given re-
mote host. False positives in both algorithms appeared only
in the unknown (others) category of the reference baseline.

Table 4 shows the performance of both algorithms accord-
ing to the metrics discussed above as follows:

i) RB1: remote hosts in both the scanner and the likely
scanner categories are true positives and the remainder
are true negatives (i.e., the benign, likely benign, and
unknown categories); and

ii) RB2: true positives are only those in the scanner cat-
egory and true negatives are those in the benign, likely
benign, and unknown categories (this is a more relaxed
reference baseline where detected scanners from the likely
scanner category are ignored; note that the likely scan-
ner category is not added, neither to the true positives
nor to the true negatives).

Dataset I and RB1. LQS demonstrated a better TP rate
than TRW by more than 15%. As expected, the FP rate in
both algorithms is very low because of the significantly large
number of samples relative to the number of true positives.
The detection efficiency is high in both algorithms (less than
1% of detected scanners are false positives).

Dataset 1 and RB2. TP rate is improved in both algo-
rithms where LQS is better by only 6%. The efficiency is
also high in both algorithms. Therefore, both algorithms
achieved good performance in detecting the entries in the
scanner category which represents remotes that significantly
exhibit scanning rather than normal behaviour (as discussed
in Section 2.2).

Dataset 2 and RB1. TRW detected 13% of scanners in
the second dataset. In contrast, LQS has a detection rate of
76% while maintaining a slightly smaller (better) FP rate,
and efficiency better than TRW by approximately 5%.

Dataset 2 and RB2. Even with RB2, the TRW detection
rate (TP rate) is only 31%. LQS performed better both in
detection rate (90%) and efficiency (0.99 vs. 0.95).

In the second dataset, many scanners initiated few con-
nection attempts and had a low scanning rate, which con-
tributed to the poor performance of TRW. This reflects the
current trend of stealthy probing by scanners (e.g., as noted
by Allman et al. [3]), perhaps due to the large number of
IP addresses (e.g., infected hosts) involved in some coordi-
nated scanning campaigns. For example, rather than the
conventional aggressive scanning behaviour of many typical
worms, stealthy scanning activity is now more common (e.g.,
by stealthy worms and bots [14, 15]).

6. RELATED WORK
Network Security Monitor (NSM) IDS [7] examines the

destination IP addresses contacted by a remote host, where
the remote is considered anomalous once it contacts more
than 15 local hosts within an unspecified time window, or
when the remote attempts a connection to a non-existing
host. The scan detection scheme in GrIDS [23] is another
early approach that graphically shows remotes’ activities
and connectivity over time where a graph of one remote
contacting many local hosts could indicate a possible scan
activity. Kato et al. [11] proposed a real-time IDS for de-
tecting network attacks. They set a threshold of the num-
ber of TCP ACK/RST packets returned to the same remote
within a specified time window after which the remote host
is labeled as a scanner.

A probabilistic model used by Leckie and Kotagiri [13]
considers both the number of local hosts or ports accessed
by a remote, and how unusual these accesses are. The model
gives a connectivity probability for each local host and each
port to rate the likelihood of a given remote being benign or
scanner. This approach requires sufficient knowledge of the
monitored network and dynamic updates of the hosts/ports
probabilities according to the network changes. Spice [22]
is a port scan detector designed for stealthy scans using a
statistical model such that packets sent to rarely accessed IP
address/port combinations are considered more anomalous,
and thus have a higher probability to exceed an adjustable
anomaly score threshold where an alert is generated.

The system introduced by Robertson et al. [18] gives each
remote host a score based on the number of unique destina-
tion IP/port pairs of failed connection attempts such that a
remote host is classified as a scanner if its score is greater
than an empirically derived alert threshold. Using a statis-
tical model, Kim et al. [12] calculate a normal distribution
of destination IP addresses/port pair in a network and then
use various statistical tests to analyze traffic rates to detect
port scans.

A scan detection preprocessor plug-in called sfPortscan [19]
in Snort [20] generates an alert when a remote host attempts
to connect to more than a predefined threshold of local hosts
(four IP addresses is the default threshold) or to more than
a predefined threshold of ports (19 is the default) within a
predefined time window (one minute is the default). This
method is similar to the tools developed by Fullmer et al. [5]
and Navarro et al. [17]. However, by not exceeding the prob-
ing threshold within the specified time window, an adversary
can easily evade detection.

TRW [9] is implemented as a Bro policy such that scan-
ners’ traffic can be dropped by setting the appropriate inter-
face between Bro and the corresponding network router. A
simplified variant of TRW that required less memory foot-
print and can detect vertical scanning is proposed by Weaver
et al. [24]. The authors also proposed a suppression algo-
rithm for worm containment with dynamically adjustable
thresholds (see Section 4 for additional related work on us-
ing TRW for worm detection). A similar modification [16]
considered vertical scanning and extended TRW to detect
UDP and ICMP scans. A Bloom filter is used to filter the
input to TRW so that only unique source and destination
IP addresses, destination port, and protocol are processed
by TRW. The TRW time window of keeping the state of re-
mote hosts’ connection attempts is also increased to detect
stealthy scanners.

11

7. CONCLUDING REMARKS
Network scanning remains a useful reconnaissance activ-

ity by attackers. Given the high ability of compromised
machines in today’s Internet, scanning which is highly dis-
tributed specifically in order to achieve stealthiness [6] is
now recognized as a feasible and practical strategy to avoid
triggering IDSs. Also, post-detection responses to network
scanning often require fast and accurate detection.

LQS specifically addresses these issues, as a real-time net-
work scanning detector that detects stealthy scanners quickly,
while achieving high detection rates and very low false pos-
itive rates in comparison to the TRW algorithm. Moreover,
LQS requires a smaller memory footprint and has a higher
immunity to evasion. We also presented a novel method-
ology to obtain an estimated ground truth for evaluating
network scanning detectors.

8. ACKNOWLEDGMENT
We thank J. Jung, anonymous reviewers, and members

of the Carleton Computer Security Lab (CCSL) for helpful
comments. The second author is Canada Research Chair in
Authentication and Computer Security and acknowledges
NSERC for funding the chair, and a Discovery Grant. Par-
tial funding from NSERC ISSNet is also acknowledged.

9. REFERENCES
[1] Bro intrusion detection system. Accessed: May 2010.

http://bro-ids.org/.

[2] Ethereal display filter reference. Accessed: Aug 2010.
http://www.ethereal.com/docs/dfref/.

[3] M. Allman, V. Paxson, and J. Terrell. A brief history
of scanning. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement,
pages 77–82, 2007.

[4] CERT. Advanced scanning. CERT Incident Note
IN-98.04 (Sept. 29 1998). http://www.cert.org/
incident_notes/IN-98.04.html.

[5] M. Fullmer and S. Romig. The OSU Flow-tools
package and Cisco Netflow logs. In Proceedings of the
14th Systems Administration Conference (LISA’00),
pages 291–303, New Orleans, LA, USA, 2000.
USENIX Association.

[6] C. Gates. Coordinated scan detection. In Proceedings
of the 16th Annual Network and Distributed System
Security Symposium (NDSS’09), February 2009.

[7] L. T. Heberlein, G. V. Dias, K. N. Levitt,
B. Mukherjee, J. Wood, and D. Wolber. A network
security monitor. IEEE Symposium on Security and
Privacy, pages 296 – 304, 1990.

[8] J. Jung, R. A. Milito, and V. Paxson. On the adaptive
real-time detection of fast-propagating network
worms. In Proceedings of the 4th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA’07), pages
175–192, Lucerne, Switzerland, 2007. Springer-Verlag.

[9] J. Jung, V. Paxson, A. W. Berger, and
H. Balakrishnan. Fast portscan detection using
sequential hypothesis testing. In IEEE Symposium on
Security and Privacy, May 2004.

[10] M. G. Kang, J. Caballero, and D. Song. Distributed
evasive scan techniques and countermeasures. In

Proceedings of the Fourth GI International Conference
on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA’07), Lucerne,
Switzerland, July 2007.

[11] N. Kato, H. Nitou, K. Ohta, G. Mansfield, and
Y. Nemoto. A real-time intrusion detection system
(IDS) for large scale networks and its evaluations.
IEICE Transactions on Communications,
E82-B(11):1817–1825, 1999.

[12] H. Kim, S. Kim, M. A. Kouritzin, and W. Sun.
Detecting network portscans through anomaly
detection. In Proceedings of Signal Processing, Sensor
Fusion, and Target Recognition XIII, pages 254 – 263,
2004.

[13] C. Leckie and R. Kotagiri. A probabilistic approach to
detecting network scans. In Proceedings of the Eighth
IEEE Network Operations and Management
Symposium (NOMS’02), pages 359–372, 2002.

[14] Z. Li, A. Goyal, and Y. Chen. Honeynet-based botnet
scan traffic analysis. In Botnet Detection, pages 25–44.
Springer US, 2008.

[15] Z. Li, A. Goyal, Y. Chen, and V. Paxson. Automating
analysis of large-scale botnet probing events. In
ASIACCS, pages 11–22, 2009.

[16] V. Nagaonkar. Detecting stealthy scans and scanning
patterns using threshold random walk. Master’s
thesis, Dalhousie University, Canada, 2008.

[17] J.-P. Navarro, B. Nickless, and L. Winkler. Combining
Cisco netflow exports with relational database
technology for usage statistics, intrusion detection,
and network forensics. In the 14th Systems
Administration Conference (LISA’00), pages 285–290.
USENIX Association, 2000.

[18] S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo.
Surveillance detection in high bandwidth
environments. In Proceedings of the DARPA DISCEX
III Conference, pages 130–139. IEEE, April 2003.

[19] D. Roelker, M. Norton, and J. Hewlett. sfPortscan.
Sept. 2004.

[20] M. Roesch. Snort: lightweight intrusion detection for
networks. In Proceedings of the 13th Systems
Administration Conference (LISA’99), pages 229 –
238, Seattle, WA, USA, 1999. Usenix Association.

[21] S. E. Schechter, J. Jung, and A. W. Berger. Fast
detection of scanning worm infections. In Proceedings
of the 7th International Symposium on Recent
Advances in Intrusion Detection, pages 59–81, 2004.

[22] S. Staniford, J. A. Hoagland, and J. M. McAlerney.
Practical automated detection of stealthy portscans.
Journal of Computer Security, 10(1/2):105–136, 2002.

[23] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagl, K. Levitt, C. Wee, R. Yip, and
D. Zerkle. GrIDS - a graph based intrusion detection
system for large networks. In Proceedings of the 19th
NISSC, pages 361–370, 1996.

[24] N. Weaver, S. Staniford, and V. Paxson. Very fast
containment of scanning worms, revisited. Malware
Detection (Advances in Information Security),
27:113–145, 2007.

[25] D. Whyte, P. C. van Oorschot, and E. Kranakis.
Tracking darkports for network defense. In Proceedings
of ACSAC, pages 161–171, 2007.

12

http://bro-ids.org/
http://www.ethereal.com/docs/dfref/
http://www.cert.org/incident_notes/IN-98.04.html
http://www.cert.org/incident_notes/IN-98.04.html

	Introduction
	Identification of Scanners: Analysis of Scanning Patterns
	Overview of Datasets
	Evaluation in the Absence of Ground Truth
	Challenges in Real-Time Scan Detection

	LQS: Online Scan Detection Algorithm
	Overview
	Design Details
	Parameterization
	Further Discussion

	Advantages over TRW
	Empirical Evaluation
	Related Work
	Concluding Remarks
	Acknowledgment
	References

