
A Usability Study and Critique of Two Password Managers∗

Sonia Chiasson and P.C. van Oorschot
School of Computer Science, Carleton University, Ottawa, Canada

chiasson@scs.carleton.ca

Robert Biddle
Human Oriented Technology Lab, Carleton University, Ottawa, Canada

Abstract

We present a usability study of two recent password man-
ager proposals: PwdHash (Ross et al., 2005) and Pass-
word Multiplier (Halderman et al., 2005). Both papers
considered usability issues in greater than typical detail,
the former briefly reporting on a small usability study;
both also provided implementations for download. Our
study involving 26 users found that both proposals suf-
fer from major usability problems. Some of these are not
“simply” usability issues, but rather lead directly to se-
curity exposures. Not surprisingly, we found the most
significant problems arose from users having inaccurate
or incomplete mental models of the software. Our study
revealed many interesting misunderstandings – for ex-
ample, users reporting a task as easy even when unsuc-
cessful at completing that task; and believing their pass-
words were being strengthened when in fact they had
failed to engage the appropriate protection mechanism.
Our findings also suggested that ordinary users would
be reluctant to opt-in to using these managers: users
were uncomfortable with “relinquishing control” of their
passwords to a manager, did not feel that they needed
the password managers, or that the managers provided
greater security.

1 Introduction

Several recent password managers, intended for protect-
ing web accounts, generate strong passwords (i.e., more
resistant to dictionary and/or social engineering attacks)
from weaker but more easily remembered user-chosen
passwords. They can also facilitate safer re-use of pass-
words across accounts by using various forms of salts
such as those derived from target site domain names. The
expectation is that these password managers increase se-
curity. Does this expectation materialize when real users
are involved? Can ordinary users actually use these sys-

∗This paper will appear in theProceedings of the 15th USENIX Se-
curity Symposium, Vancouver, Canada, August 2006.c©USENIX

tems? Do they want to? These are some of the questions
which we address in this paper, as we carry out a usabil-
ity study of two password managers – PwdHash [24] and
Password Multiplier [11].

Despite the inadequacies of passwords from a secu-
rity viewpoint, they are becoming more common. This
is causing additional challenges for ordinary users who
accumulate password-protected accounts for a growing
number of services and web sites. This also increases
security risks for several reasons. One is that passwords
are commonly reused across accounts; thus a password
used for a low-security site, easily compromised by an at-
tacker, may allow access to a higher-security site. Phish-
ing attacks on passwords have increased dramatically
over the past three years, complicating matters further.
On top of these issues, it is well known that security is
viewed as an obstacle by many users because security is
rarely a user’s primary goal. When security procedures
impede users’ end goals, users bypass security [2, 5, 26].
Thus usability is an increasingly important aspect of se-
curity in general, and password systems in particular.

Our objective was to examine if any progress had been
made in addressing usability in security, seven years after
“Why Johnny Can’t Encrypt” [31]. Since novice users
are often at increased risk from security vulnerabilities,
we sought tools aimed at novice users as a logical start-
ing point. Two password manager projects in particu-
lar piqued our interest: PwdHash and Password Multi-
plier. Both were published in 2005, had a significant fo-
cus on usability and positioned it as a major objective,
and had publicly available implementations. Although
the implementations that we tested are still in beta ver-
sions, their authors state that these should help novice
computer users protect their passwords. We decided to
carry out an independent study to test the effectiveness
of the two systems from a usability standpoint – could
they be successfully used, and did any security problems
arise due to usability problems?

We found discrepancies between the usability claims



of the published password manager papers and the results
of our study. We uncovered numerous usability prob-
lems with the interfaces, some of which create security
exposures. Many of the usability issues found are not
particular to security, and are addressed in the existing
Human-Computer Interaction (HCI) and usability litera-
ture. This suggests that the existing gap between the HCI
and security communities hurts the latter due to a lack of
awareness (or at least application) of the HCI usability
literature, and leads only to rediscovery of well-known
principles. Research effort would of course be better
spent focusing on those usability issues that are unique
to security interfaces.

The authors of both password managers state that se-
curity interfaces should be as transparent as possible; re-
sulting in absolutely minimal or no change in user ex-
perience. Our study reveals that designing towards this
belief can not only contribute to usability problems, but
can lead to “dangerous errors” [31];1 we conclude that
this idea requires closer scrutiny and validation.

OUR CONTRIBUTIONS. We add to the relatively
sparse, albeit growing, set of published usability stud-
ies in the security literature. We carry out an indepen-
dent usability test of two proposed password mecha-
nisms which have received significant attention within
the security community: PwdHash [24] and Password
Multiplier [11]. The results of our larger study directly
contradict the findings reported for PwdHash (no user
study was published for Password Multiplier), and sug-
gest that both earlier papers (1) over claim the actual us-
ability of their mechanisms as provided in their own pub-
licly available implementations; and (2) result in “dan-
gerous errors” with serious security implications. Our
work reiterates the necessity of actual user studies before
concluding that new security mechanisms are usable. It
also raises the question of what the standard should be in
the security community: should usability tests become a
requirement for new authentication proposals, if a major
claim is usability? Aside from usability and security con-
siderations per se, we also provide interesting results on
how users felt about these mechanisms: about giving up
“control” of their passwords to these mechanisms, their
perceived security, and their perceived necessity.

ORGANIZATION . Section 2 reviews the two password
managers we evaluate. Section 3 first briefly provides
context on usability testing, and then details our study
methodology. Section 4 presents the data collected from
interaction with participants, our interpretation and anal-
ysis of which is provided in Section 5. Section 6 provides
further discussion and recommendations. Section 7 dis-
cusses related work. Section 8 gives concluding remarks.

2 Password Managers
Passwords are the most common form of authentication
on computers today [23]; yet they are far from the most
secure. Cognitive demands increase as people use more
computer systems, leading to poorer password choices
in an attempt to manage the load. Encouraging stronger
passwords through password rules or advice on select-
ing good passwords does not help users remember the
stronger passwords. Encouraging the use of passphrases
similarly does not mitigate the problem of matching mul-
tiple passwords and multiple accounts.

One proposed solution to these password problems
is password managers. One class of these managers
maps low-entropy (easy to remember) user passwords
into stronger passwords (more resistant to dictionary at-
tacks), and may also generate site-specific passwords
partially dependent on the domain name of the site (pro-
tecting against some phishing attacks). Several pass-
word managers exist in different formats: stand-alone
applications (e.g., Site Password [13]), browser plug-ins
(e.g., Password Maker [15]), browser scripts (e.g., Pass-
word Composer [14]), and bookmarklets (e.g., Password
Generator [33]). PwdHash and Password Multiplier are
two recent additions to the list. They are both browser
plug-ins claiming to make it easier for users to have se-
cure passwords without having to remember a number of
complicated passwords.

2.1 PwdHash

PwdHash [24] is a browser plug-in that applies a cryp-
tographic hash at the client machine to generate strong
passwords based on the user’s entered password and the
site domain. The new stronger password is sent to the
target site. No server-side changes are needed. Users
activate the installed plug-in by adding the @@ prefix
to passwords they want “protected”, or by pressing the
F2 key before entering their password. Once passwords
are “protected”, the users no longer know their effective
passwords; thus PwdHash must always be used to log in
to the web accounts. The authors [24] provide a web site
where users can remotely generate their protected pass-
word for times when they are logging on to a site from a
computer without the plug-in (see Figure 1). This gener-
ated password is copied and pasted by the users into the
target password field.

Users must initially log on to each web account they
want to protect, and change their password. They en-
ter @@ in front of their new password, which activates
PwdHash and generates a new “strong” password. Users
later changing their protected password for a given site
use that web site’s Change Password interface, but with
@@ as a prefix to both their current and new passwords.

PwdHash is also designed to prevent certain JavaScript
attacks. It processes the input stream, scanning for the



Figure 1: Remote web site for generating PwdHash passwords

@@ character, processing so-designated passwords, and
replacing the input, before JavaScript would have access.
PwdHash also protects against phishing attacks by using
a hash salt based on the domain name of the target web
site. If users enter their password at a fraudulent site, that
site’s domain will be used as the salt.

An implementation is publicly available. The reported
user study of five users found that participants experi-
enced little difficulty using the plug-in and that the only
usability problems were observed with the remote inter-
face. The approach was positioned as unique in that it
implements password hashing within the browser, with-
out additional window pop-ups or having a visible soft-
ware interface. The PwdHash authors believe that this
improves its usability: “We can reduce the threat of
password attacks with no server changes and little or
no change to the user experience. Since the users who
fall victim to many common attacks are technically un-
sophisticated, our techniques are designed to transpar-
ently provide novice users with the benefits of password
practices that are otherwise only feasible for security ex-
perts” [24].

2.2 Password Multiplier

Password Multiplier (hereafter identified as P-
Multiplier) is a second password manager intended
to help users generate strong passwords for web
accounts [11]. It is a plug-in for Mozilla’s Firefox
web browser, requiring no changes to the servers; all
computation is done client-side. As with PwdHash,
a cryptographic hash function is applied, generating
strong passwords for the user’s accounts. While a
primary design goal of PwdHash is to protect web site
passwords against phishing attacks, P-Multiplier is
intended to generate and manage strong passwords from
a single user-chosen password for arbitrary password-
protected applications (i.e, not restricted to web site
passwords); this difference does not affect our usability
study, and the plug-in we tested is restricted to web
site passwords. P-Multiplier uses a master username
and master password so that users need only remember
one password for all of their accounts. A protected
password is generated based on the master username,

Figure 2: The dialog box for P-Multiplier is activated by
double-clicking on the password field

master password, and the target site domain name. Users
activate the plug-in by double-clicking on the password
field or pressing Alt+P while the cursor is in that field.
This opens a small dialog box. The master username
is entered automatically (it is set upon installation).
Users enter the master password (see Figure 2). When
users click the OK button, the dialog box closes and the
generated password is automatically placed into the web
site’s password field. The background colour of the web
site’s password field changes to signal the entry of the
protected password.

Users must switch each account password over to a
protected password generated by P-Multiplier, by using
the Change Password interface of each web site. They
double-click on the new password field to activate P-
Multiplier and generate their new password. To up-
date any password after it is protected, users must mod-
ify the “site name” argument used to generate the pass-
word (e.g., for a google.com password, change the site
name in the P-Multiplier dialog box to google.com-two).
Users thereafter must remember to enter their changed
site name each time they log in to this particular site.

To help protect against dictionary attacks, P-Multiplier
uses a two-stage process which in the first stage, mas-
sively iterates the hash function, with the intent to slow
down any attack on the master password. This intro-
duces a 100-second delay when first installing the plug-
in, while it computes a first hash result which is cached
on the local computer. Passwords later generated on this
computer use the cached first hash, as well as the mas-
ter secret again, as input to a second (less massively it-
erated) hash operation. Legitimate users experience the
long delay only on new installations of the plug-in (not
per-login). The idea is that attackers must compute the
hash function from scratch each time they test a new mas-
ter password, encountering the long delay with each trial.

For use from remote (secondary) computers, users
must download and install the plug-in on the remote



computer, and on it enter the correct master password
and username in order to generate their protected pass-
words (and experience the 100s first-stage delay). No al-
ternative is provided for users unable to install software
(this is positioned as a relatively rare occurrence by the
P-Multiplier authors).

No usability testing was reported in publication [11]
or on the P-Multiplier web site [12]. When discussing
usability, they acknowledge that transportability is a nec-
essary characteristic. They assert that PwdHash and P-
Multiplier are equally transportable, however their soft-
ware requires installation on a remote site (unlike Pwd-
Hash).

3 Study Methodology

To investigate the usability of these password managers,
we conducted a study with participants who would be
typical users of these systems. We first provide some
background on usability studies, then describe our study
methodology in detail.

3.1 Usability Testing

Since it is not a mainstream topic for most security re-
searchers, we begin by briefly providing some back-
ground on usability studies. There are two general cat-
egories of methods for assessing the usability of a sys-
tem: usability inspection methods and user studies. With
usability inspection methods (such as cognitive walk-
throughs and heuristic evaluations), evaluators inspect
and evaluate usability-related aspects of a system. They
are conducted without end users and require a certain
level of expertise in usability [19]. These are useful in
finding obvious usability problems but are no substitute
for user studies with real users. Typically, usability in-
spection methods are used early on to guide the design
process, then user studies are conducted to confirm the
design decisions and find any problems that have been
overlooked. User studies can range from closely con-
trolled experimental studies testing specific hypotheses
to field studies where the system is deployed for real us-
age and system logs and interviews are used to assess its
usability. Most user studies fall somewhere in between,
conducted in a lab, with pre-determined tasks, but also
leaving room to observe users in a more ad hoc manner
and uncover unexpected problems as they arise [27].

Usability tests are used to determine whether a system
is suitable for the intended audience and for its intended
purpose. Typically, the tests aim to uncover any diffi-
culties encountered by the users as they go through a set
of predetermined tasks. These tasks should be carefully
chosen to reflect realistic usage scenarios. To preserve
ecological validity, the environment should be set up to
mimic reality as closely as possible in terms of techni-
cal details, but also in terms of instructions given. If a

typical end-user is expected to be able to use the system
without in-person training, then training on system use
should not be provided during the test.

It is important to closely observe users as they per-
form these tasks as this is how most usability problems
are revealed. The observer’s role is mainly to observe
and record what is happening. They need to be careful
not to provide extra instructions or cues that may influ-
ence the user’s actions. In fact, a script should be used to
ensure that all participants receive the same information.
It is important to emphasize that it is the system that is
being tested and not the user; the participants should feel
that they are helping with the development of the system
rather than feel like their performance is being evaluated.
A method called “think-aloud” is typically used, where
users are asked to keep a running commentary as they
perform the tasks. Pre/post questionnaires or interviews
are also useful in gathering users’ opinions, attitudes, and
feedback about the system. This should be a secondary
source of information, used in conjunction with obser-
vations and potentially system logs, because users’ re-
ported views often do not reflect their performance and
often fail to reveal crucial usability problems.

Selecting the right participants for a usability study is
important. The participants should accurately represent
the users who would use the actual system, and be sim-
ilar in terms of experience and knowledge. Improperly
choosing participants will negatively affect the results of
the tests, typically by missing critical usability problems.

The guideline stating that five users are enough to dis-
cover most usability problems [18, 29] has long been
used to justify small usability studies. Recent work ques-
tions this assumption and highlights the fact that in most
cases five users are not enough [9, 22, 28]. They found
that some severe usability problems were only discov-
ered after running a larger group of participants. The
likelihood of finding usability problems is not evenly dis-
tributed. Some problems only arise under specific cir-
cumstances so using a small sample of users may not be
sufficient to uncover them. The variability in the number
of problems found by any one user also makes it unlikely
that a sample of five users would discover most usability
problems. Faulkner justifies that twenty users “can allow
the practitioner to approach increasing levels of certainty
that high percentages of existing usability problems have
been found in the testing” [9].

3.2 Overview of Study

Our tests were conducted in Carleton University’s
Human-Oriented Technology Lab and the methodology
was reviewed and approved by the university’s ethics
committee. Our study explicitly looks at the password
managers as implemented rather than at the proposed ad-
ditional implementations suggested by the systems’ au-



thors.
The typical tasks that users would need to accomplish

with password managers fall into four categories:
1. Migrate user accounts (passwords) to use the pass-

word manager
2. Log in to protected user accounts from a primary

computer
3. Change passwords for user accounts
4. Access user accounts remotely, i.e., from a com-

puter other than the primary computer, such as on
a public or friend’s machine.

Each participant completed a one-hour session, where
they completed a set of five tasks designed to simu-
late the real tasks that users would accomplish with the
password managers. The set of tasks was repeated so
that each participant completed them with both Pwd-
Hash and P-Multiplier. The order in which the tasks and
the programs were presented was balanced to avoid bias.
Throughout the session, the experimenter observed the
participant and recorded their actions. Additional user
feedback was gathered through questionnaires.

3.3 Participants

Twenty-seven adults participated in the study. Most were
students at our university, from various faculties and de-
gree programs; none were students specializing in com-
puter security. A few had technical backgrounds: four
were from Computer Science, one studied Information
Systems, and none were from Engineering. Data from
one participant was eliminated as a language barrier cou-
pled with very little computer experience hindered their
ability to understand the tasks. Of the remaining 26 par-
ticipants, 21 were between the ages of 18 and 30 and five
were over 30 years old. Data from these 26 participants
was used for all further analysis in this paper.2

The participants were familiar with using the web and
logging on to web sites requiring a username and pass-
word. All but two reported visiting the web daily, and
these two said they were online several times a week.
The participants were fairly comfortable with using com-
puters; 24 of the participants self-rated their general
computer skill level at 6 or higher on a scale of 1 to 10.

We chose not to screen participants based on experi-
ence using Firefox. Typical Firefox users are more tech-
nically sophisticated than average users so pre-selecting
on this criteria would have biased our pool of partici-
pants. Additionally, interaction with the browser’s inter-
face was minimal; participants simply had to enter URLs
and navigate within web pages. These tasks are accom-
plished in the same manner in Firefox and Internet Ex-
plorer.

A pre-task questionnaire was used to gain insight into
the participants’ initial attitude towards web security and
passwords. They reported using an average of six web

Table 1:Participants’ initial attitude towards web security and
passwords. Results represent the number of participants (out of
26) responding yes to each question. *An additional 27% (7)
responded “somewhat”.

Question Number of Users
Do you sometimes reuse passwords on
different sites?

96% (25)

Are you concerned about the security
of passwords?

*58% (15)

Criteria for choosing passwords:
Easy to remember 69% (18)
Difficult for others to guess 54% (14)
Suggested by the system 0% (0)
Same as another password 62% (16)
Other 12% (3)
Participation in online activities requiring personal or
financial details:
Online purchases 62% (16)
Online banking 73% (19)
Online bill payments 73% (19)
Other activities 27% (7)

sites requiring a password to log in. A summary of their
responses is presented in Table 1.

3.4 Tasks

Participants completed a set of tasks using two differ-
ent computers during the session. Both computers were
running Windows XP and Mozilla Firefox. One system
had the PwdHash plug-in (version 1.0 for Mozilla Fire-
fox) installed while the second computer included the P-
Multiplier plug-in (version 0.3 for Windows, Linux, and
Mac OS).

The tasks are described in the following list. TheSec-
ond Logintask is dependent on theUpdate Pwdtask, i.e.,
users must have successfully changed their password be-
fore they are able to log on to the site a second time with
their new protected password. All other tasks are inde-
pendent of each other. We did not include a ”delete pass-
word” task because neither system supports this func-
tionality. The tasks are:

Log In: Logging on to a web site that already has its
password protected by the plug-in. This simulates
how users log on once their passwords have been
converted to protected passwords.

Migrate Pwd: Logging on to a web site with an unpro-
tected password then changing the password so that
it becomes protected. This is required by users to
initially migrate each of their passwords.

Remote Login: Logging on to a web site with a pro-
tected password from a remote computer that does
not have the plug-in installed. This models how
users would log on to their accounts from a com-
puter other than their primary machine.

Update Pwd: Logging on to a web site with a protected



password then changing it to a new protected pass-
word. This situation would arise if users had to
change their password once it is already protected.

Second Login: Logging on to a web site a second time,
once the user has changed the password to a pro-
tected password. This task tests whether users un-
derstand how to log on to their account once they
have changed to a protected password.

The tasks were set up using popular web sites (Hot-
mail, Google, Amazon, and Blogger) that users may en-
counter in real life. Test accounts were created so that
participants did not use their personal accounts or pass-
words at any point during the experiment.

Participants completed the set of tasks with both plug-
ins; the order was balanced so that each plug-in was seen
first the same number of times. The order of the tasks
within a set was also shuffled but an individual partic-
ipant saw the tasks in the same order for both plug-ins.
TheUpdate PwdandSecond Logintasks were ordered so
that they were always separated by exactly one task (for
example, a participant completed the tasks in the order of
Log In, Remote Login, Update Pwd, Migrate Pwd, Sec-
ond Login). This ensured that participants changed their
focus for a time before logging on to the web site a sec-
ond time with their new protected password. One partic-
ipant quit after completing the tasks only with PwdHash,
but the remaining participants completed all tasks.

One of the difficulties with testing the usability of
these plug-ins is that they initially have no visible inter-
face. Even during the interaction, only P-Multiplier has
a visible pop-up window. So simply giving the tasks to
participants without instructions on how to use the plug-
ins would have been futile. To preserve ecological va-
lidity, we tried to keep the instructions to a minimum;
giving them written details of how to activate the plug-
in, a brief explanation of how to change a password, and
a short description of how to log on to a web site using
a remote computer. The entire set of instructions was
approximately half a page long for each plug-in (see Ta-
ble 2). Users typically do not read manuals when they
use software [3, 17, 31] so having participants follow
detailed instructions would not have reflected a realistic
scenario. Participants were also given a list of the user-
names and passwords that they would require to com-
plete the tasks. To minimize the effect of learning new
passwords, a simple, one-word password was given for
all tasks within a system (“alphabet” and “carleton”).
These passwords were also written on a sheet in front
of participants throughout the session.

Participants were given the instruction sheet for the
particular plug-in and told that they could refer to it
whenever necessary. They were directed to a computer
with a Firefox browser window open and the appropriate
plug-in pre-installed. They were instructed to pretend

Table 2: Example instructions given to participants on how to
use PwdHash

PwdHash Instructions:
Add @@ in front of passwords you want to be made se-
cure, this will activate PwdHash. PwdHash will transform
the password before sending it to the web site. For example,
if your password is “bob”, enter “@@bob”.
You can also activate PwdHash by clicking on the password
field and pressing the F2 key before entering your password.
To reset a password:
If your old password was not protected, enter the old pass-
word without activating PwdHash. When entering the new
password, include the @@ at the front of the new pass-
word. This will activate PwdHash and transform this par-
ticular password.
If your old password was already protected by PwdHash, ac-
tivate PwdHash for your old password. When entering your
new password, activate PwdHash and enter a new password
for the site.
To use remotely:
To log in to a web account from a computer that does not
have PwdHash installed, visit:
http://crypto.stanford.edu/PwdHash/RemotePwdHash
to generate your protected password. Enter the address of
the target site and your password. The protected password
will be generated. It can be copied/pasted into the password
field of the target site.

that this was their home computer and they should use
Firefox as the browser for these tasks. Participants com-
pleted all tasks with a plug-in before switching comput-
ers to repeat the tasks with the second plug-in. No partic-
ipant expressed any concern over using Firefox instead
of the more popular Internet Explorer and no difficul-
ties were observed due to using this alternative browser.
Firefox was selected as the browser because the stable
versions of the plug-ins were not available for Internet
Explorer. Firefox was used in the original PwdHash us-
ability study as well.

Each task was described on an index card (see Table
3 for an example). The card also included two ques-
tions asking participants to rate the difficulty of the task
and their satisfaction with the software for this particu-
lar task. Participants could take as long as they needed
to complete the task and were told that if they felt they
had spent enough time on a task and could not complete
it, they could quit. At the end of each task, they circled
their responses to the two questions and were provided
with the next index card.

When participants reached the task where they had to
log on to a web account from a remote computer (Re-
mote Logintask), they were instructed to change com-
puters and pretend that they were now at their friend’s
house where the software was not installed. This proved
problematic for P-Multiplier since the authors’ solution
to remote access is to install the plug-in. Participants



Table 3:Example index card given to participants for theLog In task
Log on to www.google.com. Your password is protected by Password Multiplier.
This task was:

very easy easy neutral difficult very difficult

For this task, how satisfied are you with the software used to manage the password?
very dissatisfied dissatisfied neutral satisfied very satisfied

could not install the plug-in on the second computer be-
cause it had PwdHash installed and the combination of
the two crashed the computer. TheRemote Logintask
was therefore eliminated for P-Multiplier. Judging from
participants’ reactions as they read from the instruction
sheet that they had to install software for remote access,
they would not have been pleased with this solution even
if they had been able to complete the task.3

After completing a set of tasks, participants answered
a paper questionnaire about their experience with the par-
ticular plug-in. The entire process was repeated for the
second plug-in. A final post-task questionnaire asked
participants to compare the two plug-ins.

3.5 Data Collection

Data was collected in two ways: through observation
and through questionnaires. An experimenter sat with
each participant throughout the session, recording obser-
vations, noting any difficulties, any obvious misconcep-
tions in the participant’s mental model of the software,
any comments made by the participant, and whether they
successfully completed the task. Participants were asked
at the beginning of the session to “think-aloud”. Besides
the standard instructions given to all participants, no fur-
ther explanations were given even if a participant asked
for more instructions. In these cases, the experimenter
remained cordial, clarifying that we were testing the us-
ability of the systems and needed to see if people could
use them without explanations. Occasional prompts such
as “what did you expect to happen there?” were used if
participants forgot to think-aloud.

The users’ goal was to successfully complete the tasks
using the given password manager. They were given as
much time as they wanted and the observer waited for the
participants to signal that they had completed the task or
that they had run out of ideas and could not complete it.
The outcome of each task was recorded by the observer
according to the following possibilities:

Successful:The participant completed the task without
difficulty.

Dangerous success:The participant eventually com-
pleted the task after several attempts (i.e., had dif-
ficulty). The negative impact is that in some cases,
the unsuccessful attempts prior to the eventual suc-
cess expose the password to attack (see Section 5.4).

Failed: The participant gave up on the task without
completing it.

False completion: The participant failed to complete
the task but erroneously believed that they had in
fact been successful.

Failed due to previous: The participant could not com-
plete the task because they had incorrectly com-
pleted the preceding task. This only applies to the
Second Logintask, where theUpdate Pwdhad to be
successful in order to proceed.

The first outcome is considered most positive. The
second is somewhat positive but users may have exposed
their passwords to danger (e.g., to JavaScript attacks and
phishing) as they floundered with the task. They may
even have inadvertently exposed multiple passwords,
since a typical reaction to being unable to log in is to try
all of one’s passwords to see if something will work. The
fourth outcome is especially dangerous because it leads
to a false sense of security on the part of users.

Secondary measures taken in the study consisted of
several Likert-scale questions [16]. These ask respon-
dents to choose their level of agreement with the given
statement from a set of possible answers, usually rang-
ing from strong agreement to strong disagreement. We
used a 5-point scale (strongly disagree, disagree, neu-
tral, agree, strongly agree). Participants answered two
of these questions on the index cards after each individ-
ual task, then completed a 16-question questionnaire for
each plug-in.

The questions from the questionnaire were a priori
grouped into four sets that considered different aspects
of the interaction: perceived security, comfort level with
giving control of passwords to a program, perceived ease
of use, and perceived necessity and acceptance. Each set
contained four similar questions (see Table 4); the ques-
tions were randomly organized on the questionnaire so
participants were not aware of the groupings. Partici-
pants circled their answer for each question among the
five choices. Half of the questions were inverted to avoid
bias.

4 Collected Results
Neither PwdHash nor P-Multiplier fared well in terms of
usability. Both the quantitative and observational data
point to major problems, as explained below.



Table 4:Sample questions for each question set (for PwdHash,
the questionnaire for P-Multiplier was identical other than the
name of the software).

Perceived Security
My passwords are secure when using PwdHash.
I do not trust PwdHash to protect my passwords from cyber
criminals.
Comfort Level with Giving Control of Passwords to a
Program
I am uncomfortable with not knowing my actual passwords
for a web site.
Passwords are safer when users do not know their actual
passwords.
Perceived Ease of Use
PwdHash is difficult to use.
I could easily log on to web sites and manage my passwords
with PwdHash.
Perceived Necessity and Acceptance
I need to use PwdHash on my computer to protect my pass-
words.
My passwords are safe even without PwdHash.

Our first measure of usability was whether participants
were able to successfully complete the given tasks with
each password manager. Our goal was not to provide a
measure of how much better one password manager is
compared to the other but to investigate the usability of
each. Looking at Tables 54 and 6, it appears that Pwd-
Hash outperformed P-Multiplier but still had a relatively
high chance of potential security exposures, as many of
PwdHash’s successful outcomes were only realized after
multiple attempts. These latter successful outcomes – la-
belled “dangerous successes” – can only be cautiously
viewed as successes (see Section 5.4). The web sites
used for the tasks were specifically chosen because they
have a very high tolerance for incorrect login attempts.
Participants frequently attempted to log in three to ten
(or more) times before they were successful or gave up.
With sites that limit the number of attempts, most users
would have been locked out.

For theMigrate Pwd, Update Pwd, andSecond Login
tasks, a number of participants felt that they had success-
fully completed the task when in reality they had not.
This was more common with P-Multiplier. This was
mainly due to participants incorrectly believing they had
successfully migrated their password from unprotected
to protected and subsequently believing that they were
logging on with a protected password when they were
still using an unprotected password.

The Likert-scale responses from the questionnaires
were converted to numeric values (1 = most negative, 3 =
neutral, 5 = most positive). The responses were grouped
according to their predefined sets to find the mean re-
sponses for each set. Means were calculated and dif-
ferences between P-Multiplier and PwdHash were as-

Figure 3: Mean questionnaire responses for each question
group on scale of 1 to 5 (1 most -ve, 3 neutral, 5 most +ve)

sessed by running t-tests. In a strict statistical sense,
Likert-scale data should not be converted to numerical
data. Since it is ordinal data, the differences between
“strongly agree”, “agree”, and “neutral” are not neces-
sarily the same. However, in practice this type of sta-
tistical analysis is the most common and accepted way
of reporting Likert-scale data as the difference in results
between parametric and non-parametric analysis are usu-
ally minimal.

We used t-tests to analyze the response distributions
and determine the statistical significance of any differ-
ences. The t-tests can only be used to compare Pwd-
Hash and P-Multiplier against each other since we do
not have an optimal system against which to compare
the two. Examining the questionnaire data, the means
for each group of questions reveal that neither systems
fared very well; most values remained below neutral on
the scale (see Figure 3). However, the t-test5 showed that
PwdHash was reported to be easier to use (t(24) = 2.24,
p < .05) and perceived as more secure (t(24) = 2.70,p
< .05) than P-Multiplier. The t-tests further revealed that
the systems were similarly bad at making users feel com-
fortable with giving control to a password manager (t(24)
= -0.362,p = .721) and that there was no difference be-
tween the two programs in how users felt regarding the
perceived necessity of such systems (t(24) = -0.207,p =
.838).

Examining their responses to the two questions from
the index cards, we find that tasks completed with Pwd-
Hash were perceived as easier than those completed with
P-Multiplier. Although participants reported higher sat-
isfaction with PwdHash than P-Multiplier, in most cases
the mean perceived difficulty and perceived satisfaction
was below 4 for each. This means that participants ini-
tially reported positive reactions to the plug-ins. How-
ever these reported opinions need to be taken in context
with user performance. In some cases, participants re-
ported that the task was easy and that they were satisfied
with the software even when they were unsuccessful at
completing the task. In some of these instances partici-
pants were unaware that they had failed to complete the
task. For example, they believed that they had generated



Table 5:Task Completion Results for PwdHash

Success
Potentially causing security exposures

Dangerous Failures
Success Failure False Failed due

Completion to Previous
Log In 48% (12) 44% (11) 8% (2) 0% (0) N/A N/A

Migrate Pwd 42% (11) 35% (9) 11% (3) 11% (3) N/A N/A
Remote Login 27% (7) 42% (11) 31% (8) 0% (0) N/A N/A
Update Pwd 19% (5) 65% (17) 8% (2) 8% (2) N/A N/A

Second Login 52% (13) 28% (7) 4% (1) 0% (0) 16% (4)

Table 6:Task Completion Results for P-Multiplier

Success
Potentially causing security exposures

Dangerous Failures
Success Failure False Failed due

Completion to Previous
Log In 48% (12) 44% (11) 8% (2) 0% (0) N/A N/A

Migrate Pwd 16% (4) 32% (9) 28% (7) 20% (5) N/A N/A
Remote Login N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Update Pwd 16% (4) 4% (1) 44% (11) 28% (9) N/A N/A

Second Login 16% (4) 4% (1) 16% (4) 0% (0) 64% (16)

a new secure password for a site when they had not even
activated the plug-in – a potentially dangerous situation
(see Section 5.4). In other cases, they said “well, this
shouldhave been easy, so I gave it a high rating”. Ob-
viously, relying solely on reported satisfaction and diffi-
culty is misleading.

At the end of the session, participants were asked
which of the two systems they preferred. Partici-
pants were nearly evenly distributed in terms of prefer-
ence: 14 participants selected PwdHash and 11 chose
P-Multiplier. The total number of responses is 25 be-
cause one participant only completed tasks with one sys-
tem and could not compare the two.

5 Analysis and Interpretation of Results

Only one task in our study had a success rate of over
50%. This should concern the security community be-
cause when users cannot use a system correctly, they be-
come vulnerable to attacks (see Section 5.4). It is im-
portant to examine the causes of failure in order to learn
how to address these usability problems. The best source
of information in this case is the observational data that
recorded what happened as participants tried to use the
systems.

Section 5.1 reports on usability problems common to
both systems tested. Section 5.2 compares our find-
ings with those of PwdHash’s authors and section 5.3
reports on usability problems discovered specifically in
P-Multiplier. Finally, section 5.4 discusses the particu-
lar security vulnerabilities exposed due to these usability
problems.

5.1 Problems Common to Both Systems

Multiple issues arose because users’ mental models did
not match the reality of the system. They clearly were
trying to make sense of what they saw and experienced
during the interaction, but their understanding was in-
complete or incorrect. Specifically, they had difficulty
understanding when and how to activate each system,
understanding how long it remains active once it is ac-
tivated, determining to what fields the activation ap-
plied, and determining whether they had correctly ac-
complished a task.

Users were unsure about whether the systems were
correctly activated. They often commented on “well, I
think it did something” or “I guess that’s what needed
to be done”. They perceived little feedback and were
looking for some cue that they had been successful. One
participant somehow decided that the “lock” icon on the
browser that indicates whether the site is secure was the
indicator of whether the password was protected. In each
task, they looked at the icon to make sure it was closed
then happily entered their password without activating
the plug-in, fully believing that their password was pro-
tected. Another participant who could not figure out how
to activate the plug-in reasoned “this password must be
really secure – I can’t even get in”.

Another misconception was that they could activate
the password manager once and it remained active
throughout their computer session. They double clicked
or pressed @@ with the very first password they en-
tered and then assumed that all further passwords from
this point onwards were protected without further ac-
tion. This raises serious concerns because it gives users



a false sense of security. They believed they were pro-
tected while in fact their weak passwords continued to
be used for their accounts. They were able to log in
to their accounts because they never actually converted
their passwords to “protected” passwords even though
they believed that they had. In some cases this might
possibly lead to even weaker password choices than nor-
mal because users believe they are being protected.

A second activation problem arose with each password
managers’ “alternative” trigger mechanism: pressing the
F2 key for PwdHash and Alt+P for P-Multiplier. Both
of these required that the users’ cursor was already in
the password field before triggering the program. Users
would forget to click on the password field, then incor-
rectly assume that the program had been activated when
they pressed F2 or Alt+P.

Several users erroneously believed that unique, ran-
dom passwords were generated for them each time they
activated the password manager; even for the same web
site. For example, they believed that each time they
logged on to Hotmail and used the password manager,
a new, unique password was being generated. Of course
this would not work since a web site expects the same
password each time in order to authenticate the user. But
this view was even held by participants who would be
considered advanced or expert computer users such as
Computer Science graduate students.

Not all usability problems encountered were a direct
result of the password manager interfaces. Some prob-
lems were due to bad web site design. The sites used
in the study were popular sites frequented by expert and
novice users alike so the observed problems are likely to
occur in real life as well. Participants had difficulty find-
ing the login areas, had difficulty finding where to change
their passwords, had difficulty changing their passwords,
and had difficulty determining if they were correctly
logged in to a site. These are valid usability issues that
provide context and insight into the circumstances and
environments where people will be using password man-
agers. They must be taken into account even though they
are not a direct result of the password manager interface.
Another problem noticed by several participants was the
inconsistency in designating the username field: it was
called “username”, “account name”, or “email” on dif-
ferent web sites. The instruction sheet referred to it as
“username”; this was sufficient to raise several questions.

Several participants gave up on tasks out of frustra-
tion, especially with P-Multiplier. Most said that in real
life, they would have requested that their password be
reset or would have created a new web account by this
point. None mentioned that they would have looked for
further documentation. Some assumed that something
was wrong with the account and asked the observer to
correct it, while others apologized for their “stupidity”

and blamed themselves for the problem.
Another frustration shared by many participants was

that they did not know their “actual” passwords. A sec-
ond subset never even realized that this was in fact what
was happening, revealing further mental model issues.
Of those who understood this concept, they felt that the
program should “trust” them with their own passwords:
“why won’t it tell me my password?” and “I wish it
would show me my password when it first generates it,
I won’t lose it or share it!”. Presumably, the tendency
would be for users to write down their passwords for
safekeeping; this has advantages and disadvantages, de-
pending on the threat model.

Users also did not like relinquishing control to a com-
puter program: “How do I know I can trust it?”, “Now
I have to trust two companies with my passwords, who
guards the guards?” and “I felt like I had no control.
Passwords are important but I have no idea what hap-
pened.” Even though they know that password security
is a problem, they feel that they are best equipped to care
for their own passwords. This view is clearly contrary
to that of security experts. The mismatch needs to be ad-
dressed if widespread adoption of security measures is to
take place.

5.2 Comparison of findings with previous PwdHash
findings

The authors of PwdHash briefly report the findings of
their user study as follows [24]:
• “The participants did not experience any major dif-

ficulties signing up for new accounts and logging in
to them using the password prefix.”

• “The user interface was so invisible that many par-
ticipants did not observe the extension doing any-
thing at all. They did not notice the lock icon, and
their only clue that the extension was working was
the fact that their password changed length when
focus left the field, which they found confusing”

• “It was only once the users had to log in using a dif-
ferent browser that didn’t have PwdHash installed
that they encountered difficulties. They found the
process of copying over the site address into the re-
mote hashing page to be annoying, and if they did so
incorrectly (for example, using gmail.com instead of
google.com) the site that they were logging into did
not provide useful feedback as to what went wrong.”

• “When presented with a fake eBay site at a nu-
meric IP address, most of the participants were will-
ing to try logging in anyway, but their use of the
password-prefix prevented the phishing page from
reading their eBay passwords.”

Very little detail is given about the user study, its method-
ology, its participants, or the actual results. This makes
it difficult to assess the validity of the study and its thor-
oughness, or to attempt a replication study. We address



each of their reported results by comparing them to our
findings and report additional usability problems that we
discovered. Our results contradict those found by the
authors [24] with respect to the usability of PwdHash.
We found that even though performing better than P-
Multiplier, PwdHash still had major usability problems.
While the success rates for our tasks with PwdHash were
fairly high, more than half of these successful outcomes
were only achieved after repeated attempts and errors by
the users. Many successes were due to participants trying
random actions until eventually something worked, not
because participants had a clear understanding of how to
use the software.

The majority of our participants did not comment on
the changing length of their password. Many did, how-
ever, fail to realize that they needed to enter @@ in front
their new password when re-typing it in for confirmation
on a Change Password page. They assumed that enter-
ing the @@ once was enough. Visually, it was appar-
ent that the two new passwords did not match due to the
length difference, but users did not notice this cue. Many
were confused by the lack of feedback and did not know
if they had been successful in activating PwdHash. A
similar problem occurred with P-Multiplier where users
would activate the plug-in the first time they entered their
password then assumed that the program remained active
and proceeded to re-type their password in the password
confirmation field without re-activating P-Multiplier.

Most of our users also had difficulty with the remote
interface, but the problems encountered were different
from those reported in the original study. First, users had
difficulty reaching the remote web site due to its compli-
cated URL. Several commented that they “would never
find this site when they needed it”. The second concern
cited by several users was that the remote web site did not
ask them for a username. They found this disturbing and
could not understand how it was going to generate the
correct password when it did not know who they were.
“How will it know to generatemypassword?” and “How
does it know who I am?” were common questions. One
shrewd participant eventually concluded that “wait, it’s
going to give anyone who enters my regular password the
same complicated password? That’s not good!”. Users
obviously believe that the generated passwords are (and
should be) somehow unique to them. This points to prob-
lems with users’ mental model of the systems.

The users who successfully completed the remote
login task did not have any trouble identifying the
correct site URL to enter (granted, we were using
www.amazon.com as the site, alternatives may not have
been as obvious to users as with the Google and Gmail
problem reported in the first study). Of those who failed
to complete the task, most never even reached the remote
web site. Although they were explicitly told that “you are

now at your friend’s house, they don’t have the software
installed, so you will need to log in remotely”, they still
attempted to log in using the @@. When this failed, they
attempted to use their plain password and made random
attempts at guessing the correct password. They did not
refer to their instruction sheet that clearly had a section
entitled “To log in remotely:”. Even when users had only
half a page of instructions, directly in front of them, they
tended not to refer to it. On a similar note, only one user
actually read and commented on the instructions posted
on the remote web site about whether to enter @@ in
front of their password on the remote site. Without read-
ing the instructions, about half of the users entered their
password with the @@ and half omitted it. Apparently,
the software is capable of dealing with both situations be-
cause they were successful in generating their password
in both cases. This may be good in terms of anticipating
users’ actions but breaks the mental model of what the
@@ symbols represent.

We did not test if users would try to log in to a fraud-
ulent site. Based on our observations, we predict that
users would attempt to log on without realizing the dan-
ger. And based on users’ behaviour at other sites when
they had an incorrect password, it is our guess that users
would divulge their plain text password when the first
log in attempt failed and they tried alternatives. Thus
even though PwdHash would protect their initial attempt,
users would provide their clear text password on subse-
quent attempts thus creating a security vulnerability.

PwdHash alerts users when it thinks they are trying
to enter a password into a non-password field. The
alert message is long; most users simply dismissed it
without reading it. Compounding the problem is that
this alert sometimes appeared with legitimate password
fields, usually when a user would start typing a password
and then try to include the @@ as an afterthought.

PwdHash more closely mimics the interaction with
which users are familiar. From a conceptual point of
view, users simply have to remember that passwords
starting with @@ are protected. They do not need to
really understand that the @@ is invoking a plug-in that
performs a cryptographic hash on their password. On
the other hand, this familiarity also caused confusion.
One participant voiced this concern: “Really, I don’t see
how my password is safer because of two @’s in front”.
This user obviously understood that the @@ were im-
portant but could not make the connection with typing in
these symbols and triggering a program that will generate
a stronger password. Some people were uncomfortable
with the transparency, commenting that “at least with P-
Multiplier I get a window, the password is going into the
program”.



5.3 Comments on usability of Password Multiplier

Although no user study was documented, we now com-
ment on statements made in Halderman et al. [11] about
the usability of P-Multiplier. They argue that their ap-
proach is“both convenient for users and highly secure, a
combination not offered by previous designs”. In terms
of convenience, they claim that their software can be run
on different machines to access their password from any-
where and that the memory load is light because users
only need to remember a username, the domain name
for the site being accessed, and a single master pass-
word. They also highlight their browser integration,
stating that this integration“allows it to work as con-
veniently and transparently as possible, minimizing the
burden imposed on the user and increasing the chances
that the system will be used in practice. Second, browser
integration allows our system to offer some protection
against spoofing and phishing attacks, since by default
the password program will use the name of the server
that will actually receive the submitted password, even
if an attacker has tricked the user into believing she is
connecting to a different site”[11].

We argue that P-Multiplier fails to meet the usability
goals its authors set for themselves. P-Multiplier is not
easily portable since it requires that the program be in-
stalled on a remote computer. Many users do not have
privileges allowing them to install software on such ma-
chines and would likely find it inconvenient to install
software in order to log in to a web site.

The memory load is not trivial. Users must remem-
ber the master username and master password for P-
Multiplier. In addition, they must still remember their
username for each web site. And finally, they must re-
member the modified domain names for all sites where
they have changed their password.

Transparency is often a cited goal for security sys-
tems. However transparency is often translated to a lack
of feedback and this leads to many usability problems as
users are unable to form an accurate mental model of the
system and its operation. Two participants never realized
that they only needed one password with P-Multiplier.
Each time, they entered a clear text password in the web
site’s password field, double clicked to activate the dialog
box and then entered the master password. They never
realized the generated password was overwriting their
clear text password and that they did not have to man-
ually enter anything into the web site’s password field.

P-Multiplier’s authors state that their plug-in helps to
protect against phishing attacks. While this is true, it re-
lies on the assumption that users correctly use the system.
This is a problematic assumption, as from our observa-
tions, users frequently entered their plain text passwords
and resorted to random guessing because they could not
correctly use P-Multiplier. In these cases, users are no

more protected against phishing than they would be with-
out a password manager. (Some users might possibly
be less diligent in scrutinizing sites because they assume
that the software is protecting them.)

Users had high expectations of the password man-
agers. They expected that any password generated by
the software should be extremely strong, regardless of
their own input. One web site offered a “strength-meter”
when changing passwords, rating the strength of new
passwords. When the password manager failed to gener-
ate a password considered “strong” by the web site, users
expressed their concern and disapproval. Specifically,
passwords generated by P-Multiplier were often rated as
“medium” by Hotmail rather than “strong”. Users felt
that if they chose their own passwords, they would be
able to produce a strong password.

P-Multiplier’s solution for changing a password once
it is protected is nearly impossible for users to under-
stand. Of those who did understand it, they expressed
frustration at now having to remember the modified do-
main and having to enter it each time they logged in to
this web site. There also seems to be a bug in the pro-
gram where users were able to change their password by
entering a different master password instead of changing
the domain. The plug-in accepted this incorrect master
password and somehow generated a new password for
the site. It was unclear whether the passwords so gener-
ated were secure, and it violated the user’s mental model
that all passwords in P-Multiplier are protected by a sin-
gle master password.

5.4 Usability problems causing security exposures

Usability problems are of general concern in HCI and
should also concern the security community because
they may also lead users to bypass security mechanisms.
Here, we comment on a separate matter: usability prob-
lems which may directly cause security exposures, even
when the user has the intention of complying with the
security mechanism.

The first concern is users failing to properly activate
the respective mechanisms (e.g., failing to enter @@ or
double-click the web site password field). For both pass-
word managers, when users enter their password but for-
get to invoke the mechanism, the (raw) password is sent
on as if the manager software was not installed, naturally
exposing it to JavaScript and phishing attacks – both of
which PwdHash was designed to counter. In the case of
P-Multiplier, this exposes what is the master password,
sufficient to generate site passwords for many sites. This
user error is a factor in three possible failure outcomes
(Dangerous Success, Failure, False Completion).

The same problem exists when users change pass-
words. The interface requires entering the old password,
the new password, and re-entering the latter. In some



cases, users activate the respective mechanism for the
first new password field, but then re-enter their password
the second timewithoutactivating it.

A different problem resulted from user confusion.
When users failed to correctly activate the mechanism,
some started guessing, entering all passwords they could
think of, with and without the activation sequence. In this
case, a phishing site (or JavaScript attack) could harvest
a number of passwords of interest.

Another generic danger, not specifically related to the
password managers in question, is that users who be-
lieve a password manager mechanism will be used may
be more inclined to choose a simple (low-entropy) pass-
word, believing it will be strengthened; when it is not, it
may be even more vulnerable to dictionary attacks.

6 Further Discussion and
Recommendations

As discussed in Section 1, the problem of establishing
and managing strong passwords for large numbers of ac-
counts is unlikely to disappear soon. While password
managers offer a solution, current implementations suf-
fer from significant usability problems, which in our ob-
servation fall into two main categories: (1) users’ mental
models; and (2) users’ views on the necessity of tools
such as password managers, and acceptance (their will-
ingness to hand over control of passwords to a computer
program). We discuss these, in turn, in Sections 6.1 and
6.2. In Section 6.3, we consider additional criteria for
security software to be usable.

6.1 Mental Model

Incorrect user mental models appears to be the biggest
problem with the two password managers tested. While
manifested in different ways, the common cause is that
users do not even have a high-level understanding of
what the manager programs are doing. The importance
of a mental model for usability in security is a key is-
sue identified by Whitten and Tygar [31], and as early
as 1975 by Saltzer and Schroeder [25].6 To be usable,
a system must support a user’s mental model, and must
fit into their regular work patterns. This is not simply a
matter of user satisfaction; failure to do so can result in
security exposures. Through interactions with a system,
users form a mental model as a mechanism to help in
understanding, learning, and remembering. The primary
means of doing so is by interpreting the actions and in-
terface of the system as they are presented; an incoherent
or inappropriate presentation leads to an erroneous, or
incomplete model. A user’s model serves as the basis
for their interactions; thus improper models often lead to
major usability problems. Norman’s [21] Gulf of Eval-
uation is a measure of how much effort must be exerted
to determine whether the system actions correspond to

the user’s intentions and expectations. Ideally this gulf
should be small, indicating that the system provides ac-
curate, understandable, and visible feedback to the user.

It is the responsibility of a good designer to ensure that
users have the cues needed to form an accurate and com-
plete mental model of a system [20]. Although the us-
ability literature has long supported the need for accurate
mental models, this seems not yet to be common knowl-
edge – or perhaps more correctly, not common practice –
for the security community. Users need not fully under-
stand the details of complex security programs, but rather
need a mental model that is consistent, and that will al-
low them to predict program behaviour and the results of
their own actions.

In addition, the interfaces should provide better feed-
back. It is a well accepted usability principle that system
feedback is necessary to narrow the Gulf of Evaluation
and for users to develop accurate mental models. In our
study, users were often left in states where they could not
tell if their actions had been successful. In some cases,
the systems provided feedback but it was not noticed by
the users. P-Multiplier changed the background colour of
the password fields containing generated passwords, but
in our study not one user remarked on this subtle change
or appeared to have noticed it. PwdHash alerted users
when they tried to enter a password in a non-password
field. However this alert sometimes appeared when users
were in a valid field and its wording was confusing for
users. Most users simply dismissed the warning. Partici-
pants were also confused when something had obviously
gone wrong, but they received no feedback as to what
may have caused the problem or how to recover from it.
In their effort to be unobtrusive and subtle, these inter-
faces have reached a point where they are impossible to
comprehend due to a lack of cues.

We make the following suggestions regarding feed-
back provided to users by the password managers tested:

1. It should be obvious when a password has been pro-
tected.

2. It should be obvious when the plug-in has been ac-
tivated and is awaiting input. This directly contra-
dicts the assumption that transparency is good for
security interfaces. The lack of visual cues was
problematic for both programs because it left users
confused and unsure about how to proceed.

3. It should be clear how existing passwords are mi-
grated (from pre-manager unprotected, to with-
manager protection). Even with instructions on how
to activate the program and an explanation that users
must change their password, confusion arose. Sev-
eral users attempted to “change” their password at
the initial login prompt for a webpage rather than
logging on then using the site’s Change Password



interface. They felt that since the program was in-
stalled on the computer, “changing their password”
meant that they could simply start using the plug-in
to enter their password on a web site.

4. If something goes wrong, feedback should be short,
understandable, and reveal how to address the prob-
lem. This is a standard usability principle. Unfortu-
nately, it is unclear if this would be easy to imple-
ment since the problem may stem from the target
web site rather than from the plug-in.

5. There should be a way for users to check which of
their accounts are currently protected. Migrating to
one of these systems is non-trivial since users will
need to track which accounts have been migrated
and which remain to be done. We suggest that the
plug-in keeps a list of currently protected web ac-
counts on the user’s primary computer.

Better integration with the actual web pages may be
technically difficult, but it would certainly help users.
For example, when a password is incorrectly entered,
users currently do not know if the problem is a typing
error or an error in activating the manager. We observed
users resorting to random guessing in hopes that some-
thing would work – with one security risk being that
such passwords could all be exposed (see Section 5.4)
and might include sensitive passwords (which the user
resorts to trying) for unrelated accounts. Providing accu-
rate error messages would reduce user frustration.

6.2 User Acceptance and View of Necessity

From a usability standpoint, user satisfaction and ac-
ceptance is always important (although sometimes users
may have no choice, e.g., when it is required for a criti-
cal part of their job). When users must make an “opt-in”
choice, it is particularly important that users accept the
system – otherwise they may turn to an alternative (pos-
sibly insecure) service or find ways to bypass the security
mechanisms [2, 5, 26]. Lack of user satisfaction and ac-
ceptance can lead to a lack of security.

We believe that helping users form a clearer mental
model would significantly help with user acceptance of
the studied password managers. Currently, users are un-
comfortable with using the software (see Figure 3) and
do not trust it because they do not understand it. They
are worried about the safety of their accounts. They are
worried that they will be unable to reach their accounts
because the password manager will stand in their way.
As an intermediary, the password manager needs to ap-
pear reliable, consistent, and predictable.

To increase user acceptance, we also recommend that
along with the installation of password managers, users
be educated about the importance of protecting pass-
words, and how password managers can achieve this
goal. As with other security measures this is not a simple

task since security is not the primary goal of most end-
users; however, password managers have the advantage
of potentially simplifying users’ tasks (e.g., by requiring
them to remember fewer or less-complicated passwords).
Once users understand this, we would expect higher user
acceptance.7

6.3 Criteria for Security Software to be Usable

Whitten and Tygar highlighted issues that arise when
users have inaccurate or incomplete mental models, sug-
gesting that forsecurity software to be usable, users
must [31]:

1. be reliably made aware of the security tasks they
must perform;

2. be able to figure out how to successfully perform
those tasks;

3. not make dangerous errors; and
4. be sufficiently comfortable with the interface to

continue using it.
We suggest the following two additional criteria (closely
related or supporting 2 and 3):

5. be able to tell when their task has been com-
pleted; and

6. have sufficient feedback to accurately determine
the current state of the system.

The fifth concerns a usability problem seen in both the
Whitten and Tygar study and our current study: users
were unable to tell whether their task had been success-
fully completed and sometimes incorrectly assumed suc-
cess. This can cause security vulnerabilities (e.g., as in-
formation believed to be secure can be left unprotected).
The sixth draws on the well-known usability guideline
of feedback, which is especially important for support-
ing accurate mental models in security interfaces. Trans-
parency in this case can be dangerous because it leaves
users free to make assumptions about the system that
could lead to security exposures.

7 Related Work
Background on usability testing is given in Section 3.1.
Section 2 mentions a few alternate password managers
(see [11] and [24] for a good summary of other pass-
word managers). Here we focus on related work includ-
ing usability tests for authentication mechanisms. Al-
though the situation is now changing significantly, there
have been surprisingly few such academic papers.

Growing interest is reflected by Cranor and
Garfinkel [4], and the Symposium on Usable Pri-
vacy and Security (SOUPS). Zurko and Simon [34]
introduced “user-centered security” in 1996. Prominent
among past work is the case study of PGP 5.0 [31],
which included a cognitive walkthrough inspection
analysis and a lab user test involving 12 participants (see



Section 6). Another early authentication usability study
is the Déjà Vu work [8], which included interviews with
30 people on password behaviour, and user testing with
20 participants; the focus of the user testing was on cre-
ation of password (image) portfolios, and memorability
results. Prior to this, Adams and Sasse [1] explored
password-related user behaviours and memorability
issues through questionnaires and interviews, leading to
a number of recommendations.

Recent papers involving user studies on graphical
passwords include Davis et al. [6] with focus on se-
curity and poor user choices made by real users; and
Wiedenbeck et al. [32] with focus on memorability in
the PassPoints system, presenting results of a user study
involving 32 undergraduates. Weinshall [30] introduces
a challenge-response authentication protocol relying on
recognition of images and presents results of a small user
study.

Although not specifically on passwords, Garfinkel and
Miller [10] carried out a 43-subject user test of a se-
cure email prototype with focus on key continuity man-
agement features (automating certain key and certificate
management activities related to signing email); they re-
port increased protection against certain forms of social
engineering, but not from attacks from new (unfamiliar)
email addresses or from phishing.

Related to our observations that more visibility (vs.
more transparency) would enhance usability of some se-
curity features, Depaula et al. [7] explore making rele-
vant features of security mechanisms – including config-
urations, activities and implications of available security
mechanisms – visible, to allow more informed user deci-
sions.

8 Concluding Remarks

While the security community seeks to develop systems
with stronger security, it is now commonly recognized
that even the most technically secure system, if unusable,
will fail in practice. However, without measurements on
real users, we cannot evaluate usability. Usability tests
with real users should be included in not only the devel-
opment of security systems, but also in research which
proposes new security tools and plug-ins. Both forma-
tive and summative usability tests are desirable. Forma-
tive tests are conducted throughout the development of
the system to guide the development and find potential
usability problems as they arise; these tests are typically
less formal and their goal is to highlight any problems.
Summative tests are used to gather performance data and
provide measures of usability; they are more controlled
and their goal is to validate the usability of a system or
compare its performance for different groups of users.

We have refrained from making specific suggestions
for changing the interfaces of the studied password man-

agers, as any suggestions should themselves be tested for
usability – and we have not done so. Thus until such
time, we cannot authoritatively conclude that they would
work. Instead, we have suggested further guidelines and
requirements for the interfaces. Further work is needed
to identify specific mechanisms to use in order to comply
with these guidelines and address the requirements.

The goal of usability studies is to uncover problems
so that they can be corrected. We have identified several
usability problems with Password Multiplier and Pwd-
Hash which we believe are likely to exist in other similar
password manager proposals. The next step is to iden-
tify mechanisms, if possible, by which these interface
problems can be addressed. Ideally, we would then build
a new interface that implements these mechanisms, and
conduct further usability evaluation to test if this actually
improves usability.

9 Acknowledgements
We thank the anonymous reviewers for their comments
which helped improve this paper to its present form. We
also thank the members of the Carleton’s Digital Security
Group and Mary Ellen Zurko for their feedback on ear-
lier versions of this work. The first and third authors are
supported in part by the “Legal and Policy Approaches to
Identity Theft” project funded by the Ontario Research
Network for E-Commerce. The second author is Canada
Research Chair in Network and Software Security, and
is supported in part by the Canada Research Chairs Pro-
gram, and an NSERC Discovery Grant.

Notes
1Lack of feedback hindered users’ ability to form accurate mental

models, and to determine if passwords were being protected.
2One person did not try P-Multiplier; they quit after completing the

tasks with PwdHash. Therefore only partial data is available for this
participant. This left 25 participants for P-Multiplier.

3Using a third computer would have been a better experimentalde-
sign, allowing participants to complete the task, but we do not expect
that this would have led to different results.

4Technical problems caused one participant to miss theLog In and
Second Logintasks with PwdHash

5A t-test is a ratio giving a measure of the difference betweentwo
means relative to the variability of each set. Larger ratiosmean that the
two groups are more distinct from each other. Significancep shows the
likelihood that the results are due to chance.

6They note [25]: “Psychological acceptability: It is essential that
the human interface be designed for ease of use, so that usersroutinely
and automatically apply the protection mechanisms correctly. Also, to
the extent that the user’s mental image of his protection goals matches
the mechanisms he must use, mistakes will be minimized.”

7Ideally, this hypothesis would be verified by a separate study.

References
[1] A. Adams and M.A. Sasse. Users are not the enemy.

Comm. of the ACM, 42(12):41–46, 1999.

[2] R. Anderson. Why cryptosystems fail. InProceedings of
the 1st ACM Conference on Computer and Communica-
tions Security., December 1993.



[3] J.M. Carroll, P.L. Smith-Kerker, J.R. Ford, and S.A.
Mazur-Rimetz. The minimal manual.Human-Computer
Interaction, 3:123–153, 1987-1988.

[4] L.F. Cranor and S. Garfinkel.Security and Usability: De-
signing Systems that People Can Use. O’Reilly Media,
edited collection edition, 2005.

[5] D. Davis. Compliance defects in public key cryptography.
In Proceedings of the 6th USENIX Security Symposium,
July 1996.

[6] D. Davis, F. Monrose, and M. Reiter. On user choice in
graphical password schemes. InProceedings of the 13th
USENIX Security Symposium, August 2004.

[7] R. DePaula, X. Ding, P. Dourish, K. Nies, B. Pillet,
D. Redmiles, J. Ren, J. Rode, and R. Silva Filho. Two
experiences designing for effective security. InFirst Sym-
posium on Usable Privacy and Security (SOUPS 2005),
Pittsburgh, July 2005.

[8] R. Dhamija and A. Perrig. Déjà Vu: A User Study Us-
ing Images for Authentication. InProceedings of the 9th
USENIX Security Symposium, 2000.

[9] L. Faulkner. Beyond the five-user assumption: Benefits of
increased sample sizes in usability testing.Behavior Re-
search Methods, Instruments, & Computers, 35(3):379–
383, 2003.

[10] S.L. Garfinkel and R.C. Miller. Johnny 2: A User Test
of Key Continuity Management with S/MIME and Out-
look Express. InFirst Symposium on Usable Privacy and
Security (SOUPS 2005), Pittsburgh, July 2005.

[11] J. Halderman, B. Waters, and E. Felten. A convenient
method for securely managing passwords. InProceed-
ings of the 14th International World Wide Web Confer-
ence, 2005.

[12] J. Alex Halderman. Password Multiplier web site,
www.cs.princeton.edu/˜ jhalderm/projects/password/, ac-
cessed January 2006.

[13] A. Karp. Site-specific passwords. Technical report,
Hewlett-Packard Laboratories, January 2002.

[14] J. LaPoutre. Password Composer web site,
http://www.xs4all.nl/̃ jlpoutre/BoT/Javascript/, accessed
January 2006.

[15] Password Maker web site, http://passwordmaker.org/,ac-
cessed January 2006.

[16] R. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 140, June 1932.

[17] B. Myers. Why are human-computer interfaces diffi-
cult to design and implement? Technical Report CMU-
CS-93-183, Carnegie Mellon University, Department of
Computer Science, 1993.

[18] J. Nielsen. Usability Engineering. Boston: AP Profes-
sional, 1993.

[19] J. Nielsen and R.L. Mack.Usability Inspection Methods.
John Wiley & Sons, Inc, 1994.

[20] D.A. Norman. Cognitive engineering. In D.A. Norman
and S.W. Draper, editors,User Centered System Design:
New Perspectives on Human-Computer Interaction, chap-
ter 3, pages 31–62. Lawrence Erlbaum Associates, Pub-
lishers: Hillsdale, NJ, 1986.

[21] D.A. Norman. The Design of Everyday Things. Basic
Books, 1988.

[22] C. Perfetti and L. Landesman. Eight is not enough.User
Interface Engineering, 2001.

[23] K. Renaud. Evaluating Authentication Mechanisms. In
L.F Cranor and S. Garfinkel, editors,Security and Us-
ability, chapter 6, pages 103–128. O’Reilly Media, 2005.

[24] B. Ross, C. Jackson, N. Miyake, D. Boneh, and
J. Mitchell. Stronger password authentication using
browser extensions. InProceedings of the 14th USENIX
Security Symposium, Baltimore, August 2005.

[25] J.H. Saltzer and M.D. Schroeder. The protection of infor-
mation in computer systems.Proceedings of the IEEE,
63(9):1278–1308, 1975.

[26] M.A Sasse and I. Flechais. Usable Security: Why do
we need it? How do we get it? In L.F. Cranor and
S. Garfinkel, editors,Security and Usability, chapter 2,
pages 13–30. O’Reilly Media, 2005.

[27] B. Shneiderman.Designing the User Interface. Addison
Wesley, 3rd edition, 1998.

[28] J. Spool and W. Schroeder. Testing web sites: Five users
is nowhere near enough. InProceedings of ACM Con-
ference on Human Factors in Computing Systems (CHI
2001), 2001.

[29] R.A. Virzi. Refining the test phase of usability evaluation:
How many subjects is enough?Human Factors, 34:457–
468, 1992.

[30] D. Weinshall. Cognitive Authentication Schemes Safe
Against Spyware (Short Paper). InProceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA,
May 2006.

[31] A. Whitten and J.D. Tygar. Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0. InProceedings of
the 8th USENIX Security Symposium, Washington, D.C.,
August 1999.

[32] S. Wiedenbeck, J. Waters, J.-C. Birget, A. Broditskiy,and
N. Memon. Authentication Using Graphical Passwords:
Effects of Tolerance and Image Choice. InFirst Sym-
posium on Usable Privacy and Security (SOUPS 2005),
Pittsburgh, July 2005.

[33] N. Wolff. Password Generator web site,
http://angel.net/˜ nic/, accessed January 2006.

[34] M.E. Zurko and Richard T. Simon. User-centered secu-
rity. In Proceedings of the 1996 New Security Paradigms
Workshop, pages 27–33, Lake Arrowhead, CA USA,
1996. ACM.


