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Abstract
Although motivated by both usability and security con-
cerns, the existing literature on click-based graphical
password schemes using a single background image
(e.g., PassPoints) has focused largely on usability. We
examine the security of such schemes, including the im-
pact of different background images, and strategies for
guessing user passwords. We report on both short- and
long-term user studies: one lab-controlled, involving 43
users and 17 diverse images, and the other a field test of
223 user accounts. We provide empirical evidence that
popular points (hot-spots) do exist for many images, and
explore two different types of attack to exploit this hot-
spotting: (1) a “human-seeded” attack based on harvest-
ing click-points from a small set of users, and (2) an en-
tirely automated attack based on image processing tech-
niques. Our most effective attacks are generated by har-
vesting password data from a small set of users to attack
other targets. These attacks can guess 36% of user pass-
words within231 guesses (or 12% within216 guesses)
in one instance, and 20% within233 guesses (or 10%
within 218 guesses) in a second instance. We perform
an image-processing attack by implementing and adapt-
ing a bottom-up model of visual attention, resulting in a
purely automated tool that can guess up to 30% of user
passwords in235 guesses for some instances, but under
3% on others. Our results suggest that these graphical
password schemes appear to be at least as susceptible to
offline attack as the traditional text passwords they were
proposed to replace.

1 Introduction

The bane of password authentication using text-based
passwords is that users choose passwords which are easy
to remember, which generally translates into passwords
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that are easily guessed. Thus even when the size of
a password space may be theoretically “large enough”
(in terms of number of possible passwords), theeffec-
tive password space from which many users actually
choose passwords is far smaller. Predictable patterns,
largely due to usability and memory issues, thus allow
successful search by variations of exhaustive guessing
attacks. Forcing users to use “random” or other non-
meaningful passwords results in usability problems. As
an alternative, graphical password schemes require that
a user remembers an image (or parts thereof) in place of
a word. They have been largely motivated by the well-
documented human ability to remember pictures better
than words [25], and implied promises that the password
spaces of various image-based schemes are not only suf-
ficiently large to resist guessing attacks, but that the ef-
fective password spaces are also sufficiently large. The
latter, however, is not well established.

Among the graphical password schemes proposed to
date, one that has received considerable attention in the
research literature is PassPoints [45, 46, 47]. It and other
click-based graphical password schemes [18, 4, 31, 37]
require a user to log in by clicking a sequence of points
on a single background image. Usability studies have
been performed to determine the optimal amount of er-
ror tolerance [46], login and creation times, error rates,
and general perception [45, 47]. An important remain-
ing question for such schemes is: howsecureare they?
This issue remains largely unaddressed, despite specu-
lation that the security of these schemes likely suffers
from hot-spots – areas of an image that are more prob-
able than others for users to click. Indeed, the impact
of hot-spots has been downplayed (e.g., see [45, Section
7]). In this paper, we focus on a security analysis of an
implementation with the same parameters as used in a re-
cent PassPoints publication [47]. A usability analysis of
this implementation is presented in a separate paper [6].

We confirm the existence of hot-spots through empiri-
cal studies, and show that some images are more suscep-



tible to hot-spotting than others. We also explore the se-
curity impact of hot-spots, including a number of strate-
gies for exploiting them under an offline model similar
to that used by Ballard et al. [1]. Our work involves two
user studies. The first (lab) study used 17 diverse im-
ages (four used in previous studies [46], and 13 of our
own chosen to represent a range of detail). We collected
graphical passwords for 32-40 users per image in a lab
setting, and found hot-spots on all images even from this
relatively small sample size; some images had signifi-
cantly more hot-spots than others. In the second (field)
study involving 223 user accounts over a minimum of
seven weeks, we explore two of these images in greater
depth. We analyzed our lab study data using formal mea-
sures of security to make an informed decision of which
two images to use in the field study. Our goal was to give
PassPoints the best chance we could (in terms of antici-
pated security), by using one highly ranked image, and
another mid-ranked image also used in previous Pass-
Points studies.

We implement and evaluate two types of attack:
human-seeded and purely automated. Our human-seeded
attack is based on harvesting password data from a small
number of users to attack passwords from a larger set
of users. We seed various dictionaries with the pass-
words collected in our lab study, and apply them to guess
the passwords from our long-term field study. Our re-
sults demonstrate that this style of attack is quite effec-
tive against this type of graphical password: it correctly
guessed 36% of user passwords within231 guesses (or
12% within216 guesses) on one image, and 20% within
233 guesses (or 10% within218 guesses) on a second im-
age. We implement and adapt a combination of image
processing methods in an attempt to predict user choice,
and employ them as tools to expedite guessing attacks on
the user study passwords. The attack works quite well on
some images, cracking up to 30% of passwords, but less
than 3% on others within235 guesses. These results give
an early signal that image processing can be a relevant
threat, particularly as better methods emerge.

Our contributions include the first in-depth study of
hot-spots in click-based (or cued-recall) graphical pass-
words schemes and their impact on security through two
separate user studies: one lab-controlled and the other
a field test. We propose the modification and use of
image processing methods to expedite guessing attacks,
and evaluate our implementation against the images used
in our studies. Our implementation is based on Itti et
al.’s [17] model of bottom-up visual attention and cor-
ner detection, which allowed successful guessing attacks
on some images, even with relatively naive dictionary
strategies. Our most interesting contribution is apply-
ing a human-seeded attack strategy, by harvesting pass-
word data in a lab setting from small sets of users, to at-

tack other field study passwords. Our human-seeded at-
tack strategy for cued-recall graphical passwords is sim-
ilar to Davis et al.’s attack [8] against recognition-based
graphical passwords; notable differences include a more
straightforward dictionary generation method, and that
our seed data is from a separate population and (short-
term) setting.

The remainder of this paper is organized as follows.
Section 2 provides background and terminology. Section
3 presents our lab-controlled user study, and an analysis
of observed hot-spots and the distribution of user click-
points. Section 4 presents results on the larger (field)
user study, and of our password harvesting attacks. Sec-
tion 5 explores our use of image processing methods to
expedite guessing attacks on the 17 images from the first
user study and the two from the second user study. Re-
lated work is briefly discussed in Section 6. Section 7
provides further discussion and concluding remarks.

2 Background and Terminology

Click-based graphical passwords require users to log in
by clicking a sequence of points on a single background
image. Many variations are possible (see Section 6), de-
pending on what points a user is allowed to select. We
study click-based graphical passwords by allowing clicks
anywhere on the image (i.e., PassPoints-style). We be-
lieve that most findings related to hot-spots in this style
will apply to other variations using the same images, as
the “interesting” clickable areas are still present.

We use the following terminology. Assume a user
chooses a given click-pointc as part of their password.
The tolerable error or tolerancet is the error allowed
for a click-point entered on a subsequent login to be ac-
cepted asc. This defines atolerance region (T-region)
centered onc, which for our implementation usingt = 9
pixels, is a19 × 19 pixel square. Acluster is a set of
one or more click-points that lie within a T-region. The
number of click-points belonging to a cluster is itssize.
A hot-spotis indicated by a cluster that is large, relative
to the number of users in a given sample. To aid visu-
alization and indicate relative sizes for clusters of size at
least two, on figures we sometimes represent the underly-
ing cluster by a shaded circle orhalo with halo diameter
proportional to its size. Analphabetis a set of distinct
T-regions; our implementation, using451×331 pixel im-
ages, results in an alphabet ofm = 414 T-regions. Using
passwords composed of 5-clicks, on an alphabet of size
414 provides the system with only a43-bit full theoret-
ical password space; we discuss the implications of this
in Section 7.
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3 Lab Study and Clustering Analysis

Here we report on the results of a university-approved
43-user study of click-based graphical passwords in a
controlled lab environment. Each user session was con-
ducted individually and lasted about one hour. Partici-
pants were all university students who were not studying
(or experts in) computer security. Each user was asked
to create a click-based graphical password on 17 differ-
ent images (some of these are reproduced herein; others
are available from the authors). Four of the images are
from a previous click-based graphical password study by
Wiedenbeck et al. [46]; the other 13 were selected to pro-
vide a range of values based on two image processing
measures that we expected to reflect the amount of detail:
the number of segments found from image segmentation
[11] and the number of corners found from corner de-
tection [16]. Seven of the 13 images were chosen to be
those we “intuitively” believed would encourage fewer
hot-spots; this is in addition to the four chosen in ear-
lier research [46] using intuition (no further details were
provided on their image selection methodology).

EXPERIMENTAL DETAILS. We implemented a web-
based experiment. Each user was provided a brief ex-
planation of what click-based graphical passwords are,
and given two images to practice creating and confirm-
ing such passwords. To keep the parameters as consis-
tent as possible with previous usability experiments of
such passwords [47], we usedd = 5 click-points for
each password, an image size of451 × 331 pixels, and a
19×19 pixel square of error tolerance. Wiedenbeck et al.
[47] used a tolerance of20×20, allowing 10 pixels of tol-
erated error on one side and 9 on the other. To keep the
error tolerance consistent on all sides, we approximate
this error tolerance using19× 19. Users were instructed
to choose a password by clicking on 5 points, with no
two the same. Although the software did not enforce this
condition, subsequent analysis showed that the effect on
the resulting cluster sizes was negligible for all images
exceptpcb; for more details, see caption of Figure 1.We
did not assume a specific encoding scheme (e.g., robust
discretization [3] or other grid-based methods); the con-
cept of hot-spots and user choice of click-points is gen-
eral enough to apply across all encoding schemes. To
allow for detailed analysis, we store and compare the ac-
tual click-points.

Once the user had a chance to practice a few pass-
words, the main part of the experiment began. For each
image, the user was asked to create a click-based graph-
ical password that they could remember but that others
will not be able to guess, and to pretend that it is pro-
tecting their bank information. After initial creation, the
user was asked to confirm their password to ensure they
could repeat their click-points. On successful confirma-

tion, the user was given 3D mental rotation tasks [33]
as a distractor for at least 30 seconds. This distractor
was presented to remove the password from their visual
working memory, and thus simulate the effect of the pas-
sage of time. After this period of memory tasks, the user
was provided the image again and asked to log in using
their previously selected password. If the user could not
confirm after two failed attempts or log in after one failed
attempt, they were permitted to reset their password for
that image and try again. If the user did not like the im-
age and felt they could not create and remember a pass-
word on it, they were permitted to skip the image. Only
two images had a significant number of skips:paperclips
andbee. This suggests some passwords for these images
were not repeatable, and we suspect our results for these
images would show lower relative security in practice.

To avoid any dependence on the order of images pre-
sented, each user was presented a random (but unique)
shuffled ordering of the 17 images used. Since most
users did not make it through all 17 images, the number
of graphical passwords created per image ranged from
32 to 40, for the 43 users. Two users had a “jumpy”
mouse, but we do not expect this to affect our present
focus – the location of selected click-points. This short-
term study was intended to collect data on initial user
choice; although the mental rotation tasks work to re-
move the password from working memory, it does not
account for any effect caused by password resets over
time due to forgotten passwords. The long-term study
(Section 4) does account for this effect, and we compare
the results.

3.1 Results on Hot-Spots and Popular
Clusters Observed

To explore the occurrence of hot-spotting in our lab user
study, we assigned all the user click-points observed in
the study to clusters as follows. LetR be the raw (unpro-
cessed) set of click-points,M a list of temporary clusters,
andV the final resulting set of clusters.

1. For eachck ∈ R, letBk be a temporary cluster con-
taining click-pointck. Temporarily assign all user
click-points inR within ck ’s T-region toBk. Add
Bk to M .

2. Sort all clusters inM by size, in decreasing order.

3. Greedily make permanent assignments of click-
points to clusters as follows. LetBℓ be the largest
cluster inM . Permanently assign each click-point
ck ∈ Bℓ to Bℓ, then delete eachck ∈ Bℓ from all
other clusters inM . DeleteBℓ from M , and addBℓ

to V . Repeat untilM is empty.

This process determines a setV of (non-empty) clus-
ters and their sizes. We then calculate the observed

3



 0
 10
 20
 30
 40
 50
 60
 70

paperclips

cdcovers

philadelphia

faces
toys

citym
ap-nl

bee
sm

arties

icons
cars

pcb
citym

ap-gr

pool
corinthian

m
ural

truck
tea

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

S
iz

e 
of

 5
 M

os
t P

op
ul

ar
 C

lu
st

er
s

# 
C

lu
st

er
s 

of
 S

iz
e 

>
=

 5

#1
#2
#3
#4
#5

# Clusters of Size >= 5

Figure 1: The five most popular clusters (in terms of size,
i.e., # of times selected), and # of popular clusters (size ≥ 5).
Results are from 32-40 users, depending on the image, for the
final passwords created on each image. Forpcb, which shows
only 6 clusters of size≥ 5, the size of clusters 2-5 become 5,
5, 4, and 3 when counting at most one click from each user.

“probability” pj (based on our user data set) of the clus-
ter j being clicked, as cluster size divided by total clicks
observed. When the probabilitypj of a certain cluster
is sufficiently high, we can place a confidence interval
around it for future populations (of users who are similar
in background to those in our study) using (1) as dis-
cussed below.

Each probabilitypj estimates the probability of a
cluster being clicked for asingle click. For 5-click
passwords, we approximate the probability that a user
chooses clusterj in a password byPj = 5×pj . Note that
the probability for a clusterj increases slightly as other
clicks occur (due to the constraint of 5 distinct clusters
in a password); we ignore this in our present estimate of
Pj .

Our results in Figure 1 indicate a significant number of
hot-spots for our sample of the full population (32 − 40
users per image). Previous “conservative” assumptions
[47] were that half of the available alphabet of T-regions
would be used in practice – or207 in our case. If this
were the case, and all T-regions in the alphabet were
equi-probable, we would expect to see some clusters of
size 2, but none of size 3 after 40 participants; we ob-
served significantly more on all 17 images. Figure 1
shows that some images were clearly worse than others.
There were many clusters of size at least 5, and some
as large as 16 (seetea image). If a cluster in our lab
study received 5 or more clicks – in which case we call it
a popularor high-probabilitycluster – then statistically,

this allows determination of a confidence interval, using
Equation (1) which provides the100(1−α)% confidence
interval for a population proportion [9, page 288].

p ± zα/2

√

pq

n
(1)

Heren is the total number of clicks (i.e., five times the
number of users),p takes the role ofpj , q = 1 − p,
andzα/2 is from a z-table. A confidence interval can be
placed aroundpj (and thusPj) using (1) whennp ≥ 5
andnq ≥ 5. For clusters of sizek ≥ 5, p = k

n , then
np = k andnq = n − k. In our case,n ≥ 32 · 5 and
n − k ≥ 5, as statistically required to use (1).

Table 1 shows these confidence intervals for four im-
ages, predicting that in future similar populations many
of these points would be clicked by between 10-50% of
users, and some points would be clicked by 20-60% of
users with 95% confidence (α = .05). For example,
in Table 1(a), the first row shows the highest frequency
cluster (of size 13); as our sample for this image was only
35 users, we observed 37.1% of our participants choos-
ing this cluster. Using (1), between 17.7% and 56.6% of
users from future populations are expected to choose this
same cluster (with 95% confidence).

Figure 1 and Table 1 show the popularity of the hottest
clusters; Figure 1’s line also shows the number of pop-
ular clusters. The clustering effect evident in Figures 1,
2, and Table 1 clearly establishes that hot-spots are very
prominent on a wide range of images. We further pursue
how these hot-spots impact the practical security of full
5-click passwords in Section 4.2. As a partial summary,
our results suggest that many images have significantly
more hot-spots than would be expected if all T-regions
were equi-probable. Thepaperclips, cars, faces, andtea
images are not as susceptible to hot-spotting as others
(e.g.,mural, truck, andphiladelphia). For example, the
carsimage had only 4 clusters of size at least5, and only
one with frequency at least10. Themural image had 15
clusters of size at least5, and 3 of the top 5 frequency
clusters had frequency at least10. Given our sample size
for themural image was only 36 users, these clusters are
quite popular. This demonstrates the range of effect the
background image can have (for the images studied).

Although previous work [46] suggests using intuition
for choosing more secure background images (no further
detail was provided), our results apparently show that in-
tuition is not a good indicator. Of the four images used
in other click-based graphical passwords studies, three
showed a large degree of clustering (pool, mural, and
philadelphia). Furthermore, two other images that we
“intuitively” believed would be more secure background
images were among the worst (truck and citymap-nl).
Thetruck image had 10 clusters of size at least5, and the
top 5 clusters had frequency at least13. Finding reliable
automated predictors of more secure background images
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(a)pool (originally from [46, 47]; see Appendix A). (b)mural (originally from [46]; see Appendix A).

(c) philadelphia(originally from [46]; see Figure 5). (d)truck (originally from [12]).

Figure 2:Observed click-points. Halo diameters are 10 times the size of the underlying cluster, illustrating its popularity.

(a)pool image (b) mural image
Cluster Cluster

size Pj 95% CI (Pj) size Pj 95% CI (Pj)

13 0.371 (0.177; 0.566) 14 0.400 (0.199; 0.601)
12 0.343 (0.156; 0.530) 13 0.371 (0.177; 0.566)
12 0.343 (0.156; 0.530) 10 0.286 (0.114; 0.458)
11 0.314 (0.134; 0.494) 8 0.229 (0.074; 0.383)
11 0.314 (0.134; 0.494) 7 0.200 (0.055; 0.345)

(c) philadelphiaimage (d) truck image
Cluster Cluster

size Pj 95% CI (Pj) size Pj 95% CI (Pj)

10 0.286 (0.114; 0.458) 15 0.429 (0.221; 0.636)
10 0.286 (0.114; 0.458) 14 0.400 (0.199; 0.601)
9 0.257 (0.094; 0.421) 13 0.371 (0.177; 0.566)
9 0.257 (0.094; 0.421) 13 0.371 (0.177; 0.566)
7 0.200 (0.055; 0.345) 13 0.371 (0.177; 0.566)

Table 1: 95% confidence intervals for the top 5 clusters found in each of four images. The confidence intervals are for the
percentage of users expected to choose this cluster in future populations.
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remains an open problem. Our preliminary work with
simple measures (image segmentation, corner detection,
and image contrast measurement) does not appear to of-
fer reliable indicators. Thus, we next explore the impact
of hot-spotting across images to help choose two images
for further analysis.

3.2 Measurement and Comparison of Hot-
Spotting for Different Images

To compare the relative impact of hot-spotting on each
image studied, we calculated two formal measures of
password security for each image: entropyH(X), in
equation (2), and in equation (3), the expected number
of guessesE(f(X)) to correctly guess a password as-
suming the attacker knows the probabilitieswi > 0 for
each passwordi. The relationship betweenH(X) and
E(f(X)) for password guessing is discussed by Massey
[26]. Of course in general, thewi are unknown, and our
study gives only very coarse estimates; nonetheless, we
find it helpful to use this to develop an estimate of which
images will have the least impact from hot-spotting. For
(2) and (3),n is the number of passwords (of probability
> 0), random variableX ranges over the passwords, and
wi = Prob(X = xi) is calculated as described below.

H(X) = −

n
∑

i=1

wi · log(wi) (2)

E(f(X)) =

n
∑

i=1

i · wi , wherewi ≥ wi+1, and (3)

f(X) is the number of guesses before success. We calcu-
late these measures based on our observed user data. For
this purpose, we assume that users will choose from a set
of click-points (following the associated probabilities),
and combine5 of them randomly. This assumption al-
most certainly over-estimates bothE(f(X)) andH(X)
relative to actual practice, as it does not consider click-
order patterns or dependencies. Thus, popular clusters
likely reduce security by more than we estimate here.

We defineCV to be the set of all 5-permutations
derivable from the clusters observed in our user study
(as computed in Section 3.1). Using the probabilities
pj of each cluster, the probabilitieswi of each pass-
word in CV are computed as follows. Pick a combi-
nation of 5 observed clustersj1, . . . , j5 with respec-
tive probabilitiespj1, . . . , pj5. For each permutation of
these clusters, calculate the probability of that permuta-
tion occurring as a password. Due to our instructions
that no two click-points in a password can fall in the
same T-region, these probabilities change as each point
is clicked. Thus, for passwordi = (j1, j2, j3, j4, j5),
wi = pj1·[pj2/(1−pj1)]·[pj3/((1−pj1)·(1−pj2))]·. . .).

The resulting setCV is a set of click-based graphical
passwords (with associated probabilities) that coarsely

approximates the effective password space if the clusters
observed in our user study are representative of those in
larger similar populations. We can order the elements of
CV using the probabilitieswi based on our user study.
An orderedCV could be used as the basis of an attack
dictionary; this ordering could be much improved, for
example, by exploiting expected patterns in click-order.
See Section 4.2 for more details.

For comparison to previous “conservative” estimates
that simply half of the available click-points (our T-
regions) would be used in practice [47], we calculateCU .
We compare toCU as it is a baseline that approximates
what we would expect to see after running 32 users (the
lowest number of users we have for any image), if pre-
vious estimates were accurate, and T-regions were equi-
probable. CU is the set of all permutations of clusters
we expect to find after observing 32 users, assuming a
uniformly random alphabet of size207.

Fig. 3 depicts the entropy and expected number of
guesses forCV . Notice the range between images, and
the drop inE(f(X)) from CU to values ofCV . Com-
parison to the markedCU values for (1)H(X) and (2)
E(f(X)) indicates that previous rough estimates are a
security overestimate for practical security in all images,
some much more so than others. This is at least partially
due to click-points not being equi-probable in practice
(as illustrated by hot-spots), and apparently also due to
the previously suggested effective alphabet size (half of
the full alphabet) being an overestimate. Indeed, a large
alphabet is precisely the theoretical security advantage
that these graphical passwords have over text passwords.
If the effective alphabet size is not as large as previously
expected, or is not well-distributed, then we should re-
duce our expectations of the security.

These results appear to provide fair approximation
of the entropy and expected number of guesses for the
larger set of users in the field study; we performed
these same calculations again using the field study data.
For both of the two images, the entropy measures were
within one bit of values measured here (less than a bit
higher forpool, and about one bit lower forcars). The
number of expected guesses increased for both images
(by 1.3 bits forcars, and2.5 bits forpool).

The variation across all images shows how much of an
impact the background image can be, even when using
images that are “intuitively” good. For example, the im-
age that showed the most impact from hot-spotting was
themural image, chosen for an earlier PassPoints usabil-
ity study [46]. We note that thepaperclipsimage scores
best in the charted security measures (itsH(X) mea-
sure is within a standard deviation ofCU ); however, 8
of 36 users who created a password on this image could
not perform the subsequent login (and skipped it – as
noted earlier), so the data for this image represents some
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passwords that are not repeatable, and thus we suspect it
would have lower relative security in practice.

Overall, one can conclude that image choice can have
a significant impact on the resulting security, and that de-
veloping reliable methods to filter out images that are the
most susceptible to hot-spotting would be an interesting
avenue for future research.

We used these formal measures to make an informed
decision on which images to use for our field study. Our
goal was to give the PassPoints scheme the best chance
(in terms of anticipated security) we could, by using one
image (cars) that showed the least amount of clustering
(with the best user success in creating a password), and
also using another that ranked in the middle (pool).

4 Field Study and Harvesting Attacks

Here we describe a 7-week or longer (depending on the
user), university-approved field study of 223 user ac-
counts on two different background images. We col-
lected click-based graphical password data to evaluate
the security of this style of graphical passwords against
various attacks. As discussed, we use the entropy and
expected guesses measures from our lab study to choose
two images that would apparently offer different levels
of security (although both are highly detailed):pool and
cars. Thepool image had a medium amount of cluster-
ing (cf. Fig. 3), while thecars image had nearly the least
amount of clustering. Both images had a low number of
skips in the lab study, indicating that they did not cause
problems for users with password creation.

EXPERIMENTAL DETAILS. We implemented a web-
based version of PassPoints, used by three first-year un-
dergraduate classes: two were first year courses for com-

puter science students, while the third was a first year
course for non-computer science students enrolled in a
science degree. The students used the system for at least
7 weeks to gain access to their course notes, tutorials,
and assignment solutions. For comparison with previ-
ous usability studies on the subject, and our lab study,
we used an image size of451 × 331 pixels. After the
user entered their username and course, the screen dis-
played their background image and a small black square
above the image to indicate their tolerance square size.
For about half of users (for each image), a19 × 19 T-
region was used, and for the other half, a13 × 13 T-
region.2 The system enforced that each password had to
be 5 clicks and that no click-point could be withint = 9
pixels of another (vertically and horizontally). To com-
plete initial password creation, a user had to successfully
confirm their password once. After initial creation, users
were permitted to reset their password at any time using
a previously set secret question and answer.

Users were permitted to login from any machine
(home, school, or other), and were provided an online
FAQ and help. The users were asked that they keep
in mind that their click-points are a password, and that
while they will need to pick points they can remember,
not to pick points that someone else will be able to guess.
Each class was also provided a brief overview of the
system, explaining that their click-points in subsequent
logins must be within the tolerance shown by a small
square above the background image, and that the input
order matters. We only use the final passwords created
by each user that were demonstrated as successfully re-
called at least one subsequent time (i.e., at least once af-
ter the initial create and confirm). We also only use data
from 223 out of 378 accounts that we would consider, as
this was the number that provided the required consent.
These 223 user accounts map to 189 distinct users as 34
users in our study belonged to two classes; all but one
of these users were assigned a different image for each
account, and both accounts for a given user were set to
have the same error tolerance. Of the 223 user accounts,
114 usedpooland 109 usedcarsas a background image.

4.1 Field Study Hot Spots and Relation to
Lab Study Results

Here we present the clustering results from the field
study, and compare results to those on the same two im-
ages from the lab study. Fig. 4b shows that the areas
that were emerging as hot-spots from the lab study (re-
call Fig. 2a) were also popular in the field study, but other
clusters also began to emerge. Fig. 4b shows that even
our “best” image from the lab study (in terms of apparent
resistance to clustering) also exhibits a clustering effect
after gathering109 passwords. Table 2 provides a closer
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examination of the clustering effect observed.

Image Size of most popular clusters# clusters
Name # 1 # 2 # 3 # 4 # 5 of size

≥ 5

cars 26 25 24 22 22 32
pool 35 30 30 27 27 28

Table 2:Most popular clusters (field study).

These values show that onpool, there were 5 points
that 24-31% of users chose as part of their password. On
cars, there were 5 points that 20-24% of users chose as
part of their password. The clustering on thecars im-
age indicates that even highly detailed images with many
possible choices have hot spots. Indeed, we were sur-
prised to see a set of points that were this popular, given
the small amount of observed clustering on this image
from our smaller lab study.

The prediction intervals calculated from our lab study
(recall Section 3) provide reasonable predictions of what
we observed in the field study. Forcars, the prediction
intervals for3 out of the4 popular clusters were correct.
Forpool, the prediction intervals for8 out of the9 popu-
lar clusters were correct. The anomalous cluster oncars
was still quite popular (chosen by 12% of users), but the
lower end of the lab study’s prediction interval for this
cluster was 20%. The anomalous cluster onpool was
also still quite popular (chosen by 18% of users), but the
lower end of the lab study’s prediction interval for this
cluster was 19%.

These clustering results (and their close relationship
to the lab study’s results) indicate that the points chosen
from the lab study should provide a reasonably close ap-
proximation of those chosen in the field. This motivates
our attacks based on the click-points harvested from the
lab study.

4.2 Harvesting Attacks: Method & Results

We hypothesized that due to the clustering effect we ob-
served in the lab study, human-seeded attacks based on
data harvested from other users might prove a successful
attack strategy against click-based graphical passwords.
Here we describe our method of creating these attacks,
and our results are presented below.

Table 3 provides the results of applying various at-
tack dictionaries based on our harvested data, and their
success rates when applied to our field study’s password
database.3

CR
u is a dictionary composed of all 5-permutations

of click-points collected fromu users. NoteCR
u bit-

size is a slight overestimate, as there are some combi-
nations of points that would not constitute a valid pass-
word, due to two or more points being withint = 9 pix-
els of each other. If this were taken into account, our

attacks would be slightly better. In our lab study,u = 33
for cars, andu = 35 for pool. Thus, the size ofCR

u

for cars is P (165, 5) = 236.7 entries, and forpool is
P (175, 5) = 237.1 entries.CV

u is a dictionary composed
of all 5-permutations of theclusterscalculated (using the
method described in Section 3.1) from the click-points
from u users. Thus, the alphabet size (and overall size)
for CV

u is smaller under the same number of users than in
a correspondingCR

u dictionary. Note that all of these dic-
tionary sets can be computed on-the-fly from base data as
necessary, and thus need not be stored.

Table 3 illustrates the efficacy of seeding a dictionary
with a small number of user’s click-points. The most
striking result shown is that initial password choices har-
vested from 15 users, in a setting where long term re-
call is not required, can be used to generate (on average)
27% of user passwords forpool (seeCR

15). As we ex-
pected,carswas not as easily attacked aspool; more user
passwords are required to seed a dictionary that achieves
similar success rates (seeCR

25).
We also tried these attacks using a small set of field

study user passwords to seed an attack against the re-
maining field study user passwords. The result, in Ta-
ble 4, shows a difference between the lab study and the
field study (final) passwords; however, there remains suf-
ficient similarity between the two groups to launch ef-
fective attacks using the lab-harvested data. One pos-
sible reason for the differences in user choice between
the two studies is that the field study users may not have
been as motivated as the lab study users to create “dif-
ficult to guess” graphical passwords. It is unclear how
a user might measure whether they are creating a graph-
ical password that is difficult to guess, and whether in
trying, if users would actually change their password’s
strength; one study [36] shows that only 40% of users
actually change the complexity of their text passwords
according to the security of the site. Another equally
possible explanation might be that the lab study users
chose more difficult passwords than they would have in
practice, as they were aware there was no requirement
for long term recall, and also did not have a chance to
forget and subsequently reset their passwords to some-
thing more memorable. With our current data, it is not
clear whether we can conclusively determine a reason
for these differences.

Next we examined the effect of click-order patterns
as one method to capture a user’s association between
points, and reduce our dictionary sizes. For each image,
we select one dictionary to optimize with click-order pat-
terns. This dictionary is one of the ten randomly selected
CV subsets that were averaged (results of this average
are in Table 3). We selected the dictionary whose guess-
ing success was closest to the average reported in Table
3. The success rate that these dictionaries achieve (be-
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(a)cars(originally from [5]). (b)pool (originally from [46, 47]).
Figure 4:Observed clustering (field study). Halo diameter is5× the number of underlying clicks.

Set cars(u = 33) pool (u = 35)
m bitsize # passwords m bitsize # passwords

guessed out of 109 guessed out of 114
avg min max avg min max

CR
u 165 36.7 37(34%) † † 175 37.1 59(52%) † †

CV
u 104 33.4 22(20%) † † 77 31.1 41(36%) † †

CR
25 125 34.7 24(22%) 9(8%) 35(32%) 125 34.7 42(37%) 29(25%) 56(49%)

CV
25 85 31.9 21(19%) 7(6%) 27(25%) 59 29.2 34(29%) 19(17%) 47(41%)

CR
20 100 33.1 22(20%) 8(7%) 32(29%) 100 33.1 35(31%) 24(21%) 55(48%)

CV
20 72 30.6 17(16%) 8(7%) 30(28%) 52 28.2 28(25%) 18(16%) 43(38%)

CR
15 75 30.9 14(13%) 4(4%) 25(23%) 75 30.9 30(27%) 20(18%) 45(39%)

CV
15 56 28.8 12(11%) 4(4%) 24(22%) 41 26.4 26(23%) 14(12%) 43(38%)

Table 3:Dictionary attacks using different sets. All subsets of users (after the first two rows) are the result of 10 randomly selected
subsets ofu short-term study user passwords. For rows 1 and 2, note thatu = 33 and35. m is the alphabet size, which defines
the dictionary bitsize. See text for descriptions ofCV andCR. †The first two rows use all data from the short-term study to seed a
single dictionary, and as such, there are no average, max, or min values to report.

fore applying click-order patterns) is provided in the first
row of Table 5.

We hypothesized that many users will choose pass-
words in one (or a combination) of six simple click-
order patterns: right to left (RL), left to right (LR), top to
bottom (TB), bottom to top (BT), clockwise (CW), and
counter-clockwise (CCW). Diagonal (DIAG) is a com-
bination of a consistent vertical and horizontal direction
(e.g., both LR and TB). Note that straight lines also fall
into this category; for example, when (xi, yi) is a hor-
izontal and vertical pixel coordinate, the rule for LR is
(x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5), so a vertical line of
points would satisfy this constraint.We apply our base
attack dictionaries (one for each image), under various
sets of these click-order pattern constraints to determine
their success rates and dictionary sizes. This method
only initiates the exploration of other ways that click-

based graphical passwords could be analyzed for patterns
in user choice. We expect this general direction will yield
other results, including patterns due to mnemonic strate-
gies (e.g., clicking all red objects).

The results shown in Table 5 indicate that, on aver-
age for thepool image, using only the diagonal con-
straint will reduce the dictionary size to 16 bits, while
still cracking 12% of passwords. Similarly, for thecars
image, using only this constraint will reduce the dictio-
nary to 18 bits, while still cracking 10% of passwords.
The success rate of our human-seeded attack is compa-
rable to recent results on cracking text-based passwords
[23], where 6% of passwords were cracked with a 1.2
million entry dictionary (almost 2 bits larger than our
DIAG dictionary based on harvested points of 15 users
for cars, and 4 bits larger for DIAG based on 15 users
for pool). Furthermore, unlike most text dictionaries, we
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Dictionary cars pool
m bitsize # passwords m bitsize # passwords

guessed guessed

CR
20,longterm 100 33.1 29/89 (33%) 100 33.1 52/94 (55%)

CR
10,longterm 50 27.9 23/99 (23%) 50 27.9 22/104 (21%)

Table 4:Dictionary attack results, using the first 20 and 10 users from the long termstudy to seed an attack against the others.m

is the alphabet size. See text for descriptions ofCV andCR.

cars image pool image
Click-order pattern # passwords dictionary # passwords dictionary

guessed of 109 size (bits) guessed of 114 size (bits)

CV
15 (with no pattern) 13 (12%) 29.2 22 (19%) 27.1

LR, RL, CW, CCW, TB, BT 12 (11%) 25.6 22 (19%) 23.4
LR, RL 11 (10%) 23.8 19 (17%) 22.0
TB,BT 12 (11%) 24.4 15 (13%) 21.9
CW, CCW 0 (0%) 24.0 4 (4%) 21.7
DIAG 11 (10%) 18.4 14 (12%) 16.2

Table 5: Effect of incorporating click-order patterns on dictionary size and success, as applied to a representative dictionary
of clusters gathered from15 users. Results indicate that the DIAG pattern produces the smallest dictionary, and still guesses a
relatively large number of passwords.

do not need to store the entire dictionary as it is generated
on-the-fly from the alphabet. At best, this indicates that
these graphical passwords are slightly less secure than
the text-based passwords they have been proposed to re-
place. However, the reality is likely worse. The anal-
ogy to our attack is collecting text passwords from 15
users, and generating a dictionary based on all permuta-
tions of the characters harvested, and finding it generated
a successful attack. The reason most text password dic-
tionaries succeed is due to known dependent patterns in
language (e.g., using di or tri-grams in a Markov model
[29]). The obvious analogy to this method has not been
yet attempted, but would be another method of further
reducing the dictionary size.

5 Purely Automated Attacks Using Image
Processing Tools

Here we investigate the feasibility of creating an at-
tack dictionary for click-based graphical passwords by
purely automated means. Pure automation would side-
step the need for human-seeding (in the form of harvest-
ing points), and thus should be easier for an attacker to
launch than the attacks presented in Section 4. We create
this attack dictionary by modelling user choice using a
set of image processing methods and tools. The idea is
that these methods may help predict hot-spots by auto-
mated means, leading to more efficient search orderings
for exhaustive attacks. This could be used for modeling

attackers constructing attack dictionaries, and proactive
password checking.

5.1 Identifying Candidate Click-Points

We begin by identifying details of the user task in cre-
ating a click-based graphical password. The user must
choose a set of points (in a specific order) that can be re-
membered in the future. We do not focus on mnemonic
strategies for these automated dictionaries (although they
could likely be improved using the click-order patterns
from Section 4.2), but rather the basic features of a point
that define candidate click-points. To this end, we iden-
tify a candidate click-pointto be a point which is: (1)
identifiablewith precision within the system’s error tol-
erance; and (2)distinguishablefrom its surroundings,
i.e., easily picked out from the background. Regarding
(1), as an example, thepool image has a red garbage can
that is larger than the19 × 19 error tolerance; to choose
the red garbage can, a user must pick aspecificpart of it
that can be navigated to again (on a later occasion) with
precision, such as the left handle. Regarding (2), as an
example, it is much easier to find a white logo on a black
hat than a brown logo on a green camouflage hat.

For modelling purposes, we hypothesize that the fewer
candidate click-points (as defined above) that an image
has, the easier it is to attack. We estimate candidate click-
points by implementing a variation of Itti et al.’s bottom-
up model of visual attention (VA) [17], and combining it
with Harris corner detection [16].
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Corner detection picks out the areas of an image that
have variations of intensity in horizontal and vertical di-
rections; thus we expect it should provide a reasonable
measure of whether a point is identifiable. Itti et al.’s
VA determines areas that stand out from their surround-
ings, and thus we expect it should provide a reasonable
measure of a point’s distinguishability. Briefly, VA cal-
culates a saliency map of the image based on 3 channels
(color, intensity, and orientation) over multiple scales.
The saliency map is a grayscale image whose brighter
areas (i.e., those with higher intensity values) represent
more conspicuous locations. A viewer’s focus of atten-
tion should theoretically move from the most conspicu-
ous locations (represented by the highest intensity areas
on the saliency map) to the least. We assume that users
are more likely to choose click-points from areas which
draw their visual attention.

We implemented a variation of VA and combined it
with Harris corner detection to obtain a prioritized list
of candidate click-points(CCP-list)as follows. (1) Cal-
culate a VA saliency map (see Fig. 5(b)) using slightly
smaller scales than Itti et al. [17] (to reflect our interest
in smaller image details). The higher-intensity pixel val-
ues of the saliency map reflect the most “conspicuous”
(and distinguishable) areas. (2) Calculate the corner lo-
cations using the Harris corner detection function as im-
plemented by Kovesi [22]4 (see Fig. 5(c)). (3) Use the
corner locations as a bitmask for the saliency map, pro-
ducing what we call acornered saliency map(CSM). (4)
Compute an ordered CCP-list of the highest to lowest
intensity-valued CSM points. Similar to the focus-of-
attention inhibitors used by Itti et al., we inhibit a CSM
point (and its surrounding tolerance) once it has been
added to the CCP-list so it is not chosen again (see Fig.
5(d)). The CCP-list is at least as long as the alphabet size
(414), but is a prioritized list, ranking points from (the
hypothesized) most to least likely.

5.2 Model Results

We evaluated the performance of the CCP-list as a model
of user choice using the data from both the lab and field
user studies. We first examined how well the first half
(top 207) of the CCP-list overlaps with the observed
high-probability clusters from our lab user study (i.e.,
those clusters of size at least 5). We found that this half-
alphabet found all high-probability clusters on theicons,
faces, andcars images, and most of the high-probability
clusters on 11 of the 17 images. Most of the images that
our model performed poorly on appeared to be due to the
saliency map algorithm being overloaded with too much
detail (pcb, citymap-gr, paperclips, smarties, and truck
images). The other image on which this approach did
not perform well (mural) appears to be due to the cor-

ner masking in step (3); the high probability points were
centroids of circles.

To evaluate how well the CCP-list works at modelling
users’entirepasswords (rather than just a subset of click-
points within a password), we used the top ranked one-
third of the CCP-list values (i.e., the top 138 points for
each image) to build a graphical dictionary and carry out
a dictionary attack against the observed passwords from
both user studies (i.e., on all 17 images in the lab study,
and thecars andpool images again in the field study).
We found that for some images, this 35-bit dictionary
was able to guess a large number of user passwords (30%
for the icons image and 29% for thephiladelphiamap
image). For both short and long-term studies, our tool
guessed 9.1% of passwords for thecars image. A 28-
bit computer-generated dictionary (built from the top 51
ranked CCP-list alphabet) correctly guessed 8 passwords
(22%) from theiconsimage and 6 passwords (17%) from
thephiladelphiaimage. Results of this automated graph-
ical dictionary attack are summarized in Table 6.

Image passwords passwords
guessed guessed

(lab study) (field study)

1. paperclips 2/36 (5.5%) –
2. cdcovers 2/35 (5.7%) –
3. philadelphia 10/35 (28.6%) –
4. toys 2/39 (5.1%) –
5. bee 1/40 (2.5%) –
6. faces 0/32 (0.0%) –
7. citymap-nl 1/34 (2.9%) –
8. icons 11/37 (29.7%) –
9. smarties 5/37 (13.5%) –
10. cars 3/33 (9.1%) 10/109 (9.1%)
11. pcb 3/36 (8.3%) –
12. citymap-gr 0/34 (0.0%) –
13. pool 1/35 (2.9%) 2/114 (0.9%)
14. mural 1/36 (2.8%) –
15. corinthian 3/35 (8.6%) –
16. truck 1/35 (2.9%) –
17. tea 2/38 (5.3%) –

Table 6: Passwords correctly guessed (using a 35-bit dictio-
nary based on a CCP-list). The number of target passwords is
different for most images (32 to 40 for the lab study).

Figure 6 shows that the CCP-list does a good job of
modelling observed user choices for some images, but
not all images. This implies that on some images, an at-
tacker performing an automated attack is likely to be able
to significantly cut down his search space. This method
also seems to perform well on the images for which the
visual attention model made more definite decisions – the
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(a) Original image [46]. (b) Saliency map.

(c) Corner detection output. (d) Cornered saliency map (CSM) after top51 CCP-list
points have been inhibited.

Figure 5:Illustration of our method of creating a CCP-list (best viewed electronically).

saliency map shows a smaller number of areas standing
out, as indicated visually by a generally darker saliency
map with a few high-intensity (white) areas. An attacker
interested in any one of a set of accounts could go after
accounts using a background image that the visual atten-
tion model performed well on.

In essence, this method achieves a reduction (by leav-
ing out some “unlikely” points) from a43-bit full pass-
word space to a35-bit dictionary. The43-bit full pass-
word space is the proper base for comparison here, since
an actual attacker with no a priori knowledge must con-
sider all T-regions in an image. However, we believe
this model of candidate click-points could be improved
through a few methods. The images that the model per-
formed poorly on appeared to be due to failure in cre-
ating a useful visual attention model saliency map. The
saliency maps seem to fail when there are no areas that
stand out from their surroundings in the channels used in
saliency map construction (color, intensity, and orienta-
tion). Further, centroids of objects that “stand out” to a

user will not be included in this model (as only corners
are included); adding object centroids to the bitmask is
thus an avenue for improvement.

6 Related Work

In the absence of password rules, practical text password
security is understood to be weak due to common pat-
terns in user choice. In a dated but still often cited study,
Klein [21] determined a dictionary of 3 million words
(less than 1 billionth of the entire 8-character password
space) correctly guessed over 25% of passwords. Auto-
mated password cracking tools and dictionaries that ex-
ploit common patterns in user choice includeCrack [28]
andJohn the Ripper[30]. More recently, Kuo et al. [23]
found John the Ripper’s English dictionary of 1.2 mil-
lion words correctly guessed 6% of user passwords, and
an additional 5% by also including simple permutations.
In response to this well-known threat, methods to cre-
ate less predictable passwords have emerged. Yan [48]
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explores the use of passphrases to avoid password dic-
tionary attacks. Jeyaraman et al. [20] suggest basing a
passphrase upon an automated newspaper headline. In
theory, creating passwords using these techniques should
leave passwords less vulnerable to automated password
cracking dictionaries and tools, although Kuo et al. [23]
show this may not be the case. Proactive password
checking techniques (e.g., [38, 7, 2]) are commonly used
to help prevent users from choosing weak passwords.

Many variations of graphical passwords are discussed
in surveys by Suo et al. [39] and Monrose et al. [27]. We
discuss two general categories of graphical passwords:
recognition-based and recall-based. In the interest of
brevity, we focus on the areas closest to our work: click-
based graphical passwords, and practical security analy-
ses of user authentication methods.

Typical recognition-based graphical passwords re-
quire the user to recognize a set (or subset) ofK pre-
viously memorized images. For example, the user is pre-
sented a set ofN (> K) images from which they must
distinguish a subset of theirK images. The user may
be presented many panels of images before providing
enough information to login. Examples are Déjà Vu [10],
which uses random art images created by hash visualiza-
tion [32]; Passfaces[35], whereby the set of images are
all human faces; andStory [8], whereby the images are
from various photo categories (e.g., everyday objects, lo-
cations, food, and people), with users encouraged to cre-
ate a story as a mnemonic strategy. In the cognitive au-
thentication scheme of Weinshall [44], a user computes
a path through a grid of images based on the locations of
those fromK. The end of the path provides a number for
the user to type, which was thought to protect the values
of K from observers; Golle et al. [14] show otherwise.

Recall-based schemes can be further described as cued
or uncued. An uncued scheme does not provide the
user any information from which to create their graphical
password; e.g., DAS (Draw-A-Secret) [19] asks users to
draw a password on a background grid. Cued schemes
show the user something that they can base their graphi-
cal password upon. A click-based password using a sin-
gle background image is an example of a cued graphical
password scheme where the user password is a sequence
of clicks on a background image. Blonder [4] originally
proposed the idea of a graphical password with a click-
based scheme where the password is one or more clicks
on predefined image regions. In the Picture Password
variation by Jansen et al. [18], the entire image is over-
layed by a visible grid; the user must click on the same
grid squares on each login.

Birget et al. [3] allow clicking anywhere on an image
with no visible grid, tolerating error through “robust dis-
cretization”. Wiedenbeck et al. [45, 46, 47] implement
this method as PassPoints, and study its usability includ-

ing: memorability, general perception, error rates, the ef-
fect of allowed error tolerance, the effect of image choice
on usability, and login and creation times. They report
the usability of PassPoints to be comparable to text pass-
words in most respects; the notable exception is a longer
time for successful login. The implementation we study
herein is also reported to have acceptable success rates,
accuracy, and entry times [6].

Regarding explorations of the effect of user choice,
Davis et al. [8] examine this in a variation of Passfaces
and Story (see above), two recognition-based schemes
which essentially involve choosing an image from one or
more panels of many different images. Their user study
found very strong patterns in user choice, e.g., the ten-
dency to select images of attractive people, and those
of the same racial background. The high-level idea of
finding and exploiting patterns in user choice also mo-
tivated our current work, although these earlier results
do not appear directly extendable to (cued recall) click-
based schemes that select unrestricted areas from a sin-
gle background image. Thorpe et al. [41, 42] discussed
likely patterns in user choice for DAS (mirror symme-
try and small stroke count), later corroborated through
Tao’s user study [40]. These results also do not appear to
directly extend to our present work, aside from the com-
mon general idea of attack dictionaries.

Lopresti et al. [24] introduce the concept of generative
attacks to behavioral biometrics. Ballard et al. [1] gen-
erate and successfully apply a generative handwriting-
recognition attack based on population statistics of hand-
writing, collected from a random sample of 15 users with
the same writing style. In arguably the most realistic
study to date of the threats faced by behavioral biomet-
rics, they found their generative attacks to be more ef-
fective than attacks by skilled and motivated forgers [1].
Our most successful attack from Section 4.2 may also
be viewed as generative in nature; it uses click-points
harvested from a small population of users from another
context (the lab study), performs some additional pro-
cessing (clustering), and recombines subsets of them as
guesses. Our work differs in its application (click-based
graphical passwords), and in the required processing to
generate a login attempt.

7 Discussion and Concluding Remarks

Our results demonstrate that harvesting data from a
small number of human users allows quite effective of-
fline guessing attacks against click-based graphical pass-
words. This makes individual users vulnerable to tar-
geted (spear) attacks, as one should assume that an at-
tacker could find out the background image associated
with a target victim, and easily gather a small set of
human-generated data for that image by any number of
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means. For instance, an attacker could collect points by
protecting an attractive web service or contest site with
a graphical password. Alternatively, an attacker could
pay a small group of people or use friends. This at least
partially defeats the hope to improve one’s security in a
click-based scheme through a customized image.

We found that our human-seeded attack strategy was
quite successful, guessing 36% of passwords with a 31-
bit dictionary in one instance, and 20% of passwords
with a 33-bit dictionary in another. Preliminary work
shows that click-order patterns can be used to further
reduce the size of these dictionaries, while maintaining
similar success rates. The success of our human-seeded
attack dictionaries appears to be related to the amount of
hot-spotting on an image. The prevalence and impact of
hot-spots contrasts earlier views which underplayed their
potential impact, and suggestions [47] that any highly
detailed image may be a good candidate. Our studies
allow us to update previous assumptions that half of all
click-regions on an image will be chosen by users. Af-
ter collecting 570 and 545 points, we only observed 111
and 133 click-regions (forpool and cars respectively);
thus, one quarter to one third of all click-regions would
be a more reasonable estimate even from highly detailed
images, and the relative probabilities of these regions
should be expected to vary quite considerably.

Our purely automated attack using a combination of
image processing measures (which likely can be consid-
erably improved) already gives cause for concern. For
images on which Itti et al.’s [17] visual attention model
worked well, our model appeared to do a reasonable job
of predicting user choice. For example, an automatically-
generated 28-bit dictionary from our tools guessed 8 out
of 37 (22%) observed passwords for theiconsimage, and
6 out of 35 (17%) for thephiladelphiaimage. Our tools
guessed 9.1% of passwords for thecars image in both
the short-term lab and long-term field studies. Improve-
ments to pursue include adding object centroids to the
bitmask used in creating the cornered saliency map.

Our attack strategies (naturally) could be used defen-
sively, as part of proactive password checking [38, 7, 2].
Thus, an interesting avenue for future work would be to
determine whether graphical password users create other
predictable patterns when their choices are disallowed
by proactive checking. Additionally, the visual attention
model may be used proactively to determine background
images to avoid, as those images on which the visual at-
tention model performed well (e.g., identifies some areas
as much more interesting than others) appear more vul-
nerable to the purely automated attacks from Section 5.

An interesting remaining question is whether altering
parameters (e.g., pixel sizes of images, tolerance settings,
number of click-points) in an attempt to improve security
can result in a system with acceptable securityand us-

ability simultaneously. Any proposal with significantly
varied parameters would require new user studies explor-
ing hot-spotting and usability.

Overall, the degree of hot-spotting confirmed by our
studies, and the successes of the various attack strate-
gies herein, call into question the viability of click-based
schemes like PassPoints in environments where off-line
attacks are possible. Indeed in such environments, a
43-bit full password space is clearly insufficient to start
with, so one would assume some tolerable level of pass-
word stretching (e.g., [15, 34]) would be implemented
to increase the difficulty of attack. Regardless of these
implementation details, click-based graphical password
schemes may still be a suitable alternative for systems
where offline attacks are not possible, e.g., systems cur-
rently using PIN numbers.
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Notes

1Version: May 13, 2007. A preliminary version of this pa-
per was available as a Technical Report [43].

2Analysis showed little difference between the points cho-
sen for these different tolerance groups.

3A preliminary version [43] had a small technical error
causing some numbers to be less than shown herein in Tables 3
and 5.

4As harris(image, 1, 1000, 3)
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Appendix A - Subset of Images Used

(a)cars[5].

(b) pool [46, 47].

(c) mural [46].

(d) paperclips[13].
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