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Abstract that are easily guessed. Thus even when the size of
Although motivated by both usability and security con- & p?sswori spact()a mafy be t%?oretmally (Ijargemi:ough
cerns, the existing literature on click-based graphical(_In erms o r;um er Of pos&h_ehpasswor S). i I
password schemes using a single background imagtéve password space irom which many Users actuaty
(e.g., PassPoints) has focused largely on usability. Wi hoose passwords is far smaller. Predictable patterns,
' argely due to usability and memory issues, thus allow

examine the security of such schemes, including the im- . : :
pact of different background images, and strategies forsuccessful search by variations of exhaustive guessing
’ ftacks. Forcing users to use “random” or other non-

guessing user passwords. We report on both short- and ) . -
long-term user studies: one lab-controlled, involving 43mean|ngful passwords resulis in usability problems. As

users and 17 diverse images, and the other a field test & alternative, graphical password schemes require that

223 user accounts. We provide empirical evidence thafft YS€" remembers an image (or parts thereof) in place of

popular points (hot-spots) do exist for many images, ancgl word. 'I;hgyhhave besirl!tla;gely motnéated. bty the gv ?{I'
explore two different types of attack to exploit this hot- ocumented human abllity o remember pictures betier

spotting: (1) a “human-seeded” attack based on harvesf-han words [2.5]’ af‘d implied promises that the password
ing click-points from a small set of users, and (2) an en-SPaces of various image-based schemes are not only suf-

tirely automated attack based on image processing tec i_cie_ntly large to resist guessing attack.s., but that the ef-
niques. Our most effective attacks are generated by ha ective passworq spaces are aIs_o sufficiently large. The
vesting password data from a small set of users to attac tter, however, is not well established.

other targets. These attacks can guess 36% of user pass2AMong the graphical password schemes proposed to
words within 23 guesses (or 12% withi@'® guesses) date, one that has received considerable attention in the

in one instance, and 20% withi2?? guesses (or 10% research literature is PassPoints [45, 46, 47]. It and other
within 218 guesses) in a second instance. We perfornflick-based graphical password schemes [18, 4, 31, 37]
an image-processing attack by implementing and adapf:€duire a user to log in by clicking a sequence of points

ing a bottom-up model of visual attention, resulting in a®n @ single background image. Usability studies have
purely automated tool that can guess up to 30% of usebeen performed to determine the optimal amount of er-
passwords 23> guesses for some instances, but under©r tolerance [46], login and creation times, error rates,

3% on others. Our results suggest that these graphic&nd general perception [45, 47]. An important remain-

password schemes appear to be at least as susceptible¥§ question for such schemes is: heacureare they?

offline attack as the traditional text passwords they werel NiS issue remains largely unaddressed, despite specu-
proposed to replace. lation that the security of these schemes likely suffers

from hot-spots — areas of an image that are more prob-

) able than others for users to click. Indeed, the impact

1 Introduction of hot-spots has been downplayed (e.g., see [45, Section
7]). In this paper, we focus on a security analysis of an

The bane of password authentication using text-basegnplementation with the same parameters as used in a re-
passwords is that users choose passwords which are eagynt PassPoints publication [47]. A usability analysis of
to remember, which generally translates into passwordgjs implementation is presented in a separate paper [6].

*To appear in th@roceedings of the 16th USENIX Security Sympo- Ve anﬁrm the existence of ho_t'SPOtS through empiri-
sium Boston, USA, August 6-10, 200 USENIX. cal studies, and show that some images are more suscep-




tible to hot-spotting than others. We also explore the setack other field study passwords. Our human-seeded at-
curity impact of hot-spots, including a number of strate-tack strategy for cued-recall graphical passwords is sim-
gies for exploiting them under an offline model similar ilar to Davis et al.’s attack [8] against recognition-based
to that used by Ballard et al. [1]. Our work involves two graphical passwords; notable differences include a more
user studies. The first (lab) study used 17 diverse imstraightforward dictionary generation method, and that
ages (four used in previous studies [46], and 13 of ouour seed data is from a separate population and (short-
own chosen to represent a range of detail). We collecteterm) setting.

graphical passwords for 32-40 users per image in @ 1ab the remainder of this paper is organized as follows.
setting, and found hot-spots on all images even from thissetion 2 provides background and terminology. Section
relatively small sample size; some images had signifi3 presents our lab-controlled user study, and an analysis
cantly more hot-spots than others. In the second (fieldy gpserved hot-spots and the distribution of user click-
study involving 223 user accounts over a minimum of hoints  Section 4 presents results on the larger (field)
seven weeks, we explore two of these images in great€fser study, and of our password harvesting attacks. Sec-
depth. We analyzed our lab study data using formal meag,, 5 explores our use of image processing methods to
sures of security to make an informed decision of Wh'Chexpedite guessing attacks on the 17 images from the first

two images to use in the field study. Our_goal was to gi‘,’e,user study and the two from the second user study. Re-
PassPoints the best chance we could (in terms of anticiateq work is briefly discussed in Section 6. Section 7

pated security), by using one highly ranked image, andyqyides further discussion and concluding remarks.
another mid-ranked image also used in previous Pass-

Points studies.
We implement and evaluate two types of attack:
human.—seeded and purely.automated. Ourhuman—seed%d Background and Terminology
attack is based on harvesting password data from a sma
number of users to attack passwords from a larger set
of users. We seed various dictionaries with the passClick-based graphical passwords require users to log in
words collected in our lab study, and apply them to gues®y clicking a sequence of points on a single background
the passwords from our long-term field study. Our re-image. Many variations are possible (see Section 6), de-
sults demonstrate that this style of attack is quite effecending on what points a user is allowed to select. We
tive against this type of graphical password: it correctlystudy click-based graphical passwords by allowing clicks
guessed 36% of user passwords withith guesses (or anywhere on the image (i.e., PassPoints-style). We be-
12% within 2'6 guesses) on one image, and 20% withinlieve that most findings related to hot-spots in this style
233 guesses (or 10% withit'® guesses) on a second im- Will apply to other variations using the same images, as
age. We implement and adapt a combination of imagdhe “interesting” clickable areas are still present.
processing methods in an attempt to predict user choice, we use the following terminology. Assume a user
and employ them as tools to expedite guessing attacks oghooses a given click-pointas part of their password.
the user study passwords. The attack works quite well orThe tolerable error or tolerancet is the error allowed
some images, cracking up to 30% of passwords, but lesgyr a click-point entered on a subsequent login to be ac-
than 3% on others Wlthl@s5 guesses. These results give Cepted as. This defines dolerance region (T-region)
an early signal that image processing can be a relevardentered o, which for our implementation using= 9
threat, particularly as better methods emerge. pixels, is al9 x 19 pixel square. Aclusteris a set of
Our contributions include the first in-depth study of one or more click-points that lie within a T-region. The
hot-spots in click-based (or cued-recall) graphical passnumber of click-points belonging to a cluster is sige
words schemes and their impact on security through twa\ hot-spotis indicated by a cluster that is large, relative
separate user studies: one lab-controlled and the othéo the number of users in a given sample. To aid visu-
a field test. We propose the modification and use ofalization and indicate relative sizes for clusters of size a
image processing methods to expedite guessing attackigast two, on figures we sometimes represent the underly-
and evaluate our implementation against the images usedg cluster by a shaded circle balo with halo diameter
in our studies. Our implementation is based on ltti etproportional to its size. Amlphabetis a set of distinct
al’s [17] model of bottom-up visual attention and cor- T-regions; our implementation, usidg1 x 331 pixel im-
ner detection, which allowed successful guessing attackages, results in an alphabetaf= 414 T-regions. Using
on some images, even with relatively naive dictionarypasswords composed of 5-clicks, on an alphabet of size
strategies. Our most interesting contribution is apply-414 provides the system with only 48-bit full theoret-
ing a human-seeded attack strategy, by harvesting pas&al password space; we discuss the implications of this
word data in a lab setting from small sets of users, to atin Section 7.



3 Lab Study and Clustering Analysis tion, the user was given 3D mental rotation tasks [33]
as a distractor for at least 30 seconds. This distractor
Here we report on the results of a university-approvedwas presented to remove the password from their visual
43-user study of click-based graphical passwords in avorking memory, and thus simulate the effect of the pas-
controlled lab environment. Each user session was corsage of time. After this period of memory tasks, the user
ducted individually and lasted about one hour. Partici-was provided the image again and asked to log in using
pants were all university students who were not studyingheir previously selected password. If the user could not
(or experts in) computer security. Each user was askeg@onfirm after two failed attempts or log in after one failed
to create a click-based graphical password on 17 differattempt, they were permitted to reset their password for
ent images (some of these are reproduced herein; othetgat image and try again. If the user did not like the im-
are available from the authors). Four of the images ar@ge and felt they could not create and remember a pass-
from a previous click-based graphical password study byvord on it, they were permitted to skip the image. Only
Wiedenbeck et al. [46]; the other 13 were selected to protwo images had a significant number of skipaperclips
vide a range of values based on two image processingndbee This suggests some passwords for these images
measures that we expected to reflect the amount of detaivere not repeatable, and we suspect our results for these
the number of segments found from image segmentatiofmages would show lower relative security in practice.
[11] and the number of corners found from corner de- To avoid any dependence on the order of images pre-
tection [16]. Seven of the 13 images were chosen to b&ented, each user was presented a random (but unique)
those we “intuitively” believed would encourage fewer shuffled ordering of the 17 images used. Since most
hot-spots; this is in addition to the four chosen in ear-users did not make it through all 17 images, the number
lier research [46] using intuition (no further details were of graphical passwords created per image ranged from
provided on their image selection methodology). 32 to 40, for the 43 users. Two users had a “jumpy”

EXPERIMENTAL DETAILS. We implemented a web- MOuse, but we do not expect this to affect our present
based experiment. Each user was provided a brief extocus — the location of selected click-points. This short-
planation of what click-based graphical passwords aret€’m study was intended to collect data on initial user
and given two images to practice creating and confirm<hoice; although the mental rotation tasks work to re-
ing such passwords. To keep the parameters as considlove the password from working memory, it does not
tent as possible with previous usability experiments ofaccount for any effect caused by password resets over
such passwords [47], we use@d= 5 click-points for time due to forgotten passwords. The long-term study
each password, an image sizel6l x 331 pixels, and a (Section 4) does account for this effect, and we compare
19 x 19 pixel square of error tolerance. Wiedenbeck et al.the resullts.

[47] used atolerance @b x 20, allowing 10 pixels of tol-

erated error on one side and 9 on the other. To keep th8.1 Results on Hot-Spots and Popular
error tolerance con5|§tent on all sides, we gpproxmate Clusters Observed

this error tolerance usintf x 19. Users were instructed

to choose a password by clicking on 5 points, with noTo explore the occurrence of hot-spotting in our lab user
two the same. Although the software did not enforce thisstudy, we assigned all the user click-points observed in
condition, subsequent analysis showed that the effect ofhe study to clusters as follows. LBtbe the raw (unpro-
the resulting cluster sizes was negligible for all imagescessed) set of click-point8/ a list of temporary clusters,
exceptpch for more details, see caption of Figure 1.We andV’ the final resulting set of clusters.

did not assume a specific encoding scheme (e.g., robust1. For eachy, € R, let B, be a temporary cluster con-
discretization [3] or other grid-based methods); the con-  taining click-pointc;,. Temporarily assign all user
cept of hot-spots and user choice of click-points is gen-  click-points in R within ¢;’s T-region toB;,. Add
eral enough to apply across all encoding schemes. To B, to M.

allow for detailed analysis, we store and compare the ac- o gort all clusters i/ by size, in decreasing order.
tual click-points.

Once the user had a chance to practice a few pass-
words, the main part of the experiment began. For each ¢ ,qter inas. Permanently assign each click-point
image, the user was asked to create a click-based graph- cx € By to By, then delete each, € B, from all
|cgl password that they could remember but th_at_ others  qiher clusters i/ . DeleteB, from M, and addB,
will not be able to guess, and to pretend that it is pro-
tecting their bank information. After initial creation,gh
user was asked to confirm their password to ensure they This process determines a $étof (non-empty) clus-
could repeat their click-points. On successful confirma-ters and their sizes. We then calculate the observed

3. Greedily make permanent assignments of click-
points to clusters as follows. Ld&3, be the largest

to V. Repeat until\/ is empty.



this allows determination of a confidence interval, using

o Equation (1) which provides th®0(1 —«)% confidence
#2 =3 interval for a population proportion [9, page 288].
#3 W q
#4 mEA PE za/2 N}
. #5:3
# Clusters of Size >= 5 o Heren is the total number of clicks (i.e., five times the

ages, predicting that in future similar populations many

% 0@ 7 O;bf’% ogc{‘;o"%‘},}(,,j of these points would be clicked by between 10-50% of
%&@@}. ,)/ 0 ’ users, and some points would be clicked by 20-60% of

4 users with 95% confidencex(= .05). For example,
Figure 1: The five most popular clusters (in terms of size, in Table 1(a), the first row shows the highest frequency
i.e., # of imes selected), and # of popular clusteis{ > 5).  cluster (of size 13); as our sample for this image was only
Results are from 32-40 users, depending on the image, for thgg users, we observed 37.1% of our participants choos-
final passwords created on each image. sy which shows ing this cluster. Using (1), between 17.7% and 56.6% of
only 6 clusters of size> 5, the size of clusters 2-5 become 5, ; .
5, 4, and 3 when counting at most one click from each user. users from futur_e populatlon_s are expected to choose this
same cluster (with 95% confidence).

Figure 1 and Table 1 show the popularity of the hottest
clusters; Figure 1's line also shows the number of pop-
S"Ular clusters. The clustering effect evident in Figures 1,
2, and Table 1 clearly establishes that hot-spots are very
Ipromlnent on a wide range of images. We further pursue
how these hot-spots impact the practical security of full
5-click passwords in Section 4.2. As a partial summary,
our results suggest that many images have significantly
more hot-spots than would be expected if all T-regions

Each probabilityp; estimates the probability of a \ere equi-probable. Theaperclips cars, faces andtea
cluster being clicked for aingle click. For 5-click  jmages are not as susceptible to hot-spotting as others
passwords, we approximate the probability that a use(e.g. mural, truck, andphiladelphid. For example, the
chooses clusterin a password by’; = 5xp;. Notethat  carsimage had only 4 clusters of size at leasand only
the probability for a clusteyj increases slightly as other gne with frequency at leagd. Themuralimage had 15
clicks occur (due to the constraint of 5 distinct clustersg|ysters of size at least and 3 of the top 5 frequency
in a password); we ignore this in our present estimate ofjysters had frequency at ledst Given our sample size
P;. for themuralimage was only 36 users, these clusters are

Our results in Figure 1 indicate a significant number ofquite popular. This demonstrates the range of effect the
hot-spots for our sample of the full populatios2(— 40 background image can have (for the images studied).
users per image). Previous “conservative” assumptions Although previous work [46] suggests using intuition
[47] were that half of the available alphabet of T-regionsfor choosing more secure background images (no further
would be used in practice — @07 in our case. If this detail was provided), our results apparently show that in-
were the case, and all T-regions in the alphabet weréuition is not a good indicator. Of the four images used
equi-probable, we would expect to see some clusters ah other click-based graphical passwords studies, three
size 2, but none of size 3 after 40 participants; we obshowed a large degree of clusteringp6l, mural, and
served significantly more on all 17 images. Figure 1philadelphig. Furthermore, two other images that we
shows that some images were clearly worse than othersintuitively” believed would be more secure background
There were many clusters of size at least 5, and somi&nages were among the wordtuck and citymap-n).
as large as 16 (seteaimage). If a cluster in our lab Thetruckimage had 10 clusters of size at leasand the
study received 5 or more clicks — in which case we call ittop 5 clusters had frequency at le&8t Finding reliable
a popular or high-probabilitycluster — then statistically, automated predictors of more secure background images

o
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O 70 20 number of users)p takes the role op;, ¢ = 1 — p,

& 60 . %g ° andz, , is from a z-table. A confidence interval can be
§ 501 4125 placed aroungh; (and thusP;) using (1) whemp > 5

o 40f . %3 s andng > 5. For clusters of sizé& > 5, p = £, then

3 30 8 5 np = kandng = n — k. In our casen > 32 -5 and
= 20 N 2 @ n—k>5,as statistically required to use (1).

5 10 42 © Table 1 shows these confidence intervals for four im-
o O 0 #*

N

%)

“probability” p; (based on our user data set) of the clus
ter j being clicked, as cluster size divided by total clicks
observed. When the probabilify; of a certain cluster
is sufficiently high, we can place a confidence interva
around it for future populations (of users who are similar
in background to those in our study) using (1) as dis-
cussed below.



originally from [46, 47]; see Appendix A). (bpural (originally from [46]; see Appendix A).
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(c) philadelphia(originally from [46]; see Figure 5). (dyuck (originally from [12]).
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Figure 2:0bserved click-points. Halo diameters are 10 times the size of the undgclyister, illustrating its popularity.

(a) poolimage (b) muralimage
Cluster Cluster
size| P; 95% CI (P)) size| P; 95% CI (P;)
13| 0.371] (0.177; 0.566) 14 | 0.400| (0.199; 0.601)
12 | 0.343| (0.156; 0.530) 13| 0.371] (0.177; 0.566)
12 | 0.343| (0.156; 0.530) 10 | 0.286| (0.114; 0.458)
11 | 0.314| (0.134; 0.494) 8 | 0.229| (0.074; 0.383)
11| 0.314| (0.134; 0.494) 7 | 0.200| (0.055; 0.345)
(c) philadelphiaimage (d) truckimage
Cluster Cluster
size| P; 95% CI (P)) size| P; 95% CI (P;)
10 | 0.286| (0.114; 0.458) 15| 0.429] (0.221; 0.636)
10| 0.286| (0.114; 0.458) 14| 0.400| (0.199; 0.601)
9| 0.257| (0.094;0.421) 13| 0.371] (0.177; 0.566)
9 | 0.257| (0.094; 0.421) 13| 0.371]| (0.177; 0.566)
7 | 0.200| (0.055; 0.345) 13| 0.371] (0.177; 0.566)

Table 1: 95% confidence intervals for the top 5 clusters found in each of fourésadhe confidence intervals are for the
percentage of users expected to choose this cluster in future populations



remains an open problem. Our preliminary work with approximates the effective password space if the clusters
simple measures (image segmentation, corner detectionpserved in our user study are representative of those in
and image contrast measurement) does not appear to dérger similar populations. We can order the elements of
fer reliable indicators. Thus, we next explore the impactC" using the probabilitiesy; based on our user study.
of hot-spotting across images to help choose two image&n orderedC" could be used as the basis of an attack
for further analysis. dictionary; this ordering could be much improved, for
example, by exploiting expected patterns in click-order.
3.2 Measurement and Comparison of Hot- See Section 4.2 for more details.
; : For comparison to previous “conservative” estimates
Spotting for Different Images that simply half of the available click-points (our T-
To compare the relative impact of hot-spotting on eachregions) would be used in practice [47], we calculate
image studied, we calculated two formal measures ofVe compare t@V as it is a baseline that approximates
password security for each image: entrofyX), in  what we would expect to see after running 32 users (the
equation (2), and in equation (3), the expected humbelowest number of users we have for any image), if pre-
of guessedZ(f(X)) to correctly guess a password as- vious estimates were accurate, and T-regions were equi-
suming the attacker knows the probabilities > 0 for ~ probable. CU is the set of all permutations of clusters
each password The relationship betweeH (X) and  we expect to find after observing 32 users, assuming a
E(f(X)) for password guessing is discussed by Masseyniformly random alphabet of siz#7.
[26]. Of course in general, the; are unknown, and our Fig. 3 depicts the entropy and expected number of
study gives only very coarse estimates; nonetheless, wguesses fo€’V . Notice the range between images, and
find it helpful to use this to develop an estimate of whichthe drop inE(f(X)) from CY to values ofC". Com-
images will have the least impact from hot-spotting. Forparison to the marke@V values for (1)H (X ) and (2)
(2) and (3)n is the number of passwords (of probability F(f(X)) indicates that previous rough estimates are a
> 0), random variableX ranges over the passwords, and security overestimate for practical security in all images
w; = Prob(X = x;) is calculated as described below.  some much more so than others. This is at least partially
- due to click-points not being equi-probable in practice

H(X) = - Zw’ log(wi) (2) (as illustrated by hot-spots), and apparently also due to

n = the previously suggested effective alphabet size (half of

E(f(X)) = Zz -w; ,wherew; > w; 4, and (3) the full alphabet) being an overestimate. Indeed, a large
i—1 alphabet is precisely the theoretical security advantage

f(X) is the number of guesses before success. We calctibat these graphical passwords have over text passwords.
late these measures based on our observed user data. FHohe effective alphabet size is not as large as previously
this purpose, we assume that users will choose from a s&xpected, or is not well-distributed, then we should re-
of click-points (following the associated probabilities) duce our expectations of the security.
and combines of them randomly. This assumption al- These results appear to provide fair approximation
most certainly over-estimates babl{f(X)) andH(X)  of the entropy and expected number of guesses for the
relative to actual practice, as it does not consider clicklarger set of users in the field study, we performed
order patterns or dependencies. Thus, popular clustetfese same calculations again using the field study data.
likely reduce security by more than we estimate here. For both of the two images, the entropy measures were
We defineCV to be the set of all 5-permutations within one bit of values measured here (less than a bit
derivable from the clusters observed in our user studyhigher forpool, and about one bit lower fazars). The
(as computed in Section 3.1). Using the probabilitiesnumber of expected guesses increased for both images
p; of each cluster, the probabilities; of each pass- (by 1.3 bits for cars and2.5 bits for pool).
word in CV are computed as follows. Pick a combi- The variation across all images shows how much of an
nation of 5 observed clusterg,, ... ,js with respec- impact the background image can be, even when using
tive probabilitiesp;,, ... ,p;5. For each permutation of images that are “intuitively” good. For example, the im-
these clusters, calculate the probability of that permutaage that showed the most impact from hot-spotting was
tion occurring as a password. Due to our instructionsthemuralimage, chosen for an earlier PassPoints usabil-
that no two click-points in a password can fall in the ity study [46]. We note that thpaperclipsimage scores
same T-region, these probabilities change as each poitest in the charted security measures {it6X) mea-
is clicked. Thus, for password = (j1, jo, j3, j4,7J5), sure is within a standard deviation 6); however, 8
w; = pj1-[pje/(1—pj1)]-[pjs/((1—pj1)-(1—pj2))]-...).  of 36 users who created a password on this image could
The resulting se€" is a set of click-based graphical not perform the subsequent login (and skipped it — as
passwords (with associated probabilities) that coarselyoted earlier), so the data for this image represents some



puter science students, while the third was a first year

45 course for non-computer science students enrolled in a
40 H(X) for C". science degree_. The students u_sed the system for at_Ieast
35 1) _(2) E(f(X)) for ¢V m==== _| 7 Weeks_ to gain access to their course_notes,_ tutorlal_s,
30 - and assignment solutions. For comparison with previ-
25 |- - ous usability studies on the subject, and our lab study,
20 - we used an image size db1 x 331 pixels. After the
15 — user entered their username and course, the screen dis-
10 - played their background image and a small black square
5 |- — above the image to indicate their tolerance square size.
. For about half of users (for each image)l@x 19 T-
2% ogyf/;&fs@g@gogoog?cﬁgog@@%@% region was used, and for the other halfldax 13 T-
4 %2«?0 55, S S Gf% region? The system enforced that each password had to

Q
6/9;/)/ QO@‘ NS‘/CS‘

B be 5 clicks and that no click-point could be within= 9

Figure 3: Security measures for each image (in bit€)" pixels of another (vertically and horizontally). To com-

is based on data from lab user study of 32-40 passwords (dd?l€t€ initial password creation, a user had to successfully
pending on image). For comparison to a uniform distribution, confirm their password once. After initial creation, users

(1) marksH (X) for CV, and (2) marks2(f(X)) for CY. were permitted to reset their password at any time using
a previously set secret question and answer.

Users were permitted to login from any machine
passwords that are not repeatable, and thus we suspec(ﬁome, school, or other), and were provided an online
would have lower relative security in practice. FAQ and help. The users were asked that they keep

Overall, one can conclude that image choice can havgy mind that their click-points are a password, and that
a significant impact on the resulting security, and that deyhije they will need to pick points they can remember,
veloping reliable methods to filter outimages that are theyot to pick points that someone else will be able to guess.
most susceptible to hot-spotting would be an interesting=ach class was also provided a brief overview of the
avenue for future research. system, explaining that their click-points in subsequent

We used these formal measures to make an informeq)gins must be within the tolerance shown by a small
decision on which imageS to use for our field Study. Oursquare above the background image’ and that the input
goal was to give the PassPoints scheme the best changgder matters. We only use the final passwords created
(in terms of anticipated security) we could, by using onepy each user that were demonstrated as successfully re-
image €ars) that showed the least amount of clustering called at least one subsequent time (i.e., at least once af-
(with the best user success in creating a password), angr the initial create and confirm). We also only use data

also using another that ranked in the midgiedj). from 223 out of 378 accounts that we would consider, as
this was the number that provided the required consent.
4 Fidd Study and Harvesting Attacks These 223 user accounts map to 189 distinct users as 34

users in our study belonged to two classes; all but one

Here we describe a 7-week or longer (depending on th&f these users were assigned a different image for each

user), university-approved field study of 223 user ac-account, and both accounts for a given user were set to
counts on two different background images. We col-have the same error tolerance. Of the 223 user accounts,

lected click-based graphical password data to evaluaté14 usedooland 109 usedarsas a background image.

the security of this style of graphical passwords against

various attacks. As discussed, we use the entropy angd.1 Field Study Hot Spots and Relation to

expected guesses measures from our lab study to choose L ab Study Results

two images that would apparently offer different levels

of security (although both are highly detailegpoland  Here we present the clustering results from the field

cars Thepoolimage had a medium amount of cluster- study, and compare results to those on the same two im-

ing (cf. Fig. 3), while thecarsimage had nearly the least ages from the lab study. Fig. 4b shows that the areas

amount of clustering. Both images had a low number ofthat were emerging as hot-spots from the lab study (re-

skips in the lab study, indicating that they did not causecall Fig. 2a) were also popular in the field study, but other

problems for users with password creation. clusters also began to emerge. Fig. 4b shows that even
EXPERIMENTAL DETAILS. We implemented a web- our “best” image from the lab study (in terms of apparent

based version of PassPoints, used by three first-year umesistance to clustering) also exhibits a clustering éeffec

dergraduate classes: two were first year courses for conafter gathering 09 passwords. Table 2 provides a closer



examination of the clustering effect observed. attacks would be slightly better. In our lab study= 33

Image| Size of most popular clustefs# clusters for cars andu = 35 for pool Thus, the size o’
Name | #1#2 1 #3 #4 #5 of size for carsis P(165,5) = 2367 entries, and fopool is
> 5 P(175,5) = 237! entries.C} is a dictionary composed
cars 26| 25| 24| 22 22 _32 of all 5-permutations of thelusterscalculated (using the
pool | 35| 30| 30| 27 57 28 method described in Section 3.1) from the click-points
from u users. Thus, the alphabet size (and overall size)
Table 2:Most popular clusters (field study). for CV is smaller under the same number of users than in

a corresponding'Z dictionary. Note that all of these dic-
Honary sets can be computed on-the-fly from base data as
pecessary, and thus need not be stored.

These values show that gool, there were 5 points
that 24-31% of users chose as part of their password. O
cars there were 5 points that 20-24% of users chose a ' ) ) o
part of their password. The clustering on tbers im- Table 3 illustrates the efficacy of seeding a dictionary

age indicates that even highly detailed images with manyVith & small number of user's click-points. The most
possible choices have hot spots. Indeed, we were sustriking result shown is that initial password choices har-
prised to see a set of points that were this popular, give€St€d from 15 users, in a setting where long term re-

the small amount of observed clustering on this imageF@!! IS not required, can be used to generate (on average)
from our smaller lab study. 27% of user passwords f@ool (seeCft). As we ex-

The prediction intervals calculated from our lab study pectedcarswas not as easily attackedyasol; more user

(recall Section 3) provide reasonable predictions of whaPasSwords are required to seed a dictionary that achieves
we observed in the field study. Foars the prediction ~Similar success rates (sekf).

intervals for3 out of the4 popular clusters were correct. ~ We also tried these attacks using a small set of field
For pool, the prediction intervals fo§ out of the9 popu- ~ Study user passwords to seed an attack against the re-
lar clusters were correct. The anomalous clustecans ~ Maining field study user passwords. The result, in Ta-
was still quite popu|ar (Chosen by 12% of users)’ but thé)le 4, shows a difference between the lab Study and the
lower end of the lab study’s prediction interval for this field study (final) passwords; however, there remains suf-
Cluster was 20%. The anoma'ous C|usterpﬂ0| was fiCient Slmllal’lty betWeen the two gl’OUpS to |aunCh ef'

also still quite popular (chosen by 18% of users), but thef€ctive attacks using the lab-harvested data. One pos-
lower end of the lab study’s prediction interval for this sible reason for the differences in user choice between

cluster was 19%. the two studies is that the field study users may not have

These clustering results (and their close relationshif?€en as motivated as the lab study users to create “dif-
to the lab study’s results) indicate that the points chosedicult to guess” graphical passwords. It is unclear how
from the lab study should provide a reasonably close ap@ user might measure whether they are creating a graph-
proximation of those chosen in the field. This motivatesical password that is difficult to guess, and whether in

our attacks based on the click-points harvested from th&Ying, if users would actually change their password's
lab studly. strength; one study [36] shows that only 40% of users

actually change the complexity of their text passwords
. . according to the security of the site. Another equally
4.2 Harvesting Attacks: Method & Results possible explanation might be that the lab study users
We hypothesized that due to the clustering effect we obchose more difficult passwords than they would have in
served in the lab study, human-seeded attacks based g#actice, as they were aware there was no requirement
data harvested from other users might prove a successfifr long term recall, and also did not have a chance to
attack strategy against click-based graphical passwordéorget and subsequently reset their passwords to some-
Here we describe our method of creating these attack$hing more memorable. With our current data, it is not
and our results are presented below. clear whether we can conclusively determine a reason
Table 3 provides the results of applying various at-for these differences.
tack dictionaries based on our harvested data, and their Next we examined the effect of click-order patterns
success rates when applied to our field study’s passwords one method to capture a user’'s association between
databasé. points, and reduce our dictionary sizes. For each image,
CE is a dictionary composed of all 5-permutations we select one dictionary to optimize with click-order pat-
of click-points collected fromu users. NoteCZ bit- terns. This dictionary is one of the ten randomly selected
size is a slight overestimate, as there are some combi’V" subsets that were averaged (results of this average
nations of points that would not constitute a valid pass-are in Table 3). We selected the dictionary whose guess-
word, due to two or more points being within= 9 pix- ing success was closest to the average reported in Table
els of each other. If this were taken into account, our3. The success rate that these dictionaries achieve (be-



(a) cars(originally from [5]). (b) pool (originally from [46, 47]).
Figure 4:0bserved clustering (field study). Halo diametes isthe number of underlying clicks.

Set cars(u = 33) pool (u = 35)

m | bitsize # passwords m | bitsize # passwords
guessed out of 109 guessed out of 114
avg| min | max avg | min | max

CE [ 165| 36.7] 37(34%) T 1 175| 37.1| 59(52%) T T
CY | 104 | 33.4] 22(20%) T Tl 77 31.1| 41(36%) T T

CE [125] 34.7] 24(22%)| 9(8%) | 35(32%) | 125| 34.7] 42(37%)| 29(25%) | 56(49%)
CY. [ 85| 31.9| 21(19%)| 7(6%) | 27(25%)| 59| 29.2| 34(29%)| 19(17%) | 47(41%)
CE1100| 33.1] 22(20%)] 8(7%) | 32(29%) | 100 | 33.1] 35(31%)| 24(21%)| 55(48%)
CY | 72 30.6| 17(16%)| 8(7%) | 30(28%)| 52| 28.2| 28(25%)| 18(16%)| 43(38%)
CE [ 75| 30.9[ 14(13%)| 4(4%) | 25(23%)| 75| 30.9] 30(27%)] 20(18%)| 45(39%)
CV. [ 56| 28.8] 12(11%)| 4(4%) | 24(22%) | 41| 26.4| 26(23%)| 14(12%)| 43(38%)

Table 3:Dictionary attacks using different sets. All subsets of users (afterrsteviio rows) are the result of 10 randomly selected
subsets of; short-term study user passwords. For rows 1 and 2, note:tkat33 and35. m is the alphabet size, which defines
the dictionary bitsize. See text for descriptiong®f andC**. 1The first two rows use all data from the short-term study to seed a
single dictionary, and as such, there are no average, max, or mirsvalugport.

fore applying click-order patterns) is provided in the first based graphical passwords could be analyzed for patterns
row of Table 5. in user choice. We expect this general direction will yield

other results, including patterns due to mnemonic strate-
We hypothesized that many users will choose passgies (e.g., clicking all red objects).

words in one (or a combination) of six simple click-

order patterns: right to left (RL), left to right (LR), topto  The results shown in Table 5 indicate that, on aver-
bottom (TB), bottom to top (BT), clockwise (CW), and age for thepool image, using only the diagonal con-
counter-clockwise (CCW). Diagonal (DIAG) is a com- straint will reduce the dictionary size to 16 bits, while
bination of a consistent vertical and horizontal directionstill cracking 12% of passwords. Similarly, for ticars
(e.g., both LR and TB). Note that straight lines also fallimage, using only this constraint will reduce the dictio-
into this category; for example, whem;( y;) is a hor-  nary to 18 bits, while still cracking 10% of passwords.
izontal and vertical pixel coordinate, the rule for LR is The success rate of our human-seeded attack is compa-
(r1 < 29 < 23 < x4 < x35), SO a vertical line of rable to recent results on cracking text-based passwords
points would satisfy this constraint.We apply our base[23], where 6% of passwords were cracked with a 1.2
attack dictionaries (one for each image), under variousnillion entry dictionary (almost 2 bits larger than our
sets of these click-order pattern constraints to determin®IAG dictionary based on harvested points of 15 users
their success rates and dictionary sizes. This methotbr cars and 4 bits larger for DIAG based on 15 users
only initiates the exploration of other ways that click- for pool). Furthermore, unlike most text dictionaries, we



Dictionary cars pool

m | bitsize | # passwordg m | bitsize | # passwordg

guessed guessed

100 33.1| 29/89 (33%)| 100 33.1| 52/94 (55%)
50 27.9 | 23/99 (23%)| 50 27.9 | 22/104 (21%)

20,longterm
R

10,longterm

Table 4:Dictionary attack results, using the first 20 and 10 users from the longstemiy to seed an attack against the others.
is the alphabet size. See text for description€'8fandC2.

carsimage poolimage

Click-order pattern # passwordg dictionary # passwordg dictionary

guessed of 109 size (bits) || guessed of 114 size (bits)
CY; (with no pattern) 13 (12%) 29.2 22 (19%) 27.1
LR, RL, CW, CCW, TB, BT 12 (11%) 25.6 22 (19%) 23.4
LR, RL 11 (10%) 23.8 19 (17%) 22.0
TB,BT 12 (11%) 24.4 15 (13%) 21.9
CW, CCW 0 (0%) 24.0 4 (4%) 21.7
DIAG 11 (10%) 18.4 14 (12%) 16.2

Table 5: Effect of incorporating click-order patterns on dictionary size ancass, as applied to a representative dictionary
of clusters gathered from5 users. Results indicate that the DIAG pattern produces the smallest digfiana still guesses a
relatively large number of passwords.

do not need to store the entire dictionary as it is generatedttackers constructing attack dictionaries, and proactiv
on-the-fly from the alphabet. At best, this indicates thatpassword checking.
these graphical passwords are slightly less secure than
the text-based passwords they have been proposed to g1
place. However, the reality is likely worse. The anal-
ogy to our attack is collecting text passwords from 15We begin by identifying details of the user task in cre-
users, and generating a dictionary based on all permutaating a click-based graphical password. The user must
tions of the characters harvested, and finding it generatechoose a set of points (in a specific order) that can be re-
a successful attack. The reason most text password diecnembered in the future. We do not focus on mnemonic
tionaries succeed is due to known dependent patterns istrategies for these automated dictionaries (although the
language (e.g., using di or tri-grams in a Markov modelcould likely be improved using the click-order patterns
[29]). The obvious analogy to this method has not beerfrom Section 4.2), but rather the basic features of a point
yet attempted, but would be another method of furtherthat define candidate click-points. To this end, we iden-
reducing the dictionary size. tify a candidate click-pointo be a point which is: (1)
identifiablewith precision within the system’s error tol-
) erance; and (2)listinguishablefrom its surroundings,
5 Purely Automated Attacks Using Image  j.e., easily picked out from the background. Regarding
Processing Tools (1), as an example, timolimage has a red garbage can
that is larger than th&9 x 19 error tolerance; to choose
Here we investigate the feasibility of creating an at-the red garbage can, a user must pidpacificpart of it
tack dictionary for click-based graphical passwords bythat can be navigated to again (on a later occasion) with
purely automated means. Pure automation would sideprecision, such as the left handle. Regarding (2), as an
step the need for human-seeding (in the form of harvestexample, it is much easier to find a white logo on a black
ing points), and thus should be easier for an attacker tat than a brown logo on a green camouflage hat.
launch than the attacks presented in Section 4. We create For modelling purposes, we hypothesize that the fewer
this attack dictionary by modelling user choice using acandidate click-points (as defined above) that an image
set of image processing methods and tools. The idea ikas, the easier itis to attack. We estimate candidate click-
that these methods may help predict hot-spots by autopoints by implementing a variation of Itti et al.'s bottom-
mated means, leading to more efficient search orderingsp model of visual attention (VA) [17], and combining it
for exhaustive attacks. This could be used for modelingwith Harris corner detection [16].

Identifying Candidate Click-Points
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Corner detection picks out the areas of an image thaher masking in step (3); the high probability points were
have variations of intensity in horizontal and vertical di- centroids of circles.
rections; thus we expect it should provide a reasonable To evaluate how well the CCP-list works at modelling
measure of whether a point is identifiable. ltti et al.'s users’entirepasswords (rather than just a subset of click-
VA determines areas that stand out from their surroundpoints within a password), we used the top ranked one-
ings, and thus we expect it should provide a reasonabl¢hird of the CCP-list values (i.e., the top 138 points for
measure of a point’s distinguishability. Briefly, VA cal- each image) to build a graphical dictionary and carry out
culates a saliency map of the image based on 3 channetsdictionary attack against the observed passwords from
(color, intensity, and orientation) over multiple scales.both user studies (i.e., on all 17 images in the lab study,
The saliency map is a grayscale image whose brighteand thecars and pool images again in the field study).
areas (i.e., those with higher intensity values) represenive found that for some images, this 35-bit dictionary
more conspicuous locations. A viewer's focus of atten-was able to guess a large number of user passwords (30%
tion should theoretically move from the most conspicu-for the iconsimage and 29% for thehiladelphiamap
ous locations (represented by the highest intensity areamage). For both short and long-term studies, our tool
on the saliency map) to the least. We assume that usetgiessed 9.1% of passwords for ttarsimage. A 28-
are more likely to choose click-points from areas whichbit computer-generated dictionary (built from the top 51
draw their visual attention. ranked CCP-list alphabet) correctly guessed 8 passwords
We implemented a variation of VA and combined it (22%) from theconsimage and 6 passwords (17%) from
with Harris corner detection to obtain a prioritized list thephiladelphiaimage. Results of this automated graph-
of candidate click-point§CCP-list) as follows. (1) Cal- ical dictionary attack are summarized in Table 6.
culate a VA saliency map (see Fig. 5(b)) using slightly

smaller scales than Itti et al. [17] (to reflect our interest | Image passwords passwords
in smaller image details). The higher-intensity pixel val- guessed guessed
ues of the saliency map reflect the most “conspicuous” (lab study) (field study)

(and distinguishable) areas. (2) Calculate the corner lo- "1 paperclips 2136 (5.5%) —

cations using the Harris corner detection function as im- (5 cqcovers 2135 (5.7%) _

plemented by Kovesi [22](see Fig. 5(c)). (3) Use the 3. philadelphia | 10/35 (28.6%) —

corner locations as a bitmask for the saliency map, pro- [z toys 2139 (5.1%) —

ducing what we call @ornered saliency magCSM). (4) 5 bee 1740 (2.5%) —

Compute an ordered CCP-list of the highest to lowest 6. faces 0/32 (0.0%) —

intensity-valued CSM points. Similar to the focus-of- = citymap- 134 (2'9%) -

attention inhibitors used by Itti et al., we inhibit a CSM — .

. . . . 8.icons 11/37 (29.7%) -
point (and its surrounding tolerance) once it has been 9 smarties 5/37 (13.5%) —
added to the CCP-list so it is not chosen again (see Fig.— :

L 2" 10.cars 3/33 (9.1%)| 10/109 (9.1%)

5(d)). The CCP-listis at least as long as the alphabet size i1 och 3/36 (8.3
(414), but is a prioritized list, ranking points from (the 12' p_(; o3 (O.OCVO) —
hypothesized) most to least likely. - citymap-gr (0.0%) _
13. pool 1/35 (2.9%)| 2/114 (0.9%)
14. mural 1/36 (2.8%) -
5.2 Modd Results 15. corinthian 3/35 (8.6%) -
16. truck 1/35 (2.9% -
We evaluated the performance of the CCP-list as a model 17 tea 538 E5 30/3 —

of user choice using the data from both the lab and field

user studies. We first examined how well the first halfTap|e 6: passwords correctly guessed (using a 35-bit dictio-
(top 207) of the CCP-list overlaps with the observednary based on a CCP-list). The number of target passwords is

high-probability clusters from our lab user study (i.e., different for most images (32 to 40 for the lab study).

those clusters of size at least 5). We found that this half-
alphabet found all high-probability clusters on thens
faces andcarsimages, and most of the high-probability

Figure 6 shows that the CCP-list does a good job of

clusters on 11 of the 17 images. Most of the images thamodelling observed user choices for some images, but
our model performed poorly on appeared to be due to theot all images. This implies that on some images, an at-
saliency map algorithm being overloaded with too muchtacker performing an automated attack is likely to be able
detail (pch, citymap-gr paperclips smarties andtruck  to significantly cut down his search space. This method
images). The other image on which this approach didalso seems to perform well on the images for which the
not perform well (hural) appears to be due to the cor- visual attention model made more definite decisions —the
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(c) Corner detection output. (d) Cornered saliency map (CSM) aftes1dpCP-list
points have been inhibited.

Figure 5:lllustration of our method of creating a CCP-list (best viewed electronically

saliency map shows a smaller number of areas standingser will not be included in this model (as only corners
out, as indicated visually by a generally darker saliencyare included); adding object centroids to the bitmask is
map with a few high-intensity (white) areas. An attackerthus an avenue for improvement.

interested in any one of a set of accounts could go after

accounts using a background image that the visual atten-

tion model performed well on. 6 Related Work

In essence, this method achieves a reduction (by leavn the absence of password rules, practical text password
ing out some “unlikely” points) from a3-bit full pass-  security is understood to be weak due to common pat-
word space to &5-bit dictionary. The43-bit full pass-  terns in user choice. In a dated but still often cited study,
word space is the proper base for comparison here, sind€lein [21] determined a dictionary of 3 million words
an actual attacker with no a priori knowledge must con-(less than 1 billionth of the entire 8-character password
sider all T-regions in an image. However, we believespace) correctly guessed over 25% of passwords. Auto-
this model of candidate click-points could be improved mated password cracking tools and dictionaries that ex-
through a few methods. The images that the model perploit common patterns in user choice includeck[28]
formed poorly on appeared to be due to failure in cre-andJohn the Rippef30]. More recently, Kuo et al. [23]
ating a useful visual attention model saliency map. Thefound John the Ripper’s English dictionary of 1.2 mil-
saliency maps seem to fail when there are no areas théibn words correctly guessed 6% of user passwords, and
stand out from their surroundings in the channels used imn additional 5% by also including simple permutations.
saliency map construction (color, intensity, and orienta-n response to this well-known threat, methods to cre-
tion). Further, centroids of objects that “stand out” to aate less predictable passwords have emerged. Yan [48]
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explores the use of passphrases to avoid password digag: memorability, general perception, error rates, the ef
tionary attacks. Jeyaraman et al. [20] suggest basing fect of allowed error tolerance, the effect of image choice
passphrase upon an automated newspaper headline. ¢n usability, and login and creation times. They report
theory, creating passwords using these techniques shoute usability of PassPoints to be comparable to text pass-
leave passwords less vulnerable to automated passwowdords in most respects; the notable exception is a longer
cracking dictionaries and tools, although Kuo et al. [23]time for successful login. The implementation we study
show this may not be the case. Proactive passwortierein is also reported to have acceptable success rates,
checking techniques (e.g., [38, 7, 2]) are commonly useccuracy, and entry times [6].
to help prevent users from choosing weak passwords. Regarding explorations of the effect of user choice,
Many variations of graphical passwords are discussedavis et al. [8] examine this in a variation of Passfaces
in surveys by Suo et al. [39] and Monrose et al. [27]. Weand Story (see above), two recognition-based schemes
discuss two general categories of graphical passwordsyhich essentially involve choosing animage from one or
recognition-based and recall-based. In the interest ofnore panels of many different images. Their user study
brevity, we focus on the areas closest to our work: click-found very strong patterns in user choice, e.g., the ten-
based graphical passwords, and practical security analylency to select images of attractive people, and those
ses of user authentication methods. of the same racial background. The high-level idea of
Typical recognition-based graphical passwords re.finding and exploiting patterns in user choice also mo-
quire the user to recognize a set (or Subset}{obre- tivated our current Work, although these earlier results
viously memorized images. For example, the user is predo not appear directly extendable to (cued recall) click-
sented a set oV (> K) images from which they must based schemes that select unrestricted areas from a sin-
distinguish a subset of thelk images. The user may 9le background image. Thorpe et al. [41, 42] discussed
be presented many panels of images before providindjkely patterns in user choice for DAS (mirror symme-
enough information to login. Examples are Déja Vu [10], try and small stroke count), later corroborated through
which uses random art images created by hash visualizal20's user study [40]. These results also do not appear to
tion [32]; Passface$35], whereby the set of images are directly extend to our present work, aside from the com-
all human faces; an8tory[8], whereby the images are mon general idea of attack dictionaries.
from various photo categories (e.g., everyday objects, lo- Lopresti et al. [24] introduce the concept of generative
cations, food, and people), with users encouraged to creattacks to behavioral biometrics. Ballard et al. [1] gen-
ate a story as a mnemonic strategy. In the cognitive auerate and successfully apply a generative handwriting-
thentication scheme of Weinshall [44], a user computegecognition attack based on population statistics of hand-
a path through a grid of images based on the locations o#riting, collected from a random sample of 15 users with
those fromK . The end of the path provides a number for the same writing style. In arguably the most realistic
the user to type, which was thought to protect the valuestudy to date of the threats faced by behavioral biomet-
of K from observers; Golle et al. [14] show otherwise. rics, they found their generative attacks to be more ef-
Recall-based schemes can be further described as cufgftive than attacks by skilled and motivated forgers [1].
or uncued. An uncued scheme does not provide th@Ur most successful attack from Section 4.2 may also
user any information from which to create their graphicalPe viewed as generative in nature; it uses click-points
password; e.g., DAS (Draw-A-Secret) [19] asks users tdrarvested from a small population of users frp_m another
draw a password on a background grid. Cued schemeOntext (the lab study), performs some additional pro-
show the user something that they can base their graphf€Ssing (clustering), and recombines subsets of them as
cal password upon. A click-based password using a sinduesses. Our work differs in its application (click-based

gle background image is an example of a cued graphic@raphical passwords), and in the required processing to

password scheme where the user password is a sequer@nerate a login attempt.

of clicks on a background image. Blonder [4] originally

proposed the idea of a graphical password with a click-7  Discussion and Concluding Remarks

based scheme where the password is one or more clicks

on predefined image regions. In the Picture Passwor®ur results demonstrate that harvesting data from a

variation by Jansen et al. [18], the entire image is oversmall number of human users allows quite effective of-

layed by a visible grid; the user must click on the samefline guessing attacks against click-based graphical pass-

grid squares on each login. words. This makes individual users vulnerable to tar-
Birget et al. [3] allow clicking anywhere on an image geted (spear) attacks, as one should assume that an at-

with no visible grid, tolerating error through “robust dis- tacker could find out the background image associated

cretization”. Wiedenbeck et al. [45, 46, 47] implement with a target victim, and easily gather a small set of

this method as PassPoints, and study its usability includhuman-generated data for that image by any number of
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means. For instance, an attacker could collect points bgbility simultaneously. Any proposal with significantly
protecting an attractive web service or contest site withvaried parameters would require new user studies explor-
a graphical password. Alternatively, an attacker coulding hot-spotting and usability.

pay a small group of people or use friends. This at least Overall, the degree of hot-spotting confirmed by our
partially defeats the hope to improve one’s security in astudies, and the successes of the various attack strate-
click-based scheme through a customized image. gies herein, call into question the viability of click-bdse

We found that our human-seeded attack strategy waschemes like PassPoints in environments where off-line
quite successful, guessing 36% of passwords with a 31attacks are possible. Indeed in such environments, a
bit dictionary in one instance, and 20% of passwords43-bit full password space is clearly insufficient to start
with a 33-bit dictionary in another. Preliminary work with, so one would assume some tolerable level of pass-
shows that click-order patterns can be used to furtheword stretching (e.g., [15, 34]) would be implemented
reduce the size of these dictionaries, while maintainingo increase the difficulty of attack. Regardless of these
similar success rates. The success of our human-seed#dplementation details, click-based graphical password
attack dictionaries appears to be related to the amount gfchemes may still be a suitable alternative for systems
hot-spotting on an image. The prevalence and impact oivhere offline attacks are not possible, e.g., systems cur-
hot-spots contrasts earlier views which underplayed theirently using PIN numbers.
potential impact, and suggestions [47] that any highly
detailed image may be_a good cano!idate. Our StUdie?«CknowledgmentS
allow us to update previous assumptions that half of al
click-regions on an image will be chosen by users. Af-We thank Sonia Chiasson and Robert Biddle for their
ter collecting 570 and 545 points, we only observed 111cooperative effort with us in running the user studies.
and 133 click-regions (fopool and cars respectively); We are grateful to Prosenjit Bose, Louis D. Nel, Weix-
thus, one quarter to one third of all click-regions would uan Li, and their Fall 2006 classes for participating in
be a more reasonable estimate even from highly detailedur field study. We also thank Anthony Whitehead for
images, and the relative probabilities of these regiongecommending relevant work on visual attention and im-
should be expected to vary quite considerably. age segmentation. We thank Fabian Monrose, and the

Our purely automated attack using a combination ofanonymous reviewers for their insightful suggestions for
image processing measures (which likely can be considimproving this paper. The first author acknowledges
erably improved) already gives cause for concern. FONSERC for funding a Canada Graduate Scholarship.
images on which Itti et al.’s [17] visual attention model The second author acknowledges NSERC for funding a
worked well, our model appeared to do a reasonable jotNSERC Discovery Grant and his Canada Research Chair
of predicting user choice. For example, an automatically4n Network and Software Security.
generated 28-bit dictionary from our tools guessed 8 out
of 37 (22%) observed passwords for tbensimage, and Notes
6 out of 35 (17%) for thehiladelphiaimage. Our tools
guessed 9.1% of passwords for tbers image in both Version: May 13, 2007. A preliminary version of this pa-
the short-term lab and long-term field studies. Improve-per was available as a Technical Report [43].
ments to pursue include adding object centroids to the 2analysis showed little difference between the points cho-
bitmask used in creating the cornered saliency map.  sen for these different tolerance groups.

Our attack strategies (naturally) could be used defen- °A preliminary version [43] had a small technical error
sively, as part of proactive password checking [38, 7, 2] causing some numbers to be less than shown herein in Tables 3
Thus, an interesting avenue for future work would be toa“d45- o
determine whether graphical password users create other S harris(image, 1, 1000, 3)
predictable patterns when their choices are disallowed
by proactive checking. Additionally, the visual attention Refer ences
model may be used proactively to determine background
images to avoid, as those images on which the visual at-[1] L. Ballard, F. Monrose, and D. Lopresti. Biometric
tention model performed well (e.g., identifies some areas Authentication Revisited: Understanding the Im-
as much more interesting than others) appear more vul-  pact of Wolves in Sheep’s Clothing. Isth Annual
nerable to the purely automated attacks from Section 5. USENIX Security Symposiupages 29-41, 2006.

An interesting remaining question is whether altering [2] F. Bergadano, B. Crispo, and G. Ruffo. High
parameters (e.g., pixel sizes of images, tolerance setting Dictionary Compression for Proactive Password
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