Comparison of Projection, Homography and Fundamental Matrix

COMP4102A
Dr. Gerhard Roth
Winter 2014
Version 1

Projection, Homography, Fund Matrix

- All these three are similar but also different
- Projection - 3d point to 2d pixel
- Have only one image
- Homography - 2d pixel to 2d pixel
- Have two images
- Fund matrix - 2d pixel to epipolar line (pixels)
- Have two images
- Assume we are given intrinsic and extrinsic camera parameters of all the cameras
- Then we can compute projection, homography and fund. matrix
- This is done by simple algebraic substitution
- Then we can use these matrices appropriately

Projection, Homography, Fund Matrix

- We can use these matrices for other points
- Projection - project any 3d point to 2d
- Many to one transformation since any 3d point on the same line from camera center projects to same 2d point
- Homography - transfer any 2d pixel from one image to the other (either way)
- A one to one transformation between two images
- Fund matrix - transfer any 2d pixel to an epipolar line (pixels) in other image
- So we can apply our matrices to other pixels (or 3d points) than was used to create them!

Projection, Homography, Fund Matrix

- Assume we do not know either the intrinsic or the extrinsic camera parameters
- We are only given correspondences
- Projection matrix - 3d points to 2d pixels
- Homography - 2d pixels to 2d pixels
- Fund Matrix - 2d pixels to 2d pixels
- Then we can compute these matrices
- Assuming that we are given enough correspondences
- Stack all correspondences in an A matrix
- Find eigenvector associated with smallest eigenvalue of the matrix A transpose A (this is the solution to Am = 0)
- For correct fund matrix must do some post processing

Projection, Homography, Fund Matrix

- Computed a projection, homography or fund matrix from a set of correspondences
- We know what is in these matrices if we are given intrinsic and extrinsic parameters
- Just some variables of these parameters (your assignment)
- We can decompose our matrix (all three)
- Take numerical values and compute the intrinsic/extrinsic parameters that must exist to create these numbers!
- For projection matrix we can compute intrinsic parameters
- For homography and fund matrix assume intrinsic given
- Projection matrix => Intrinsic and extrinsic
- Homography => Plane orientation and location or rotation
- Fund matrix - Extrinsic - correct R, but T up to a scale

Projection, Homography, Fund Matrix

- Each of these four matrices (P, H, F and E) are part of a homogeneous system
- So we can multiply each element in these matrices by the same value and still have exactly the same matrix!
- Therefore all scaled versions of the same matrix are equivalent (the same matrix)
- Important to understand degrees of freedom
- For example, homography matrix H has nine elements but only 8 degrees of freedom
- Need $4 \times 2 \mathrm{~d}$ correspondences $=8$ in total

Homography - to camera pose

- Assume we have a stored 2d picture
- Want to find this picture in the image
- Basically find_obj.cpp in the opencv examples
- Find surf features in both images
- Then correspond surf features by using surf descriptor
- Find homography (consensus algorithm)
- From this homography we can compute the camera pose (the rotation and translation relative to the plane in image)
- Use very similar approach to what is used for camera calibration, but assume that K matrix is known
- This is reasonable because we usually calibrate the camera in applications such as augmented reality

Homography - to camera pose

- Assume $Z=0$ is on the plane in the world

$$
\mathbf{M}=\left[\begin{array}{ccc}
-f_{x} r_{11}+o_{x} r_{31} & -f_{x} r_{12}+o_{x} r_{32} & -f_{x} T_{x}+o_{x} T_{z} \\
-f_{y} r_{21}+o_{y} r_{31} & -f_{y} r_{22}+o_{y} r_{32} & -f_{y} T_{y}+o_{y} T_{z} \\
r_{31} & r_{32} & T_{z}
\end{array}\right]
$$

- We know K, so know fx, fy, ox, and oy
- Then we can compute R, and T using the characteristics of Rotation matrices
- Similar (but not identical) to what was done to compute R, T for camera calibration

Homography - Assume proper $Z=0$

- Need camera R, and T to augment
- With R and T we can augment (need this to properly draw a 3d virtual object)
- Homography (but no R,T) is enough for drawing a 2d augmentation (planar pattern)

Fundamental matrix - to camera pose

- Computed fund matrix between two images using a set of correspondences
- Find surf features in both the left and right images
- Correspond the surf features using surf descriptors
- Find the fundament matrix (consensus algorithm)
- Assume we also know K for both images
- Then since $\mathbf{F}=\mathrm{K}_{r}^{-\mathbf{T}} \mathbf{E K}{ }_{l}^{-1}$ we can compute E
- But $E=R$ S where S encodes translation between images
- Can use SVD to decompose R into R and S (therefore T)
- But we only know T up to a scale factor, why?
- Because if we double T but also double distance to all the corresponding features we have the exact same images
- Also scaling T produces same E because of homogenity!

Two View Reconstruction

- We have a set of correspondences that we used to compute the fundamental matrix
- Below are the correspondences that we used

Two view reconstruction

- Using the intrinsic and extrinsic camera calibration and the pixel co-ordinates of the matching feature points we need to compute the 3D location of that feature point
- Can be done using simple geometric triangulation (p. 162, Ch. 7 of book)
- Set up a vector equation by inspection
- Then solve the associated linear system to get the 3d co-ordinates of the point P in space
- Actually find the point that is closest to both of the rays from the origin of the camera through the projection of the points
- Very simple and efficient process to solve for P

Known intrinsic and extrinsic

Solution

- Triangulation: Two rays are known and the intersection can be computed
- Problem: Two rays will not actually intersect in space due to errors in calibration and correspondences, and pixelization
- Solution: find a point in space with minimum distance from both rays
- We repeat this
 triangulation process for all corresponding points

3d Reconstruction example

3d Reconstruction example

3d Reconstruction example

- Homography - relation to fund matrix
- Fund matrix requires camera translation
- If we take two cameras and slowly reduce translation to zero we have homography
- The only remaining motion is the translation
- In this situation, with rotation only we have a standard homography
- How can we tell from just correspondences which situation has occurred??
- Not so easy, best to use quality of matches
- Look at how many feature points support homography and fund matrix, largest support is correct answer

All together - from images to models

- Input is a set of images, output a model!
- Basic steps
- Find surf/sift features in all images
- For all image pairs match the features
- Compute fundamental matrix using these features
- Find R, T (up to scale) for every image pair
- Now rectify every image pair
- Find dense depth (simple stereo) for each image pair
- Make points into triangles (not need to know this step)
- Texture the triangles (not need to know this step)
- Some of these steps are many years of work

Images to Models - Camera Hardware

- Two main possibilities
- Single camera that you move around
- Stereo head or active sensor
- To obtain depth from single camera we must have some translation between images
- Otherwise this is a homography situation (rotation only)
- Depth depends on the camera motion
- This technology is called "structure from motion"
- If you have stereo camera or active sensor always obtain depth with a certain accuracy
- So you can rotate the stereo/active sensor and still get depth because depth comes from sensor, not the motion
- No need to worry about rotations, any motion will do!

