Homography

COMP4102A

Dr. Gerhard Roth
Winter 2014
Version 1

Linear Mappings

- linear mappings from one particular space to the other, also called transformations
- Different types of transformations from a 2d image to another 2d images
- Translation, rigid, similarity, affine, projective
- Next one in the list includes all the previous members
- i.e. Perspective transformation is a superset of all previous
- A 2d perspective transformation is commonly called an image warp or a homography
- Warp takes a 2d image and produces another 2d image
- Maps from a pixel in source image to a pixel destination

Homography = Linear warp

-Consider a point $x=(u, v, 1)$ in one image and $x^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)$ in another image
$\cdot \mathrm{A}$ homography is a 3 by 3 matrix M

$$
\mathbf{M}=\left[\begin{array}{lll}
\mathrm{m}_{11} & \mathrm{~m}_{12} & \mathrm{~m}_{13} \\
\mathrm{~m}_{21} & \mathrm{~m}_{22} & \mathrm{~m}_{23} \\
\mathrm{~m}_{31} & \mathrm{~m}_{32} & \mathrm{~m}_{33}
\end{array}\right]
$$

-The homography relates the pixel co-ordinates in the two images if $x^{\prime}=M x$
-Works on pixel co-ordinates (pixels) not camera co-ordinates (mm)
-When applied to every pixel the new image is a warped version of the original image

Two images related by homography

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$			\square
rigid (Euclidean)	$\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$			\checkmark
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$			\checkmark
affine	$[\boldsymbol{A}]_{2 \times 3}$			\square
projective	$\tilde{\boldsymbol{H}}]_{3 \times 3}$			\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Affine example

Perspective transformation

a straight line is a straight line

(d)

(B)

Homography conditions

- Two images are related by a homography if and only if (2 conditions)
- Both images are viewing the same plane from a different angle (was on your assignment)
- Both images are taken from the same camera but from a different angle
- Camera is rotated about its center of projection without any translation
- Note that the homography relationship is independent of the scene structure
- It does not depend on what the cameras are looking at
- Relationship holds regardless of what is seen in the images

Homography does not work in general!

Homography when viewing a plane

- Normal projection matrix

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{32} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- All world points on a plane, choose $Z=0$ to be on the plane $\left[\begin{array}{c}x \\ y \\ w\end{array}\right]=\left[\begin{array}{llll}m_{11} & m_{12} & 0 & m_{14} \\ m_{21} & m_{22} & 0 & m_{24} \\ m_{31} & m_{32} & 0 & m_{34}\end{array}\right]\left[\begin{array}{c}X \\ Y \\ 0 \\ 1\end{array}\right]$
- Final matrix relates points on world plane to image plane

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{14} \\
m_{21} & m_{22} & m_{24} \\
m_{31} & m_{32} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

Homography when rotating camera

- No translation, here X is a 3d point, and $\mathrm{x}, \mathrm{x}^{\prime}$ projection -Home position - projection equation

$$
\mathrm{x}=\mathrm{K}[\mathrm{I} \mid 0]\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right]=\mathrm{KX}
$$

-Rotation by a matrix R - projection equation

$$
\mathrm{x}^{\prime}=\mathrm{K}[\mathrm{R} \mid 0]\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right]=\mathrm{KRX}
$$

-So $\quad \mathrm{X}^{\prime}=\mathrm{KRK}^{-1} \mathrm{X}$ where K is calibration matrix -Where KRK^{-1} is a 3by 3 matrix M called a homography

-Compute homography

-If we know rotation K , R , then homography H can be computed directly $\mathrm{x}^{\prime}=\mathrm{KRK}^{-1} \mathrm{x}$

- Applying this homography to one image gives image that we would get if the camera was rotated by R
- If we know, K, R and T and are looking at a plane we can also compute the homography
- Just look at your last assignment, where you have the full projection matrix (p. 134 of book)
- Now drop the 3d column, then we have a homography matrix
- If we know fx, fy, ox, oy, R and T we can define this matrix
- So if we have this info we can always compute the homography
- But what if we only have two images, and a set of correspondences?

Computing M: The four point Algorithm

Input: n point correspondences ($n>=4$)

- Construct homogeneous system $A x=0$ from

$$
\mathrm{x}^{\prime}=\mathrm{xM}
$$

$-x=\left(m_{11}, m_{12},, m_{13}, m_{21}, m_{22}, m_{23} m_{31}, m_{32}, m_{33}\right)$: entries in m

- Each correspondence gives two equations
- A is a $2 x n x 9$ matrix
- Obtain estimate M by Eigenvector with smallest eigenvalue
- Do not have any singularity constraint as we did with the fundamental matrix
- Finding the homography that solves $\mathrm{Ax}=0$ subject to the constraint that
- x is a unit vector $\|\mathrm{x}\|=1$

Output: the homography matrix, M that is the best least squares solution to this problem

- Similar to how you compute a projection matrix, but the correspondences are 2d pixels to 2d pixels, and not 3d points to 2d pixels!

Recover Homography matrix from correspondences

$$
\left[\begin{array}{l}
\mathbf{u}_{2} \\
\mathbf{v}_{2} \\
\mathbf{w}_{2}
\end{array}\right]=\left[\begin{array}{lll}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{v}_{1} \\
\mathbf{w}_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& u_{2}=\frac{H_{11} u_{1}+H_{12} v_{1}+H_{13}}{H_{31} u_{1}+H_{32} v_{1}+H_{33}} \\
& v_{2}=\frac{H_{21} u_{1}+H_{22} v_{1}+H_{23}}{H_{31} u_{1}+H_{32} v_{1}+H_{33}}
\end{aligned}
$$

Multiply up denominators

$$
\begin{aligned}
& H_{31} u_{1} u_{2}+H_{32} v_{1} u_{2}+H_{33} u_{2}=H_{11} u_{1}+H_{12} v_{1}+H_{13} \\
& H_{31} u_{1} v_{2}+H_{32} v_{1} v_{2}+H_{33} v_{2}=H_{21} u_{1}+H_{22} v_{1}+H_{23}
\end{aligned}
$$

Solving for $\mathrm{AX}=0$-gives us 2 equations/correspondence -need 4 correspondences

$$
\begin{aligned}
& H_{31} u_{1} u_{2}+H_{32} v_{1} u_{2}+H_{33} u_{2}-H_{11} u_{1}-H_{12} v_{1}-H_{13}=0 \\
& H_{31} u_{1} v_{2}+H_{32} v_{1} v_{2}+H_{33} v_{2}-H_{21} u_{1}-H_{22} v_{1}-H_{23}=0
\end{aligned}
$$

Each correspondence provides two rows of A matrix
$\left[\begin{array}{ccccccccc}{\left[-u_{1}\right.} & -v_{1} & -1 & 0 & 0 & 0 & u_{1} u_{2} & v_{1} u_{2} & u_{2} \\ {[0} & 0 & 0 & -u_{1} & -v_{1} & -1 & u_{1} v_{2} & v_{1} v_{2} & \left.v_{2}\right]\end{array}\right]\left[\begin{array}{l}H_{11} \\ H_{12} \\ H_{13} \\ \cdots\end{array}\right]$

Recover Homography matrix from correspondences

Each correspondence provides two rows of A matrix

$\left[-u_{1}\right.$	$-v_{1}$	-1	0	0	0	$u_{1} u_{2}$	$v_{1} u_{2}$	$\left.u_{2}\right]$
$[0$	0	0	$-u_{1}$	$-v_{1}$	-1	$u_{1} v_{2}$	$v_{1} v_{2}$	$\left.v_{2}\right]$

8 equations, 9 unknowns (from 4 correspondences)

$\mathbf{A X}=\mathbf{b} \quad \mathbf{X}=$ column vector of homography matrix elements Get last vector using SVD

Homogeneous System

- M linear equations of form $A \mathbf{x}=0$
- If we have a given solution x 1 , s.t. $\mathrm{Ax} 1=0$ then $c^{*} x 1$ is also a solution $A\left(c^{*} x 1\right)=0$
- Need to add a constraint on \mathbf{x},
- Basically make \mathbf{x} a unit vector $X^{T} X=1$
- Can prove that the solution is the eigenvector corresponding to the single zero eigenvalue of that matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$
- This can be computed using eigenvector of SVD routine
- Then finding the zero eigenvalue (actually smallest)
- Returning the associated eigenvector

Uses of a homography

- Consider two images (two different views of a plane, or two different rotated views)
- We can synthesize second image from first!
- Take the first image
- With appropriate homography we can create equivalent of the second image without needing to take that image!
- In other words, just compute the proper homography and then apply it to the first image to get a new image
- This new image is the image we would get if we actually physically captured the second image
- Can not do this in general (only when we are not looking at a plane or when we translate)
- What can we do with this fact?

Image rectification (square views)

To unwarp (rectify) an image

- Find the homography \mathbf{H} given a set of \mathbf{p} and \mathbf{p} ' pairs
- How many correspondences are needed?
- Tricky to write H analytically, but we can solve for it!
- Find such H that "best" transforms points p into p'
- Use least-squares!

Original camera view

Downward rotation via homography

Sideways rotation via homography

Image Rectification using a homography matrix (from Lec 8)

Correspondences

$u 11=268 ;$	$v 11=10 ;$	$u 21=0 ;$	$v 21=0 ;$
$u 12=558 ;$	$v 12=220 ;$	$u 22=499 ;$	$v 22=0 ;$
$u 13=46 ;$	$v 13=152 ;$	$u 23=0 ;$	$v 23=399 ;$
$u 14=334 ;$	$v 14=442 ;$	$u 24=499 ;$	$v 24=399 ;$

$\mathrm{u} 11=268 ;$	$\mathrm{u} 11=10 ;$	$\mathrm{u} 21=0 ;$	$\mathrm{u} 21=0 ;$
$\mathrm{u} 12=558 ;$	$\mathrm{u} 12=226 ;$	$\mathrm{u} 22=499 ;$	$\mathrm{u} 22=0 ;$
$\mathrm{u} 13=46 ;$	$\mathrm{u} 13=152 ;$	$\mathrm{u} 23=6 ;$	$\mathrm{u} 23=399 ;$
$\mathrm{u} 14=334 ;$	$\mathrm{u} 14=442 ;$	$\mathrm{u} 24=499 ;$	$\mathrm{u} 24=399 ;$

```
[u,d,v]=svd(a)
xtemp=v(8*9+1:9*9)'
x=xtemp/xtemp (9)
H=[x(1), x(2), x(3); x(4), x(5), x(6); x(7), x(8), x(9)]
```

```
a1 =[-u11, -u11, -1, 5, 0, 0, u11*u21, v11*u21, u21];
a2 =[b, b, b, -u11, -u11, -1, u11*u21, v11*u21, u21];
a3 =[-u12, -u12, -1, ต, ต, ต, บ12*u22, v12*u22, u22];
a4 =[0, !, !, -u12, -u12, -1, u12*u22, v12*u22, u22];
a5 =[-u13, -u13, -1, b, b, b, u13*u23, v13*u23, u23];
a6 =[0, 0, ©, -u13, -u13, -1, u13*u23, v13*u23, v23];
a7 =[-u14, -u14, -1, 5, 0, E, u14*u24, v14*u24, u24];
a8 =[0, !, b, -u14, -v14, -1, u14*U24, v14*U24, v24];
```

H $=$
0.9956
-1.1124
-0.0009
$1.5566-282.3961$
0.0011
. 7675

Hinu =

0.3762	-0.5720	268.0009
0.3481	0.3042	10.0090
-0.0064	-0.0063	1.0090

view_homog_matrix.exe

0.3762	-0.5720	268.0090
0.3491	0.3042	10.0096
-6.0954	-0.0903	1.0959

Image Rectification

- What are the uses of image rectification
- For a rectified image it is easy to compute object dimensions (given a known dimension
- Can not do this if the image is not rectified (even if you know the dimensions of an object in the image
- A rectified image is straight on to the camera (along the z axis)
- This geometry makes matching between two such images easier (called simple stereo matching)
- Rectification is often done with two images in general position to place them in this standard position
- Then stereo matching is much easier (will discuss this in the stereo section)

Automatic Mosaicing - Input

Automatic Mosaicing - Output

Mosaics: stitching images together

Mosaics

1. Pick one image (red)
2. Warp the other images towards it (usually, one by one)
3. blend

Computing a mosaic from an image set

- Take a camera on a tripod
- Rotate it around the axis of projection
- Choose one of the images as the base image
- Compute the homography that aligns all the other images relative to that image
- You get a single large image, a mosaic which looks like a high resolution image taken from that viewpoint
- This large image is called a mosaic
- Sometimes mosaics are called panoramas if they are wide enough (360 degrees or close)
- Both names (mosaic/panorama) are used

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Computing special mosaics

- You can synthesize any view (not a fixed reference view) to make a virtual camera
- Need special real-time viewer to take mosaic and synthesize any rotated view
- Use a speical re-sampling algorithm to create a new view
- Quicktime VR is a panorama creation/viewing system that can do this (many others)
- Very commonly used in many practical applications
- Microsoft ICE = automatic panorama software
- Rotate camera through any number of views
- Give system views in any order (and views may be zoomed)
- As long as have sufficient overlap, panorama will be created
- Can even create High Definition panoramas!

Augmented Reality

- Print self encoding binary pattern (tags)
- In real-time AR software
- Recognizes the tag, and finds pixel locations of 4 corners
- Computes homography that maps these four corner pixels to a rectified front facing image
- Uses this homography to compute the camera pose relative to the tag in the real world
- Draws a virtual oboject on top of the tag in the world
- Virtual content can be any 3d model, etc.
- Very common systems in practice and available on cell phones
- ARToolKit and ARTag

Typical binary tag pattern

- Bit string with error correction/detection is used to create a tag ID
- Predefined association of 3d models for each different tag ID

Using Tags for Augmentation

- In real-time find camera pose relative to the tag, and use this to draw virtual objects
- AR tags get an ID and camera position!

Homography

- Very useful in practice because of mosaics!
- Rectification is also important and will be used in stereo vision and other applications
- Many common mosaicing systems exist
- But math still depends on basic homography
- Many other issues to create an automatic mosaicing system
- Need to extract features (interest points!)
- Match them between images
- Align all the images with homographies
- Then blend them all together properly

