Homography

COMP4102A Dr. Gerhard Roth Winter 2014 Version 1

Linear Mappings

- linear mappings from one particular space to the other, also called transformations
- Different types of transformations from a 2d image to another 2d images
 - Translation, rigid, similarity, affine, projective
 - Next one in the list includes all the previous members
 - i.e. Perspective transformation is a superset of all previous
- A 2d perspective transformation is commonly called an image warp or a homography
- Warp takes a 2d image and produces another 2d image
 - Maps from a pixel in source image to a pixel destination

Homography = Linear warp

•Consider a point x = (u,v,1) in one image and x'=(u',v',1) in another image

•A homography is a 3 by 3 matrix M

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} \\ \mathbf{m}_{21} & \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{m}_{31} & \mathbf{m}_{32} & \mathbf{m}_{33} \end{bmatrix}$$

•The homography relates the pixel co-ordinates in the two images if x' = M x

•Works on pixel co-ordinates (pixels) not camera co-ordinates (mm)

•When applied to every pixel the new image is a warped version of the original image

Two images related by homography

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3}$			
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $			\bigcirc
similarity	$\left[\left s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$			\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$			
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$		_	

These transformations are a nested set of groups

Closed under composition and inverse is a member

Affine example

Perspective transformation

a straight line is a straight line

Homography conditions

- Two images are related by a homography if and only if (2 conditions)
- Both images are viewing the same plane from a different angle (was on your assignment)
- Both images are taken from the same camera but from a different angle
 - Camera is rotated about its center of projection without any translation
- Note that the homography relationship is independent of the scene structure
 - It does not depend on what the cameras are looking at
 - Relationship holds regardless of what is seen in the images

Homography does not work in general!

Homography when viewing a plane

Normal projection matrix

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{32} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- All world points on a plane, choose Z = 0 to be on the plane $\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & 0 & m_{14} \\ m_{21} & m_{22} & 0 & m_{24} \\ m_{31} & m_{32} & 0 & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$
- Final matrix relates points on world plane to image plane
 [x] [mu mu][x]

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{14} \\ m_{21} & m_{22} & m_{24} \\ m_{31} & m_{32} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Homography when rotating camera

No translation, here X is a 3d point, and x,x' projection
Home position – projection equation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} \, | \, \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{X}$$

•Rotation by a matrix R – projection equation

$$\mathbf{x}' = \mathbf{K} \begin{bmatrix} \mathbf{R} \mid \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{R} \mathbf{X}$$

•So $x' = KRK^{-1}x$ where K is calibration matrix •Where KRK^{-1} is a 3by3 matrix M called a homography

•Compute homography

•If we know rotation K, R, then homography H can be computed directly $x' = KRK^{-1}x$

- Applying this homography to one image gives image that we would get if the camera was rotated by R
- If we know, K, R and T and are looking at a plane we can also compute the homography
 - Just look at your last assignment, where you have the full projection matrix (p. 134 of book)
 - Now drop the 3d column, then we have a homography matrix
 - If we know fx, fy, ox, oy, R and T we can define this matrix
- So if we have this info we can always compute the homography
- But what if we only have two images, and a set of correspondences?

Computing M: The four point Algorithm

Input: n point correspondences ($n \ge 4$)

- Construct homogeneous system Ax=0 from X = xM
 - $x = (m_{11}, m_{12}, m_{13}, m_{21}, m_{22}, m_{23}, m_{31}, m_{32}, m_{33})$: entries in m
 - Each correspondence gives two equations
 - A is a 2xnx9 matrix
- Obtain estimate M by Eigenvector with smallest eigenvalue
 - Do not have any singularity constraint as we did with the fundamental matrix
 - Finding the homography that solves Ax = 0 subject to the constraint that
 - x is a unit vector ||x|| = 1

Output: the homography matrix, M that is the best least squares solution to this problem

•Similar to how you compute a projection matrix, but the correspondences are 2d pixels to 2d pixels, and not 3d points to 2d pixels!

Recover Homography matrix from correspondences

Multiply up denominators

$$H_{31} U_1 U_2 + H_{32} V_1 U_2 + H_{33} U_2 = H_{11} U_1 + H_{12} V_1 + H_{13} H_{31} U_1 V_2 + H_{32} V_1 V_2 + H_{33} V_2 = H_{21} U_1 + H_{22} V_1 + H_{23}$$

Solving for AX=0 -gives us 2 equations/correspondence -need 4 correspondences

$$H_{31} u_1 u_2 + H_{32} v_1 u_2 + H_{33} u_2 - H_{11} u_1 - H_{12} v_1 - H_{13} = 0$$

$$H_{31} u_1 v_2 + H_{32} v_1 v_2 + H_{33} v_2 - H_{21} u_1 - H_{22} v_1 - H_{23} = 0$$

Each o	corres	ponde	ence p	rovide	s two	rows of A	matrix	
						u ₁ u ₂		u2][]
[0	0	0	-u ₁	-V ₁	-1	u ₁ v ₂	V_1V_2	U ₂] V ₂] H ₁₁ H ₁₂ H ₁₃
								H ₁₃

Recover Homography matrix from correspondences

Each correspondence provides two rows of A matrix [-u₁ -1 0 0 0 -V₁ $u_1 u_2 v_1 u_2$ $\mathbf{u_2}$] 0] 0 0 -U₁ -V₁ -1 $\mathbf{U}_1\mathbf{V}_2$ $\mathbf{V}_1\mathbf{V}_2$ V_2] 8 equations, 9 unknowns (from 4 correspondences) H_{11} 0 0 0 -u₁₁ -V₁₁ -1 $\mathbf{u}_{11}\mathbf{u}_{21}$ $\mathbf{v}_{11}\mathbf{u}_{21}$ \mathbf{u}_{21} $|{\bf H}_{12}|$ 0 0 0 -1 -u₁₁ -V₁₁ $\mathbf{u}_{11}\mathbf{v}_{21}$ $\mathbf{v}_{11}\mathbf{v}_{21}$ \mathbf{v}_{21} **H**₁₃ 0 -V₁₂ -1 0 0 $\mathbf{U}_{12}\mathbf{U}_{22}$ $\mathbf{V}_{12}\mathbf{U}_{22}$ \mathbf{U}_{22} -**U**₁₂ **H**₂₁ 0 0 0 -**u**₁₂ -1 $\mathbf{u}_{12}\mathbf{v}_{22}$ $\mathbf{v}_{12}\mathbf{v}_{22}$ \mathbf{v}_{22} -V₁₂ = 0 H₂₂ 0 -V₁₃ -1 0 0 $u_{13}u_{23}$ $v_{13}u_{23}$ u_{23} -**u**₁₃ H₂₃ 0 0 0 -1 $U_{13}V_{23}$ $V_{13}V_{23}$ V_{23} -**U**₁₃ -**V**₁₃ **H**₃₁ 0 -V₁₄ -1 0 0 $u_{14}u_{24}$ $v_{14}u_{24}$ u_{24} -u₁₄ $|{\bf H}_{32}|$ H₃₃| 0 0 $u_{14}v_{24}$ $v_{14}v_{24}$ v_{24} 0 -**U**₁₄ -**V**₁₄ -1

AX=b X=column vector of homography matrix elements Get last vector using SVD

Homogeneous System

- M linear equations of form $A\mathbf{x} = 0$
- If we have a given solution x1, s.t. Ax1 = 0 then c * x1 is also a solution A(c* x1) = 0
- Need to add a constraint on **x**,
 - Basically make **x** a unit vector $\mathbf{X}^{\mathrm{T}}\mathbf{X} = \mathbf{1}$
- Can prove that the solution is the eigenvector corresponding to the single zero eigenvalue of that $matrix A^T A$
 - This can be computed using eigenvector of SVD routine
 - Then finding the zero eigenvalue (actually smallest)
 - Returning the associated eigenvector

Uses of a homography

- Consider two images (two different views of a plane, or two different rotated views)
- We can synthesize second image from first!
- Take the first image
 - With appropriate homography we can create equivalent of the second image without needing to take that image!
 - In other words, just compute the proper homography and then apply it to the first image to get a new image
 - This new image is the image we would get if we actually physically captured the second image
 - Can not do this in general (only when we are not looking at a plane or when we translate)
- What can we do with this fact?

Image rectification (square views)

To unwarp (rectify) an image

- Find the homography **H** given a set of **p** and **p**' pairs
- How many correspondences are needed?
- Tricky to write H analytically, but we can <u>solve</u> for it!
 - Find such H that "best" transforms points p into p'
 - Use least-squares!

Original camera view

Downward rotation via homography

Sideways rotation via homography

Image Rectification using a homography matrix (from Lec 8)

Correspondences

u11=268;	v11=10;	u21=0;	v21=0;
u12=558;	v12=220;	u22=499;	v22=0;
u13=46;	v13=152;	u23=0;	v23=399;
u14=334;	v14=442;	u24=499;	v24=399;

u11=268;	v11=10;	u21=0;	v21=0;	[u,d,v]=svd(a)
u13=46;	v12=220; v13=152; v14=442;	u23=0;	v23=399;	<pre>xtemp=v(8*9+1:9*9)' x=xtemp/xtemp(9) H=[x(1),x(2),x(3);x(4),x(5),x(6);x(7),x(8),x(9)]</pre>

a1 =[-u11,	-v11, -1,	0, 0, 0,	u11*u21,	v11*u21, u21];
a2 =[0, 0,	0, -u11,	-v11, -1,	u11*v21,	v11*v21, v21];
a3 =[-u12,	-v12, -1,	0, 0, 0,	u12*u22,	v12*u22, u22];
a4 =[0, 0,	0, -u12,	-v12, -1,	u12*v22,	v12*v22, v22];
a5 =[-u13,	-v13, -1,	0, 0, 0,	u13*u23,	v13*u23, u23];
a6 =[0, 0,	0, -u13,	-v13, -1,	u13*v23,	v13*v23, v23];
a7 =[-u14,	-v14, -1,	0, 0, 0,	u14*u24,	v14*u24, u24];
a8 =[0, 0,	0, -u14,	-v14, -1,	u14*v24,	v14*v24, v24];

See matlab_lec9_solve_for_homog_matrix.txt

H =

-0.0004

0.9956 -1.1124 -0.0000		-282.3961 282.7675 1.0000
Hinv =		
0.3762 0.3401	-0.5720 0.3042	268.0000 10.0000

-0.0003

1.0000

view_homog_matrix.exe

H =

0.3762	-0.5720	268.0000
0.3401	0.3042	10.0000
-0.0004	-0.0003	1.0000

Image Rectification

- What are the uses of image rectification
- For a rectified image it is easy to compute object dimensions (given a known dimension
 - Can not do this if the image is not rectified (even if you know the dimensions of an object in the image
- A rectified image is straight on to the camera (along the z axis)
 - This geometry makes matching between two such images easier (called simple stereo matching)
 - Rectification is often done with two images in general position to place them in this standard position
 - Then stereo matching is much easier (will discuss this in the stereo section)

Automatic Mosaicing – Input

Mosaics: stitching images together

Mosaics

- 1. Pick one image (red)
- 2. Warp the other images towards it (usually, one by one)
- 3. blend

Computing a mosaic from an image set

- Take a camera on a tripod
 - Rotate it around the axis of projection
- Choose one of the images as the base image
 - Compute the homography that aligns all the other images relative to that image
- You get a single large image, a mosaic which looks like a high resolution image taken from that viewpoint
 - This large image is called a mosaic
- Sometimes mosaics are called panoramas if they are wide enough (360 degrees or close)
 - Both names (mosaic/panorama) are used

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Computing special mosaics

- You can synthesize any view (not a fixed reference view) to make a virtual camera
 - Need special real-time viewer to take mosaic and synthesize any rotated view
 - Use a speical re-sampling algorithm to create a new view
- Quicktime VR is a panorama creation/viewing system that can do this (many others)
 - Very commonly used in many practical applications
- Microsoft ICE = automatic panorama software
 - Rotate camera through any number of views
 - Give system views in any order (and views may be zoomed)
 - As long as have sufficient overlap, panorama will be created
 - Can even create High Definition panoramas!

Augmented Reality

- Print self encoding binary pattern (tags)
- In real-time AR software
 - Recognizes the tag, and finds pixel locations of 4 corners
 - Computes homography that maps these four corner pixels to a rectified front facing image
 - Uses this homography to compute the camera pose relative to the tag in the real world
 - Draws a virtual oboject on top of the tag in the world
- Virtual content can be any 3d model, etc.
- Very common systems in practice and available on cell phones
 - ARToolKit and ARTag

Typical binary tag pattern

- Bit string with error correction/detection is used to create a tag ID
- Predefined association of 3d models for each different tag ID

Using Tags for Augmentation

- In real-time find camera pose relative to the tag, and use this to draw virtual objects
- AR tags get an ID and camera position!

Homography

- Very useful in practice because of mosaics!
- Rectification is also important and will be used in stereo vision and other applications
- Many common mosaicing systems exist
- But math still depends on basic homography
 - Many other issues to create an automatic mosaicing system
 - Need to extract features (interest points!)
 - Match them between images
 - Align all the images with homographies
 - Then blend them all together properly