Hough Transform

COMP 4102A
Gerhard Roth
Winter 2014
Version 1

Lines

Rafael, The School of Athens (1518)

Line Detection

The problem:
-How many lines?
-Find the lines.

Equations for Lines

The slope-intercept equation of line

$$
y=m x+b
$$

What happens when the line is vertical? The slope a goes to infinity.

A better representation - the polar representation The two parameters ρ, θ defining line are bounded

$$
\rho=x \cos \theta+y \sin \theta
$$

Hough Transform: line-parameter mapping

A line in the plane maps to a point in the $\theta-\rho$ space.

All lines passing through a point map to a sinusoidal curve in the $\theta-\rho$ (parameter) space.

$$
\rho=x \cos \theta+y \sin \theta
$$

Mapping of points on a line

Points on the same line define curves in the parameter space that pass through a single point.

Main idea: transform edge points in $x-y$ plane to curves in the parameter space. Then find the points in the parameter space that has many curves passing through it.

Hough Idea

- Each straight line in this image can be described by an equation
- Each white point if considered in isolation could lie on an infinite number of straight lines
- In the Hough transform each point votes for every line it could be on
- The lines with the most votes win

Quantize Parameter Space

ρ

Detecting Lines by finding maxima / clustering in parameter space.

Parameter space - 3D view

A Voting Scheme

Hough Processing

Image

Edge detection

Hough Transform

- Find the edges in the image (Canny operator common)
- Use each edge point to vote in the accumulator space
- Accumulator space also called the Hough Space
- Find the peak(s) in the accumulator space

Examples

input image Hough space lines detected

Examples

input image

Hough space

lines detected

Examples

Original

Edge Detection

Found Lines

Parameter Space

Algorithm

1. Quantize the parameter space int P[0, $\left.\rho_{\max }\right]\left[0, \theta_{\max }\right]$; // accumulators
2. For each edge point $(x, y)\{$

$$
\text { For }(\theta=0 ; \theta<=\theta \max ; \theta=\theta+\Delta \theta)\{
$$

$$
\rho=x \cos \theta+y \sin \theta \quad / / \text { round off to integer }
$$ ($\mathrm{P}[\rho][\theta]$)++;

$\}$
3. Find the peaks in $\mathrm{P}[\rho][\theta]$.

Cell Size

Choose the parameter cell size such that the algorithm is robust to noise.

Noise level
Fewer votes land in a single bin when noise increases.

Adding more clutter increases number of bins with false peaks.

Finding Circles by Hough Transform

Equation of Circle:

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

If radius is known: (2D Hough Space)

Accumulator Array $\quad A(a, b)$

Finding Circles by Hough Transform

Equation of Circle:

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

If radius is not known: 3D Hough Space!
Use Accumulator array $\quad A(a, b, r)$

Using Gradient Information

- Gradient information can save lot of computation:

Edge Location $\quad\left(x_{i}, y_{i}\right)$
Edge Direction ϕ_{i}

Assume radius is known:

$$
\begin{aligned}
& a=x-r \cos \phi \\
& b=y-r \sin \phi
\end{aligned}
$$

Need to increment only one point in Accumulator!!
If radius is not known, accumulator is 2 d using gradients

Finding Coins

Original
Edges (note noise)

Finding Coins (Continued)

Penny
Quarters

Application: Lane Detection

Hough Characteristics

- Detects all the curves in an image at once
- Running time proportional to the number of edge points that are in the image
- Can deal with disconnected edge points
- Does not assume (require) any connectivity for edges
- Accumulator dimension (space) proportional to number of parameters that define the curve
- Works well for lines (only 2d accumulator array necessary)
- Not easy to extend to more complex curves because of the space requirements
- Can use image gradient to decrease space requirements
- Using gradients works well for circles

Probabilistic Hough Transform

- Given a set of p edge points in an image
- Goal is to find a particular curve (line, or circle)
- Idea is that given n edge points (n is 2 for line or 3 for circle) we can create a unique curve through just these points
- Do while we have enough edge points
- For K times (a parameter)
- Choose n random edge points (2 for line and 3 for circle)
- Create a unique line or circle through these points
- Count the number of edge points that are within d pixels (another parameter) of that unique line or circle
- Save the best curve (has most points within distance d)
- Endfor
- remove the edge points found for best curve
- Enddo

Probabilistic Hough Transform

- Two parameters distance d, and \#samples K
- Distance d is typically set in range 1 to 5 pixels
- \#samples K depends on how many curves you expect there to be in the image
- Given expectation of at most n curves in the image you can compute a value for K
- K is an exponential function of n, the degrees of freedom (dof) of the curve, which is 2 for a line and 3 for a circle
- Running time $\mathrm{O}(\mathrm{n} \mathrm{Kp}$) where K is number of samples, and p is the number of edge points
- Space requirements are low so you could use this for complex curves (like ellipse, 5 dof)

Probabilistic HT relative to ordinary HT

- Ordinary HT space requirements where q is grid size are q^{2} for line and q^{3} for a circle
- Running time is $O(q p)$ with p edge points
- Probabilistic HT space requirements are simply $O(p)$, the number of edge points
- Running time is $O(n K p)$, n curves p edge points, K samples
- Which is faster for lines and circles?
- Depends on how many lines and circles exist (n)
- Remember for Prob. HT value of K is an exponential function of the number of expected lines or circles
- With a small number of curves K is small, and Prob. HT is faster, large number of curves K is large and HT is faster
- For curves like ellipse Prob. HT is only choice

