
Hough Transform

COMP 4102A

Gerhard Roth

Winter 2014

Version 1

Lines

Lines

Rafael, The School of Athens (1518)

Line Detection

The problem:

•How many lines?

•Find the lines.

Equations for Lines

bmxy

What happens when the line is vertical? The slope a goes

to infinity.

The slope-intercept equation of line

A better representation – the polar representation

The two parameters defining line are bounded

 sincos yx

,

Hough Transform: line-parameter mapping

 sincos yx

A line in the plane maps to a point in the - space.

 (,)

All lines passing through a point map to a sinusoidal curve in the

- (parameter) space.

Mapping of points on a line

Points on the same line define curves in the parameter space

that pass through a single point.

Main idea: transform edge points in x-y plane to curves in the

parameter space. Then find the points in the parameter space

that has many curves passing through it.

Hough Idea

• Each straight line in this image can be

described by an equation

• Each white point if considered in

isolation could lie on an infinite

number of straight lines

• In the Hough transform each point

votes for every line it could be on

• The lines with the most votes win

Quantize Parameter Space

m

m

Detecting Lines by finding maxima / clustering in parameter space.

Parameter space – 3D view

A Voting Scheme

Hough Processing

Hough Transform Image Edge detection

• Find the edges in the image (Canny operator common)

• Use each edge point to vote in the accumulator space

• Accumulator space also called the Hough Space

• Find the peak(s) in the accumulator space

Examples

input image Hough space lines detected

Examples

Image credit: NASA Dryden Research Aircraft Photo Archive

input image Hough space lines detected

Examples

Original Edge Detection Found Lines

Parameter Space

Algorithm

1. Quantize the parameter space

 int P[0, max][0, max]; // accumulators

2. For each edge point (x, y) {

 For (= 0; <= max; = +) {

 // round off to integer

 (P[][])++;

 }

 }

3. Find the peaks in P[][].

 sincos yx

Cell Size

Choose the parameter cell size such that the algorithm is robust

to noise.

Fewer votes land in a single bin when noise increases.

Adding more clutter increases number of bins with false peaks.

Finding Circles by Hough Transform

Equation of Circle:

222)()(rbyax ii

If radius is known:

),(baAAccumulator Array

(2D Hough Space)

Finding Circles by Hough Transform

Equation of Circle:

222)()(rbyax ii

If radius is not known: 3D Hough Space!

Use Accumulator array),,(rbaA

Using Gradient Information

• Gradient information can save lot of computation:

Edge Location

Edge Direction

Need to increment only one point in Accumulator!!

If radius is not known, accumulator is 2d using gradients

i

),(ii yx

Assume radius is known:

sin

cos

ryb

rxa

Finding Coins

Original Edges (note noise)

Finding Coins (Continued)

Penny Quarters

Application: Lane Detection

Hough Characteristics

• Detects all the curves in an image at once

• Running time proportional to the number of

edge points that are in the image

• Can deal with disconnected edge points
• Does not assume (require) any connectivity for edges

• Accumulator dimension (space) proportional

to number of parameters that define the curve
• Works well for lines (only 2d accumulator array necessary)

• Not easy to extend to more complex curves

because of the space requirements
• Can use image gradient to decrease space requirements

• Using gradients works well for circles

Probabilistic Hough Transform

• Given a set of p edge points in an image
• Goal is to find a particular curve (line, or circle)

• Idea is that given n edge points (n is 2 for line or 3 for circle)

we can create a unique curve through just these points

• Do while we have enough edge points
• For K times (a parameter)

• Choose n random edge points (2 for line and 3 for circle)

• Create a unique line or circle through these points

• Count the number of edge points that are within d pixels

(another parameter) of that unique line or circle

• Save the best curve (has most points within distance d)

• Endfor

• remove the edge points found for best curve

• Enddo

Probabilistic Hough Transform

• Two parameters distance d, and #samples K
• Distance d is typically set in range 1 to 5 pixels

• #samples K depends on how many curves you expect there

to be in the image

• Given expectation of at most n curves in the

image you can compute a value for K
• K is an exponential function of n, the degrees of freedom

(dof) of the curve, which is 2 for a line and 3 for a circle

• Running time O(n K p) where K is number of

samples, and p is the number of edge points

• Space requirements are low so you could use

this for complex curves (like ellipse, 5 dof)

Probabilistic HT relative to ordinary HT

• Ordinary HT space requirements where q is

grid size are q2 for line and q3 for a circle
• Running time is O(q p) with p edge points

• Probabilistic HT space requirements are

simply O(p), the number of edge points
• Running time is O(n K p), n curves p edge points, K samples

• Which is faster for lines and circles?
• Depends on how many lines and circles exist (n)

• Remember for Prob. HT value of K is an exponential function

of the number of expected lines or circles

• With a small number of curves K is small, and Prob. HT is

faster, large number of curves K is large and HT is faster

• For curves like ellipse Prob. HT is only choice

