Review of Linear Algebra

Dr. Gerhard Roth

COMP 4102A
Winter 2014
Version 1

Linear algebra

- Is an important area of mathematics
- It is the basis of computer vision
- Is very widely taught, and there are many resources and books available
- We only focus on the basics
- Need to understand matrices, vectors and their basic operations

Linear Equations

A system of linear equations, e.g.

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}=2 \\
& 4 x_{1}+11 x_{2}=1
\end{aligned}
$$

can be written in matrix form, m rows and n columns:

$$
\left[\begin{array}{cc}
2 & 4 \\
4 & 11
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

or in general:

$$
A x=b
$$

Matrix

A matrix is an $m \times n$ array of numbers.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]
$$

Example:

$$
A=\left[\begin{array}{cccc}
2 & 3 & 5 & 4 \\
-4 & 1 & 3 & 9 \\
0 & 7 & 10 & 11
\end{array}\right]
$$

Matrix Arithmetic

Matrix addition

$$
A_{m \times n}+B_{m \times n}=\left\lfloor a_{i j}+b_{i j}\right\rfloor_{m \times n}
$$

Matrix multiplication

$$
A_{m \times n} B_{n \times p}=C_{m \times p} \quad c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Matrix transpose

$$
\begin{aligned}
& A^{T}=\left[a_{j i}\right] \\
& (A+B)^{T}=A^{T}+B^{T} \quad(A B)^{T}=B^{T} A^{T}
\end{aligned}
$$

Multiplication not commutative

Matrix multiplication is not commutative

$$
A B \neq B A
$$

Example:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right]\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\left[\begin{array}{ll}
17 & 29 \\
19 & 11
\end{array}\right]} \\
& {\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
18 & 32 \\
17 & 10
\end{array}\right]}
\end{aligned}
$$

Symmetric Matrix

We say matrix A is symmetric if

$$
A^{T}=A
$$

Example:

$$
A=\left[\begin{array}{ll}
2 & 4 \\
4 & 5
\end{array}\right]
$$

A symmetric matrix has to be a square matrix

Inverse of matrix

If A is a square matrix, the inverse of A, written A^{-1} satisfies:

$$
A A^{-1}=I \quad A^{-1} A=I
$$

Where I, the identity matrix, is a diagonal matrix with all 1 's on the diagonal.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Vectors - matrices with one column

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { e.g. } \quad x=\left[\begin{array}{c}
2 \\
3 \\
5
\end{array}\right]
$$

A vector is an n by 1 matrix, it is a column in our book The length or the norm of a vector is

$$
\begin{array}{ll}
& \|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} \\
\text { e.g. } & \|x\|=\sqrt{2^{2}+3^{2}+5^{2}}=\sqrt{38}
\end{array}
$$

Vector Arithmetic

Vector addition

$$
u+v=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Vector subtraction

$$
u-v=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]-\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1}-v_{1} \\
u_{2}-v_{2}
\end{array}\right]
$$

Multiplication by scalar

$$
\alpha u=\alpha\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha u_{1} \\
\alpha u_{2}
\end{array}\right]
$$

Dot Product (inner product)

$$
a=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right] \quad b=\left[\begin{array}{c}
4 \\
-3 \\
2
\end{array}\right]
$$

$a \cdot b=a^{T} b=\left[\begin{array}{lll}2 & 3 & 5\end{array}\right]\left[\begin{array}{c}4 \\ -3 \\ 2\end{array}\right]=2 \cdot 4+3 \cdot(-3)+5 \cdot 2=9$

$$
a \cdot b=a^{T} b=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

Vectors: Dot Product (Inner product)

$$
A \cdot B=A^{T} B=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=a d+b e+c f \quad \begin{aligned}
& \text { Think of the dot product as } \\
& \text { a matrix multiplication }
\end{aligned}
$$

$$
\|A\|^{2}=A^{T} A=a a+b b+c c
$$

The magnitude is the dot product of a vector with itself

$$
A \cdot B=\|A\|\|B\| \cos (\theta)
$$

The dot product is also related to the angle between the two vectors

Trace of Matrix

The trace of a matrix:

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Orthogonal Matrix

A matrix A is orthogonal if

$$
A^{T} A=I \quad \text { or } \quad A^{T}=A^{-1}
$$

Example:

$$
A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Matrix Transformation (and projections)

A matrix-vector multiplication transforms one vector to another

$$
A_{m \times n} x_{n \times 1}=b_{m \times 1}
$$

Example:

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
7
\end{array}\right]=\left[\begin{array}{l}
41 \\
16 \\
26
\end{array}\right]
$$

Coordinate Rotation

$$
\begin{gathered}
\left.\begin{array}{c}
r_{x}^{\prime}=r_{x} \cos \phi+r_{y} \sin \phi \\
r_{y}^{\prime}=-r_{x} \sin \phi+r_{y} \cos \phi
\end{array}\right] \\
{\left[\begin{array}{c}
r_{x}^{\prime} \\
r_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
r_{x} \\
r_{y}
\end{array}\right]}
\end{gathered}
$$

Vectors and Points

Two points in a Cartesian coordinate system define a vector

$$
v=\left[\begin{array}{l}
x_{2}-x_{1} \\
y_{2}-y_{1}
\end{array}\right]
$$

A point can also be represented as a vector, defined by the point and the origin $(0,0)$.

$$
\begin{gathered}
P=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]-\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \quad Q=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]-\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] \\
v=Q-P \quad \text { or } \quad Q=P+v
\end{gathered}
$$

Note: point and vector are different; vectors do not have positions

Least Squares

When $\mathrm{m}>\mathrm{n}$ for an m -by- n matrix $\mathrm{A}, ~ A x=b$ has no solution.
In this case, we look for an approximate solution.
We look for vector X such that

$$
\|A x-b\|^{2}
$$

is as small as possible.
This is called the least squares solution.

Least Squares

Least squares solution of linear system of equations

$$
A x=b
$$

Normal equation: $A^{T} A x=A^{T} b$
$A^{T} A$ is square and symmetric

The Least Square solution $\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b$
makes $\|A \bar{x}-b\|^{2}$ minimal.

Least Square Fitting of a Line

Line equations:

The best solution c, d is the one that minimizes:

$$
E^{2}=\|y-A x\|^{2}=\left(y_{1}-c-d x_{1}\right)^{2}+\cdots+\left(y_{m}-c-d x_{m}\right)^{2}
$$

Least Square Fitting - Example

Problem: find the line that best fit these three points:

$$
\mathrm{P} 1=(-1,1), \mathrm{P} 2=(1,1), \mathrm{P} 3=(2,3)
$$

$$
\begin{aligned}
& c-d=1 \\
& c+d=1 \quad \text { or } \\
& c+2 d=3 \\
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right]}
\end{aligned}
$$

The solution is $c=\frac{9}{7}, d=\frac{4}{7}$ and best line is $\frac{9}{7}+\frac{4}{7} x=y$

Homogeneous System

- m linear equations with n unknowns $A x=0$
- Assume that $m>=n-1$ and $\operatorname{rank}(A)=n-1$
- Trivial solution is $\mathbf{x}=0$ but there are more
- If we have a given solution \mathbf{x}, s.t. $A \mathbf{x}=0$ then $c^{*} \mathbf{x}$ is also a solution since $A\left(c^{*} \mathbf{x}\right)=0$
- Need to add a constraint on \mathbf{x},
- Usually make \mathbf{x} a unit vector $X^{T} X=1$
- Can prove that the solution of $A \mathbf{x}=0$ satisfying this constraint is the eigenvector corresponding to the only zero eigenvalue of that matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$

Homogeneous System

- This solution can be computed using the eigenvector or SVD routine
- Find the zero eigenvalue (or the eigenvalue almost zero)
- Then the associated eigenvector is the solution \mathbf{x}
- And any scalar times \mathbf{x} is also a solution

Linear Independence

- A set of vectors is linear dependant if one of the vectors can be expressed as a linear combination of the other vectors.

$$
v_{k}=\alpha_{1} v_{1}+\cdots+\alpha_{k-1} v_{k-1}+\alpha_{k+1} v_{k+1}+\cdots+\alpha_{n} v_{n}
$$

- A set of vectors is linearly independent if none of the vectors can be expressed as a linear combination of the other vectors.

Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if

$$
A x=\lambda x
$$

λ is called eigenvalue and x is called eigenvector.
The transformation defined by A changes only the magnitude of the vector x

Example:
$\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]=5\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{c}4 \\ -2\end{array}\right]=2\left[\begin{array}{c}2 \\ -1\end{array}\right]$
5 and 2 are eigenvalues, and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1\end{array}\right]$ are eigenvectors.

Properties of Eigen Vectors

- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}$ are distinct eigenvalues of a matrix, then the corresponding eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{q}$ are linearly independent.
- A real, symmetric matrix has real eigenvalues with eigenvectors that can be chosen to be orthonormal.

SVD: Singular Value Decomposition

An $m \times n$ matrix A can be decomposed into:

$$
A=U D V^{T}
$$

U is $m \times m, \mathrm{~V}$ is $n \times n$, both of them have orthogonal columns:

$$
U^{T} U=I \quad V^{T} V=I
$$

D is an $m \times n$ diagonal matrix.

Example:

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & -3 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Singular Value Decomposition

-Any m by n matrix A can be written as product of three matrices $\mathrm{A}=\mathrm{UDV}^{\top}$
-The columns of the m by m matrix U are mutually orthogonal unit vectors, as are the columns of the n by n matrix V
-The m by n matrix D is diagonal, and the diagonal elements, σ_{i} are called the singular values
-It is the case that $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n} \geq 0$

- A matrix is non-singular if and only all of the singular values are not zero
-The condition number of the matrix is $\frac{\sigma_{1}}{\sigma_{n}}$ -If the condition number is large, then then matrix is almost singular and is called ill-conditioned

Singular Value Decomposition

-The rank of a square matrix is the number of linearly independent rows or columns
-For a square matrix $(m=n)$ the number of non-zero singular values equals the rank of the matrix
-If A is a square, non-singular matrix, it's inverse can be written as $A^{-1}=V D^{-1} U^{T}$ where $A=U D V^{T}$

- The squares of the non zero singular values are the non-zero eigenvalues of both the n by n matrix $A^{T} A$ and of the m by m matrix $A A^{T}$
-The columns of U are the eigenvectors of $A A^{T}$
-The columns of V are the eigenvectors of $A^{T} A$

