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Image Filtering

Modifying the pixels in an image based on some
functions of a local neighbourhood of the pixels
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Linear Filtering — convolution

The output is the linear combination of the neighbourhood pixels

1. (I, ])=1* A= % %A(h K)YL(1—h, ] —k)

The coefficients come from a constant matrix A, called kernel.
This process, denoted by “*’, is called (discrete) convolution.
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Handle Border Pixels

Near the borders of the image, some pixels do not have enough
neighbours. Two possible solutions are:

» Set the value of all non-included pixels to zero.

« Set all non-included pixels to the value of the
corresponding pixel in the input image.




Smoothing by Averaging
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Convolution can be understood as weighted averaging.



Gaussian Filter

Discrete Gaussian kernel:
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where G(h, k )is an element of an mxm array



Gaussian Filter
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Gaussian Kernel is Separable
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Gaussian Kernel is Separable

Convolving rows and then columns with a 1-D Gaussian kernel.
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The complexity increases linearly with M instead of with m?



Which kernels are Separable?

* A kernel is separable if it can be written as

the outer product of two 1d kernels

« Say 1d horizontal kernelisV —m by 1
« And 1d vertical kernelis H'™- 1 by m

. Then the kernel is V H' has dimensions of
mx1ltimes1lxm,whichismxm

« Many important kernels are separable

* For such kernels the complexity of the

convolution is O(m) instead of O(M"2)
« This Is a very important computational advantage
« Can have larger kernels (say up to m 10) on large images
« Can also do multiple operations with different kernels



Outer product — examples
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Outer product — more examples

* Most important kernels used in practice are
separable

average bilinear Gaussian Sobel
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Gaussian vs. Average

*Gaussian and average are smoothing linear filters
*In this case sum of all kernel entries is one
So that new pixel is in same value range as old

Gaussian Smoothing Smoothing by Averaging



Gaussian Scale Space (increasing o )




Gaussian Scale Space (increasing o )




Noise Filtering

*Goal Is to remove noise and still
preserve image structure (edges)
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Gaussian Noise

«Gaussian smoothing preserves
edges better than average filter
«Gaussian filter best at removing
Gaussian noise (can prove this)
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After Gaussia Smoothing



Noise Filtering

*Neither Gaussian nor average filter
removes salt and pepper noise

Salt-and-pepper noise

After Gaussian smoothing



Nonlinear Filtering — median filter

Replace each pixel value I(i, j) with the median of the values
found in a local neighbourhood of (i, j).
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Median Filter
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Salt-and-pepper noise After median filtering



Remove noise and preserve edges!

Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Edge-preserving

Regularization
Raymond H. Chan, Chung-Wa Ho, and Mila Nikolova

IEEE Transactions on Image Processing, 14 (2005), 1479-1485.
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