Image Features (I)

Dr. Gerhard Roth

COMP 4102A
Winter 2014
Version 1

Image Features

Image features - may appear in two contexts:

- Global properties of the image (average gray level, etc) - global features
- Parts of the image with special properties (line, circle, textured region) local features

Here, assume second context for image features:

- Local, meaningful, detectable parts of the image
- Should also be invariant to changes in the image Detection of image features
- Detection algorithms - produce feature descriptors
- Feature descriptors - often just high dimensional vectors
- Example - line segment descriptor: coordinates of mid-point, length, orientation

Edges in Images

Definition of edges

- Edges are significant local changes of intensity in an image.
- Edges typically occur on the boundary between two different regions in an image.

Origin of Edges

Edges are caused by a variety of factors

What causes intensity changes?

- Geometric events
- object boundary (discontinuity in depth and/or surface color and texture)
- surface boundary (discontinuity in surface orientation and/or surface color and texture)
- Non-geometric events
- specularity
- shadows (from other objects or from the same object)
- inter-reflections

An edge is not a line...

Human visual system computes edges

- Regions of brain called V1 (in red) find edges

Simple and Complex cell

- These cells are local feature detectors

Result is an "edge like" representation

Edge Pixel Descriptors

- Edges are a connected set of edge pixels, each edge pixel has:
- Edge normal: unit vector in the direction of maximum intensity change.
- Often called edge gradient (orthogonal to the edge direction)
- Edge direction: unit vector to perpendicular to the edge normal.
- Edge position or center: the pixel position at which the edge is located.
- Edge strength: related to the local image contrast along the normal.

Applications of Edge Detection

- Produce a line drawing of a scene from an image of that scene.
- Important features can be extracted from the edges of an image (e.g. corners, lines, curves).
- These features are used by higher-level computer vision algorithms (e.g., segmentation, recognition, retrieval).

Three Steps of Edge Detection

- Noise smoothing
- Suppress the noise without affecting the true edges
- Often blur the image with Gaussian kernel of a given sigma
- Edge enhancement
- Design a filter responding to edges, so that the output of the filter is large at edge pixels, so edges are localized as maxima in the filters response
- Edge localization
- Decide which local maxima in the filters output are edges, and which are caused by noise. This usually involves:
- Thinning the edges to 1 pixel width (non-maxima suppression)
- Establish the minimum value to declare a local maxima as a true edge (thresholding)

Images as Functions

1-D

$$
I=f(x)
$$

Images as Functions

2-D

Red channel intensity

$$
I=f(x, y)
$$

Edge Detection using Derivatives

- Calculus describes changes of continuous functions using derivatives.
- An image is a 2D function, so operators finding edges are based on partial derivatives.
- Points which lie on an edge can be detected by either:
- detecting local maxima or minima of the first derivative
- detecting the zero-crossing of the second derivative
- Here we assume that there is no smoothing in the edge detection process
- We are only looking at enhancement and localization

Edge Detection Using Derivatives

image

profile of a
horizontal line
first derivative
second derivative

Finite Difference Method

We approximate derivatives with differences.

Derivative for 1-D signals:
Continuous function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Discrete approximation

$$
f^{\prime}(x) \approx \frac{f_{i+1}-f_{i}}{i+1-i}=f_{i+1}-f_{i}
$$

Finite Difference and Convolution

Finite difference on a 1-D image

$$
f^{\prime}(x) \approx f\left(x_{i+1}\right)-f\left(x_{i}\right)
$$

is equivalent to convolving with kernel: $\left[\begin{array}{ll}-1 & 1\end{array}\right]$

Finite Difference - 2D

Continuous function:

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& \frac{\partial f(x, y)}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Discrete approximation:
Convolution kernels:

$$
\begin{array}{ll}
I_{x}=\frac{\partial f(x, y)}{\partial x} \approx f_{i+1, j}-f_{i, j} & {\left[\begin{array}{cc}
-1 & 1
\end{array}\right]} \\
I_{y}=\frac{\partial f(x, y)}{\partial y} \approx f_{i, j+1}-f_{i, j} & {\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}
\end{array}
$$

Image Derivatives

Image I

$$
I_{x}=I *\left[\begin{array}{ll}
-1 & 1
\end{array}\right]
$$

Image Derivatives

$$
I_{y}=I^{*}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

