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Image Filtering 

Modifying the pixels in an image based on some 

functions of a local neighbourhood of the pixels 
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Linear Filtering – convolution 
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The output is the linear combination of the neighbourhood pixels 





2/

2/

2/

2/

),(),(*),(
m

mk

m

mh

A kjhiIkhAAIjiI

The coefficients come from a constant matrix A, called kernel. 

This process, denoted by ‘*’, is called (discrete) convolution. 



Handle Border Pixels 

• Set the value of all non-included pixels to zero. 

 

• Set all non-included pixels to the value of the 

corresponding pixel in the input image. 

 

Near the borders of the image, some pixels do not have enough 

neighbours. Two possible solutions are: 



Smoothing by Averaging 
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Convolution can be understood as weighted averaging. 
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Gaussian Filter 
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Discrete Gaussian kernel: 



Gaussian Filter 
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Which kernels are Separable? 

• A kernel is separable if it can be written as 

the outer product of two 1d kernels 
• Say 1d horizontal kernel is V – dimensions m by 1 

• And 1d vertical kernel is        -  dimensions 1 by m 

• Then the kernel is V        has dimensions of  

m x 1 times 1 x m, which is m x m 

• Many important kernels are separable 

• For such kernels the complexity of the 

convolution is O(m) instead of O(m^2) 
• This is a very important computational advantage 

• Can have larger kernels (say up to m 10) on large images 

• Can also do multiple operations with different kernels 
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Outer product – examples 
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Gaussian Kernel is Separable 

Convolving rows and then columns with a 1-D Gaussian kernel. 
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The complexity increases linearly with      instead of with     . m 2m



Gaussian Kernel is Separable 
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Outer product – more examples 

• Most important kernels used in practice are 

separable   



Gaussian vs. Average 

Gaussian Smoothing Smoothing by Averaging 

•Gaussian and average are smoothing linear filters 

•In this case sum of all kernel entries is one 

•So that new pixel is in same value range as old 



Gaussian Scale Space (increasing     ) 
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Noise Filtering 

Gaussian Noise 

After Gaussian Smoothing 

After Averaging 

•Goal is to remove noise and still 

preserve image structure (edges) 

•Gaussian smoothing preserves 

edges better than average filter 

•Gaussian filter best at removing 

Gaussian noise (can prove this) 

 



Noise Filtering 

Salt-and-pepper noise 

After Gaussian smoothing 

After averaging 

•Neither Gaussian nor average filter 

removes salt and pepper noise 



Nonlinear Filtering – median filter 

Replace each pixel value I(i, j) with the median of the values 

found in a local neighbourhood of (i, j). 



Median Filter 

Salt-and-pepper noise After median filtering 



Remove noise and preserve edges! 

Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Edge-preserving 

Regularization  

Raymond H. Chan, Chung-Wa Ho, and Mila Nikolova 

IEEE Transactions on Image Processing, 14 (2005), 1479-1485.  

 

http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf
http://www.math.cuhk.edu.hk/~rchan/paper/impulse/impulse.pdf

