
Corner (Interest Point) Detection

COMP 4102A

Winter 2015

Gerhard Roth

Version 1

Motivation: Corners for Recognition

Image search: find the book in an image.

Motivation: Corners for Recognition

Corners for Augmented Reality

Motivation: Corners for Robotics

Motivation: 2D map built using corners

Motivation: Build a panorama

Motivation: Build a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

How do we build panorama?

We need to match (align) images

Matching with Corners

•Detect corner points in both images

Matching with Corners

•Detect corner points in both images

•Find corresponding corner pairs by comparing

the corner descriptors

Matching with Corners

•Detect feature points in both images

•Find corresponding corner pairs by comparing

the corner descriptors

•Use these pairs to align images

More motivation…

Corner points are used also for:
• Image alignment (homography, fundamental matrix)

• 3D reconstruction, Object recognition, Indexing and database

retrieval, Robot navigation, … other

Corners define repeatable points for matching

Not just intersection of two lines (pure corner) but

pixels which have a “corner like” structure

Corners sometimes called interest points because

pixels that are “corner like” are interesting

Observe that in the region around a corner the

gradient has two or more distinct values

Corner Feature

Corners are image locations that have large intensity changes

in more than one direction

For a pixel which is a corner shifting a window centered
on that pixel in any direction should give a large
change in the average intensity in that window.

Harris Detector: Basic Idea

“flat” region:

no change in

all directions

“edge”:

no change along

the edge direction

“corner”:

significant change

in all directions

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

Examples of Corner Features

Corners in Calibration pattern

Corners in a Basement room

Change of Intensity

The intensity change at a given pixel in the direction (u,v) can

be quantified by sum-of-squared-difference (SSD) of all pixels

in a nbhd of that window, and the associated pixel shifted by (u,v).

ji

jiIvjuiIvuD
,

2
),(),(),(

v

u

),(jiI

),(vjuiI

Here i, j ranges over all the

pixels in the nbhd.

The difference between the

original pixel and shifted

pixel in nbhd is summed.

Different D(u,v) function exists

for every pixel in the nbhd.

Change Approximation

If u and v are small, by Taylor’s theorem:

vIuIjiIvjuiI jiyjix),(),(),(),(

where
y

I
Iand

x

I
I jiyjix

),(),(

Therefore for any i, j and u, v

v

u

III

III
vu

vIuvIIuI

vIuI

jiIvIuIjiIjiIvjuiI

jiyjiyjix

jiyjixjix

jiyjiyjixjix

jiyjix

jiyjix

2

),(),(),(

),(),(

2

),(

22

),(),(),(

22

),(

2

),(),(

2

),(),(

2

2

),(),(),(),(

Gradient Variation Matrix

v

u

III

III
vuvuD

yyx

yxx

2

2

),(

This function is a rotated ellipse.

2

2

yyx

yxx

III

III
C

Matrix C characterizes how intensity changes in a certain direction.

Each entry is computed by summing the appropriate values over

every pixel in the neighbourhood around the given pixel

Ellipse D(u,v) = const

Eigenvalue Analysis – simple case

2

1

2

2

0

0

yyx

yxx

III

III
C

First, consider case of a corner/edge which is aligned

with the x and y axis so we have:

This means dominant gradient directions align with x or y axis

If either λ is close to 0, then this is not a corner, so look for

locations where both are large.

The bigger the smallest λ the more “corner like” is that pixel in

the image
Slide credit: David Jacobs

Eigenvalue Analysis – simple case

2
2

2
1),(vuvuD

v

u
vuvuD

2

1

0

0
),(

Here λ1 is the rate of change in direction of u

 λ2 is the rate of change in direction of v

If both λ are small, we have a constant region,

If only one λ is large have an edge,

If both λ large is a corner (smallest λ is large)

General Case - Diagonalization

It can be shown that since C is symmetric it can be

diagonalized, which means finding matrix Q to rotate and

rewrite C as:

QQC T

2

1

0

0

So every C is simply a rotated version of the simple case:

(max)
-1/2

(min)
-1/2

One eigenvector is in the direction

of the fastest change
Other eigenvector is in the

direction of the slowest change

Computer Vision : CISC 4/689

Harris Detector

Computer Vision : CISC 4/689

Harris Detector

Find points where smallest eigenvalue is >threshold

Computer Vision : CISC 4/689

Harris Detector – non maxima superssion

Take only the points of local maxima of the smallest eigenvalue

Computer Vision : CISC 4/689

Harris Detector

Gradient Orientation

Closeup

Corner Detection Summary

• if this is a region of constant intensity, both eigenvalues will be very small.

• if it contains an edge, there will be one large and one small eigenvalue (the

eigenvector associated with the large eigenvalue will be parallel to the

image gradient).

• if it contains edges at two or more orientations (i.e., a corner), there will be

two large eigenvalues (the eigenvectors will be parallel to the image

gradients).

• Eigenvectors encode edge directions, eigenvalues edge strength

Corner Detection Algorithm

Step (3) and (4) is a type of non-maxima

suppression (can be done in other ways)

Harris Detector Rotation Invariance

Ellipse rotates but its shape (i.e. eigenvalues)

remains the same

• Detection is invariant to rotation in the image

plane (why?)

• These are different than rotations out of the

camera plane!

Harris Detector Rotation Invariance

• Repeatability with image plane rotation

Comparing corners – Corner descriptor

• To match corners extract a description of the

corner (this is also called a corner descriptor)
• Need this to compare two corners in different images

• Use the set of pixels in small nbhd around the corner and

compute a high dimensional vector from these pixels

• Up to you what you compute, but it should be invariant!

• Can simply use the pixels in a neighbourhood

around each corner as the descriptor
• To compare two descriptors take the sum of squares

difference of pixels in a small window around each corner

• This is a very easy but is not invariant
• There are better corner descriptors than using raw pixels

• Want invariance for the corner detection process and for the

descriptor associated with each corner

Invariance of Corner Detector

• Invariance is desirable but not easy to get

• Both corner detection process and descriptor

must be invariant (these are different things!)
• Often have some type of invariance (but not every type)

• Harris corners detection is invariant to rotations and

translations in the camera plane

• The simplest descriptor consisting of the actual pixels in the

pixel nbhd have no rotation invariance

• Adding invariance due to lighting

increase/descrease is very easy
• Just take the average pixel value in nbhd, and subtract it

before comparing the two nbhds of a descriptor

Invariance to scale and orientation

• These are critical for matching tasks
• Scale is distance from object, orientation is viewing angle

• Descriptors invariant to scale have been

created (called SIFT or SURF)

• Work by creating a scale space and finding

the natural scale for the feature
• Done by smoothing with Gaussion of different size and

tracking features across scale

• Implies we can match SIFT/SURF descriptors

at different scales and orientations

Blur and Lighting Change

Orientation and Zoom/Rotation

• Bot the feature detection and the feature

descriptor are invariant to scale

• Means the pixels used to compute the feature

descriptor change with the feature scale

SIFT/SURF Features – in OpenCV

•Box around the feature changes scale appropriately

Scale Invariance – Find natural scale!

Bad Scale choice

means wrong

descriptor

Good scale choice

Means correct

Descriptor

Harris relative to SIFT/SURF features

• For each feature Harris detector returns
• Pixel location, corner strength and corner orientation

• Size of nbhd used for the feature descriptor is not specified

• SIFT/SURF are scale invariant so they also
• Include a scale (size of the nbhd window around the feature)

• Compute a descriptor of feature from pixels in this nbhd

• In other words, the nbhd changes to cover the same pixels

as we change the distance of the camera to the feature

• So SURF/SIFT descriptor is invariant to scale
• As we change camera distance still have the same corner

descriptor because pixels in the nbhd change appropriately

• This is scale invariance, not true for Harris corners

Small motions/large motions

• Consider two images
• Extract corners (SIFT/SURF or Harris) and then match using

some feature descriptor

• Harris features work only for some motions

(rotation in camera plane, translation)
• Descriptors usually pixels in a small nbhd around the corner

• SIFT/SURF features work for larger motions,

and for different types of motions
• Can handle blur, lighting, compression, all motion in the

camera plane, and some motions out of the camera plane

• But they are slower to compute and the matching of the

descriptors associated with each feature is also slower

Successful SIFT/SURF matching

Viewpoint Change - SURF

Increasing Blur - SURF

Scale/Rotate in Camera Plane - SURF

Decreasing Brightness - SURF

JPEG Compression - SURF

Harris Corners

• Are the simplest corners to find which
• Can be extracted in real-time and are they are invariant to

translation and rotation in image plane

• They are not invariant to scale, only good for small motion

• Finding corners is only half the work
• To match you need a corner descriptor which is a high

dimensional vector derived from the pixels in a window

centered at that corner pixel (what size is the window?)

• Both the corner location and the corner

descriptor should be as invariant as possible
• Invariant to scale, orientation, lighting, etc.

– Should find same corners and very similar descriptor

• Scale invariant corners now exist and are common

• David Lowe (UBC) created SIFT corners, SURF is faster SIFT

