Camera Calibration

COMP4102A
Dr. Gerhard Roth
Winter 2015
Version 1

Finding camera parameters (intrinsic)

Can use the EXIF tag for any digital image

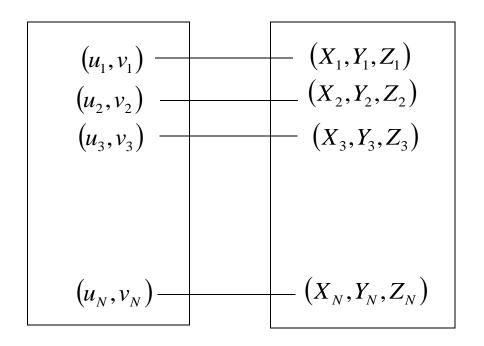
- Has focal length f in millimeters but not the pixel size
- But you can get the pixel size from the camera manual
- There are only a finite number of different pixels sizes because number of sensing element sizes is limited
- If there is not a lot of image distortion due to optics then this approach is sufficient (only linear calibration)

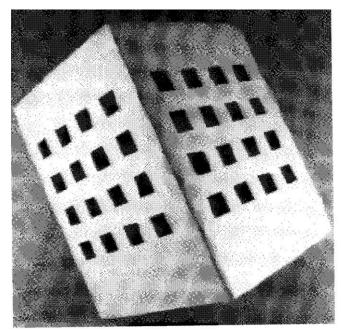
Can perform explicit camera calibration

- Put a calibration pattern in front of the camera
- Take a number of different pictures of this pattern
- Now run the calibration algorithm (different types)
- Result is intrinsic camera parameters (linear and non-linear)
 and the extrinsic camera parameters of all the images

Explicit camera calibration

- Use a calibration pattern with known geometry
 - In Opency use a checkerboard
 - Other systems use special targets with known 3d geometry
- Write equations linking co-ordinates of the projected points, and the camera parameters
- From images of the calibration target
 - Intrinsic camera parameters
 - (depend only on camera characteristics)
 - Extrinsic camera parameters
 - (depend only on position camera)
 - In OpenCV the calibration process finds fx, fy, ox, oy, along with the distortion parameters
 - We study a method that does not find the distortion parameters


Calibration using known 3d geometry


- Use a calibration pattern with known 3d geometry (often a box, not planar)
- Write projection equations linking known coordinates of a set of 3-D points and their projections and solve for camera parameters
- Given a set of one or more images of the calibration pattern estimate
 - Intrinsic camera parameters
 - (depend only on camera characteristics)
 - Extrinsic camera parameters
 - (depend only on position camera)
- We do not estimate distortion parameters

Estimating camera parameters

Projection matrix

Calibration pattern

Camera parameters

- Intrinsic parameters (K matrix)
 - There are 5 intrinsic parameters
 - Focal length f
 - Pixel size in x and y directions, sx and sy
 - Principal point ox, oy
- But they are not independent
 - Focal length fx = f / sx and fy = f / sy
 - Principal point ox, oy
 - This makes four intrinsic parameters
- Extrinsic parameters [R|T]
 - Rotation matrix and translation vector of camera
 - Relations camera position to a known frame
 - [R|T] are the intrinsic parameters
- Projection matrix
 - 3 by 4 matrix P =K [R | T] is called projection matrix

Projection Equations

Projective Space

- Add fourth coordinate
 Pw = (Xw, Yw, Zw, 1)^T
- Define (u,v,w)^T such that
 u/w = X_{im}, v/w = y_{im}

3x4 Matrix E_{ext}

- Only extrinsic parameters
- World to camera

3x3 Matrix Eint

- Only intrinsic parameters
- · Camera to frame

$$\mathbf{M}_{ext} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} = \begin{bmatrix} \mathbf{R}_1^T & T_x \\ \mathbf{R}_2^T & T_y \\ \mathbf{R}_3^T & T_z \end{bmatrix}$$

$$\mathbf{M}_{\text{int}} = \begin{bmatrix} -f_{\chi} & 0 & o_{\chi} \\ 0 & -f_{y} & o_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

Simple Matrix Product! Projective Matrix

M= Mint Mext

- $(Xw,Yw,Zw)^T \rightarrow (xim, yim)^T$
- Linear Transform from projective space to projective plane
- M defined up to a scale factor 11 independent entries

Two different calibration methods

- Both use a set of 3d points and 2d projections
- Direct approach (called Tsai method)
 - Write projection equations in terms of all the parameters
 - That is all the unknown intrinsic and extrinsic parameters
 - Solve for these parameters using non-linear equations
- Projection matrix approach
 - Compute the projection matrix (the 3x4 matrix M)

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}$$

Compute camera parameters as closed-form functions of M

Two different calibration methods

- Both approaches work with same data
 - Projection matrix approach is simpler to explain than the direct approach
- Direct approach requires an extra step
 - There are also other calibration methods
- But all calibration methods
 - Use patterns with know geometry or shape
 - Take multiple views of theses patterns
 - Match the information across the different views
- Perform some mathematics to calculate the intrinsic and extrinsic camera parameters
- We look at simplified case of only one view!

Estimating the projection matrix

World – Frame Transform

- Drop "im" and "w"
- N pairs (xi,yi) <-> (Xi,Yi,Zi)

$$x_{i} = \frac{u_{i}}{w_{i}} = \frac{m_{11}X_{i} + m_{12}Y_{i} + m_{13}Z_{i} + m_{14}}{m_{31}X_{i} + m_{32}Y_{i} + m_{33}Z_{i} + m_{34}}$$

$$y_{i} = \frac{u_{i}}{w_{i}} = \frac{m_{21}X_{i} + m_{22}Y_{i} + m_{23}Z_{i} + m_{24}}{m_{31}X_{i} + m_{32}Y_{i} + m_{33}Z_{i} + m_{34}}$$

Linear equations of m

- 2N equations, 11 independent variables
- N >=6, SVD => m up to a unknown scale

$$Am = 0$$

$$\mathbf{A} = \begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & -x_1 X_1 & -x_1 Y_1 & -x_1 Z_1 & -x_1 \\ 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1 X_1 & -y_1 Y_1 & -y_1 Y_1 & -y_1 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$\mathbf{m} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{21} & m_{22} & m_{23} & m_{24} & m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix}^T$$

Homogeneous System

- M linear equations of form Ax = 0
- If we have a given solution x1, s.t. Ax1 = 0 then c * x1 is also a solution A(c* x1) = 0
- Need to add a constraint on x,
 - Basically make \mathbf{x} a unit vector $\mathbf{x}^{\mathrm{T}}\mathbf{x} = 1$
- Can prove that the solution is the eigenvector corresponding to the single zero eigenvalue of that matrix A^TA
 - This can be computed using eigenvector of SVD routine
 - Then finding the zero eigenvalue (actually smallest)
 - Returning the associated eigenvector

Decompose projection matrix

- 3x4 Projection Matrix M computed previously
 - Both intrinsic (4) and extrinsic (6) 10 parameters

$$\mathbf{M} = \begin{bmatrix} -f_x r_{11} + o_x r_{31} & -f_x r_{12} + o_x r_{32} & -f_x r_{13} + o_x r_{33} & -f_x T_x + o_x T_z \\ -f_y r_{21} + o_y r_{31} & -f_y r_{22} + o_y r_{32} & -f_y r_{23} + +o_y r_{33} & -f_y T_y + o_y T_z \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

From M[^] to parameters (p134-135)

- Find scale |γ| by using unit vector R₃^T
- Determine T_z and sign of γ from m₃₄ (i.e. q₄₃)
- Obtain R₃^T
- Find (Ox, Oy) by dot products of Rows q1. q3, q2.q3, using the orthogonal constraints of R
- Determine fx and fy from q1 and q2 All the rests: R₁^T, R₂^T, Tx, Ty

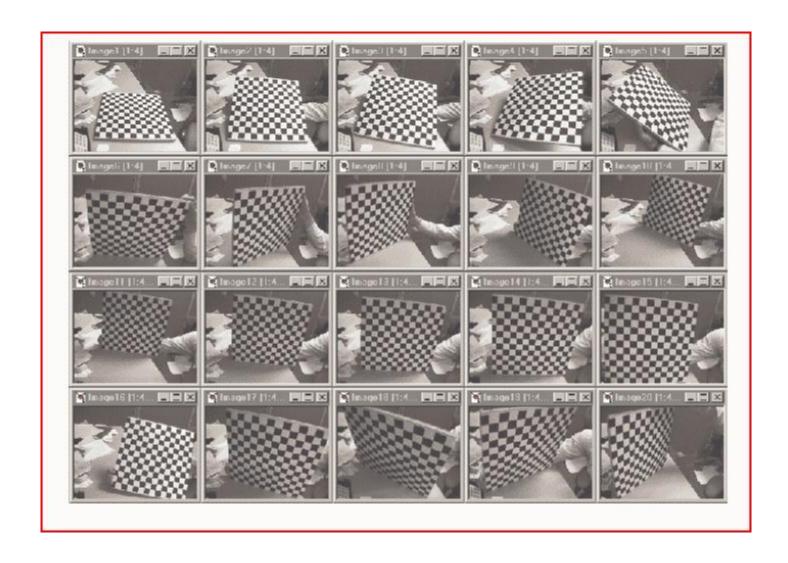
Calibration Summary

Comparison of methods

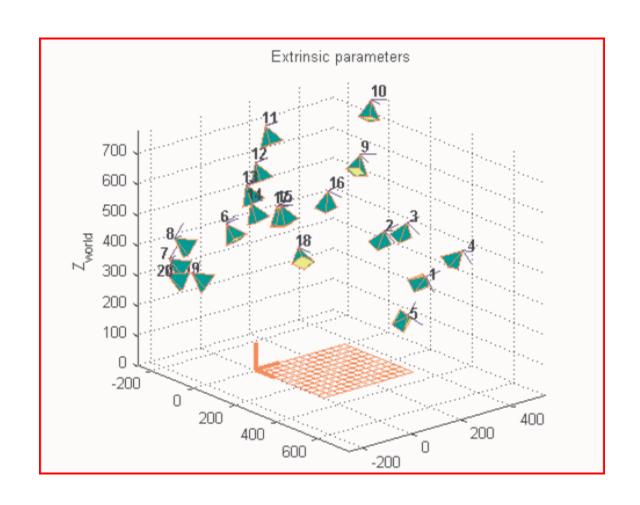
- Direct approach requires extra step to find Ox, Oy
- Projection approach finds Ox, and Oy at same time
 - Is simpler mathematically than the direct approach
- Both methods require a refit to find a "valid" R matrix

There are other calibration methods

- Zhang approach uses flat plane (implemented in OpenCV)
- Plane must be flat, but do not need 3D co-ordinates


But all calibration methods

- Have some known targets with known 3D geometry or shape
- Take a number of images of these targets
- From these measurements calculate the camera particulars
- Are essential for further processing like reconstruction


Multiple View/Camera Calibration

- Previous math describes the calibration process for a single image
 - We usually take multiple images of the same calibration target (from a variety of different views)
 - Simultaneously find all extrinsic parameters and all the intrinsic parameters of the single camera
- Also calibrate radial distortion using fact that there are straight lines in the pattern
- OpenCV code can do this using a checkerboard pattern
- Zhang's algorithm is used most in practice

Input set of 2d Calibration Patterns

Final Camera positions and the pattern

