Hough Transform

COMP 41012A
Gerhard Roth
Winter 2015

Version 2

Lines

Lines

Rafael, The School of Athens (1518)

Line Detection

The problem:
*How many lines?
Find the lines.

Equations for Lines

The slope-intercept equation of line
y=mx+Db

What happens when the line is vertical? The slope a goes
to infinity.

A better representation — the polar representation
The two parameters p, 6 defining line are bounded

0 =XC0SO+ysind

Hough Transform: line-parameter mapping

A line in the plane maps to a point in the 6-p space.

y /_\P\. (6.,p)

P
40

X 0

All lines passing through a point map to a sinusoidal curve in the
0-p (parameter) space.

3“" p\
[9
0 =XC0SO+ysin

Mapping of points on a line

\

X 0

Points on the same line define curves in the parameter space
that pass through a single point.

Main idea: transform edge points in x-y plane to curves in the
parameter space. Then find the points in the parameter space
that has many curves passing through it.

Hough ldea

« Each straight line in this image can be
described by an equation

« Each white point if considered in
Isolation could lie on an infinite
number of straight lines

* Inthe Hough transform each point
votes for every line it could be on

* The lines with the most votes win

Quantize Parameter Space

mn/a

e

1
/i
o (m|mte.

| B
LT
|
H

Hp=e

i - 0

Detecting Lines by finding maxima / clustering in parameter space.

Parameter space — 3D view

10

A Voting Scheme

11

Hough Processing

Image Edge detection Hough Transform

* Find the edges in the image (Canny operator common)
« Use each edge point to vote in the accumulator space
« Accumulator space also called the Hough Space

* Find the peak(s) in the accumulator space
12

Examples

Input Image

Hough space

lines detected

13

Examples

Input Image Hough space lines detected

Image credit: NASA Dryden Research Aircraft Photo Arthive

Examples — look at video

Original Edge Detection Found Lines

Parameter Space

Video showing Hough
https://www.youtube.com/
watch?v=ebfi7/gOFLuo

15

https://www.youtube.com/watch?v=ebfi7qOFLuo
https://www.youtube.com/watch?v=ebfi7qOFLuo

Algorithm

1. Quantize the parameter space
int P[0, pmax][0, Omax]; // accumulators

2. For each edge point (x, y) {
For (6 =0; 6 <= Omax; 0 = 6+A0) {
0 =XC0sE&+ ysin@ [l round off to integer
(PlpI[6])++;
}
h

3. Find the peaks In P[p][0].

16

Cell Size

Choose the parameter cell size such that the algorithm is robust
to noise.

17

Maximum number of votes

Fewer votes land in a single bin when noise increases.

20

15

*
1S
1ok
H
*
£ #
* %
*
® *
*
5 | I | | | | I # *
5 ooi o0 o0z 004 0 006 0060 007 0 00& 009
Noige level

18

-
ra

E 3

11 -
o
X "
¢ 10k
=3
ey
- g " *
-
>
e '
=
= 7F
E *
- B
g
o ar %

4_

3T | | | | | | | |

o0 40 50) 100 120 140 160 180 o0

Number of noise points

Adding more clutter increases number of bins with false peaks. o

Finding Circles by Hough Transform

Equation of Circle:

"/) \
(Xi —a)2 -I—(yi —b)2 —r? b : /. (%i.y:)

If radius is known: (2D Hough Space) R
' > X
a
Accumulator Array A(@, b)
l
- Ab CIRCLES |
o, M T R o gl l)
(xe,y¢)
>
" Y

Finding Circles by Hough Transform

Equation of Circle:

;) \
(xi—a)2+(yi—b)2=r2 b '.‘ /yc*c.j;)

If radius is not known: 3D Hough Space!
Use Accumulator array — A(a, b,)

21

Using Gradient Information

 Gradient information can save lot of computation:

R
Edge Location (X, Y;) \ 1 2
Edge Direction ¢i -~ <« |
el
Assume radius is known: f \
| - >)
b 5 - (X: Y0
—¢;7 A
e a=X-rcosg
*(a,b) b=y-rsing
> X

Need to increment only one point in Accumulator!!
If radius is not known, accumulator is 2d using gradients

Finding Coins

Original Edges (note noise)

Finding Coins (Continued)

Penny Quarters

Application: Lane Detection

245 312002
13-03-29 0

25

Hough Characteristics

Detects all the curves in an image at once

Running time proportional to the number of
edge points that are in the image

Can deal with disconnected edge points

« Does not assume (require) any connectivity for edges
Accumulator dimension (space) proportional
to number of parameters that define the curve
« Works well for lines (only 2d accumulator array necessary)
Not easy to extend to more complex curves
because of the space requirements

« Can use image gradient to decrease space requirements

Using gradients works well for circles

26

Probabilistic Hough Transform

« Given a set of p edge points in an image

« Goal is to find a particular curve (line, or circle)

« Idea is that given n edge points (n is 2 for line or 3 for circle)
we can create a unigue curve through just these points

* Do while we have enough edge points

* For K times (a parameter)
» Choose n random edge points (2 for line and 3 for circle)
« Create a unique line or circle through these points

« Count the number of edge points that are within d pixels
(another parameter) of that unique line or circle

» Save the best curve (has most points within distance d)
« Endfor

remove the edge points found for best curve
Enddo

27

Probabilistic Hough Transform

« Two parameters distance d, and #samples K

« Distance d is typically set in range 1 to 5 pixels

« #samples K depends on how many curves you expect there
to be in the image

« Given expectation of at most n curves in the

Image you can compute a value for K

« K s an exponential function of n, the degrees of freedom
(dof) of the curve, which is 2 for a line and 3 for a circle

* Running time O(m K p) K is number of samples, p is the
number of edge points, m is number of curves

« Space requirements are low so you could use
this for complex curves (like ellipse, 5 dof)

28

Probabillistic HT relative to ordinary HT

* Ordinary HT space requirements where q Is
grid size are g for line and @3 for a circle
* Running time is O(g p) with p edge points

* Probabilistic HT space requirements are
simply O(p), the number of edge points

« Timeis O(m K p), m curves p edge points, K samples

« Which is faster for lines and circles?

* Depends on how many lines and circles exist (n)

 Remember for Prob. HT value of K is an exponential function
of the number of expected lines or circles

« With a small number of curves K is small, and Prob. HT is
faster, large number of curves K is large and HT is faster

* For curves like ellipse Prob. HT is only choice

29

