Geometric Model of Camera

Dr. Gerhard Roth

COMP 4102A
Winter 2015
Version 2

Similar Triangles

property (i): corresponding angles are equal

$$
\left(A=A^{\prime} \text { and } B=B^{\prime} \text { and } C=C^{\prime}\right)
$$

property (ii): corresponding sides have proportional lengths

$$
\left(\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}\right)
$$

Geometric Model of Camera

Perspective projection

Parallel lines aren't...

Figure by David Forsyth

Lengths can't be trusted...

Coordinate Transformation - 2D

Rotation and Translation

$$
\begin{gathered}
p^{\prime}=\left[\begin{array}{l}
p_{x}^{\prime} \\
p_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \\
p^{\prime \prime}=\left[\begin{array}{l}
p_{x}^{\prime} \\
p_{y}^{\prime}
\end{array}\right]+\left[\begin{array}{l}
T_{x} \\
T_{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+\left[\begin{array}{l}
T_{x} \\
T_{y}
\end{array}\right]_{6}
\end{gathered}
$$

Homogeneous Coordinates

Go one dimensional higher:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \rightarrow\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]
$$

w is an arbitrary non-zero scalar, usually we choose 1.

From homogeneous coordinates to Cartesian coordinates:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} / x_{3} \\
x_{2} / x_{3}
\end{array}\right] \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} / x_{4} \\
x_{2} / x_{4} \\
x_{3} / x_{4}
\end{array}\right]
$$

2D Transformation with Homogeneous Coordinates

2D coordinate transformation:

$$
p^{\prime \prime}=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right]+\left[\begin{array}{l}
T_{x} \\
T_{y}
\end{array}\right]
$$

2D coordinate transformation using homogeneous coordinates:

$$
\left[\begin{array}{c}
p_{x}^{\prime \prime} \\
p_{y}^{\prime \prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & T_{x} \\
-\sin \phi & \cos \phi & T_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

Homogeneous coordinates (In 2d)

Two points are equal if and only if:

$$
x^{\prime} / w^{\prime}=x / w \quad \text { and } \quad y^{\prime} / w^{\prime}=y / w
$$

$w=0$: points at infinity

- useful for projections and curve drawing

Homogenize = divide by w. Homogenized point example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{r}
64400 \\
70800 \\
170
\end{array}\right]
$$

$$
\begin{aligned}
& x=x^{\prime} / w^{\prime}=64400 / 170=378.8 \\
& y=y^{\prime} / w^{\prime}=70800 / 170=416.5
\end{aligned}
$$

Why use homogeneous co-ordinates

- We require a composition (sequence of) rotations, translations and projections
- Even the projection is a matrix multiplication
- Each of these can be described by matrix operations using homogeneous coordinates
- Composing them together, applying them one after the other just matrix multiplication
- The final operation, which takes a 3d point and produces a 2 d image is one big matrix multiplication

Translations with homogeneous

$$
\begin{gathered}
{\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
\boldsymbol{w}^{\prime}
\end{array}\right]=\left[\begin{array}{llr}
1 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\
0 & 1 & \boldsymbol{t}_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{y} \\
\boldsymbol{w}
\end{array}\right]} \\
\left\{\begin{array}{l}
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{w} \boldsymbol{t}_{\boldsymbol{x}} \\
\boldsymbol{y}^{\prime}=\boldsymbol{y}+\boldsymbol{w} \boldsymbol{t}_{y} \\
\boldsymbol{w}^{\prime}=\boldsymbol{w}
\end{array}\right.
\end{gathered}\left\{\begin{array}{l}
\frac{x^{\prime}}{w^{\prime}}=\frac{x}{w}+t_{x} \\
y^{\prime}=\frac{y}{w}+t_{y}
\end{array}\right.
$$

Scaling with homogeneous

$$
\begin{aligned}
& {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
\boldsymbol{w}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{s}_{\boldsymbol{y}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
\boldsymbol{w}
\end{array}\right] \quad\left\{\begin{array}{l}
\frac{x^{\prime}}{w^{\prime}}=S_{x} \frac{x}{w} \\
\frac{y^{\prime}}{w^{\prime}}=S_{y} \frac{y}{w}
\end{array}\right.} \\
& \left\{\begin{array}{l}
x^{\prime}=s_{x} x \\
y^{\prime}=s_{y} y \\
w^{\prime}=w
\end{array}\right.
\end{aligned}
$$

Rotation with homogeneous co-ord's

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]\left\{\begin{array}{l}
\frac{x^{\prime}}{w^{\prime}}=\cos \theta \frac{x}{w}-\sin \theta \frac{y}{w} \\
\frac{y^{\prime}}{w^{\prime}}=\sin \theta \frac{x}{w}+\cos \theta \frac{y}{w}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x^{\prime}=\cos \theta x-\sin \theta y \\
y^{\prime}=\sin \theta x+\cos \theta y \\
w^{\prime}=w
\end{array}\right.
$$

3D Rotation about X-Axis

Representation in homogeneous co-ordinates

$$
x^{\prime}=x
$$

$$
\begin{gathered}
y^{\prime}=y \cos (\theta)-z \sin (\theta) \\
z^{\prime}=y \sin (\theta)+z \cos (\theta) \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
P^{\prime}=R_{x}(\theta) P
\end{gathered}
$$

3D Rotation about Y-Axis

Representation in homogeneous co-ordinates

$$
\begin{gathered}
x^{\prime}=z \sin (\theta)+x \cos (\theta) \\
y^{\prime}=y \\
z^{\prime}=z \cos (\theta)-x \sin (\theta) \\
{\left[\begin{array}{cc}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 0 \\
-\sin (\theta) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
\boldsymbol{P}^{\prime}=R_{y}(\theta) P
\end{gathered}
$$

3D Rotation about Z-Axis

Representation in homogeneous co-ordinates

3D Rotation Matrix - Euler Angles

Rotate around each coordinate axis:
Rz
$R_{1}(\alpha)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha\end{array}\right] \boldsymbol{R}_{2}(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right] \boldsymbol{R}_{3}(\gamma)=\left[\begin{array}{ccc}\cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1\end{array}\right]$

Combine the three rotations: $R=R x R y R z$

- Can describe any 3 d rotation by a sequence of rotations about the three axis
- So $\mathrm{R}=$ RxRyRz or RxRzRy or RyRxRz or RyRzRx or RzRxRy or RzRyRx

3d Rotation Matrix

- When you specify the values for each axis you musts also specify order of operations
- Different orders have different angle values
- Succeeding rotations are about an already modified set of three axis
- Remember matrix multiplication is not commutative AB is not same as BA
- A rotation matrix has 9 elements but we need only three numbers to specify a 3d rotation uniquely!

3d Rotation Matrix - Examples

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{\tilde{z}}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& 45 \text { degrees cow about } \mathrm{X} \text {-axis }
\end{aligned}
$$

3D Rotation - Rodriguez

- Rotations also described by axis and angle
- Rotation axis (2 parameters) and amount of rotation (angle - 1 parameter)

Can convert between Euler Angles and Rodriguez representation

Degrees of freedom

- This is the number of parameters necessary to generate all possible instances of a given geometric object
- A 2d rotation has one degree of freedom
- Varying one parameter (angle) will generate every possible 2d rotation
- What are degrees of freedom of a 3d rotation
- It is a 3 by 3 matrix with nine numbers so is it 9 ?
- No, the answer is three (always!)
- By varying three parameters we can generate every possible 3d rotation matrix (for every representation!)
- Why is it 3 and not 9 ?

Rotation Matrices

- Both 2d and 3d rotation matrices have two characteristics
- They are orthogonal (also called orthonormal)

$$
R^{T} R=I \quad R^{T}=R^{-1}
$$

- Their determinant is 1
- Matrix below is orthogonal but not a rotation matrix because the determinate is not 1

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

\longleftarrow this is a reflection matrix

Rotation Matrices

- Rows and columns of a rotation matrix are unit vectors
- Every row is orthogonal to every other rows
- Their dot product is zero
- Every column is orthogonal to every other column
- Their dot product is zero
- These extra constraints mean that the entries in the rotation matrix are not independent
- This reduces the degrees of freedom

3d Rotation Matrix - Inversions

$$
\begin{gathered}
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad \begin{array}{l}
\text { Remember that } \cos (-\mathrm{t})=\cos (\mathrm{t}) \\
\text { And that } \sin (-\mathrm{t})=-\sin (\mathrm{t})
\end{array} \\
R_{x}(\theta) R_{x}(-\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]=\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}=I
\end{gathered}
$$

- Also for rotation matrices which we can see

$$
R^{T} R=I \quad R^{T}=R^{-1}
$$

Homogeneous co-ordinates

- Transformation - transform a point in an n dimensional space to another n dim point
- Transformations are scale, rotations, translations, etc.
- You can represent all these by multiplication by one appropriate matrix using homogeneous co-ordinates
- Projection - transform a point in an n dimensional space to an m dim point
- For projection m is normally less than n
- Perspective projection is a projection (3d to 2d)
- From the 3d world to a 2d point in the image
- You can also represent a projection as matrix multiplication with one appropriate matrix and homogeneous co-ordinates

Four Coordinate Frames

Camera model: $\quad \boldsymbol{p}_{i m}=\left[\begin{array}{c}\text { matrix }\end{array}\right] \boldsymbol{P}_{w}$

Perspective Projection

$$
x=f \frac{X}{Z} \quad y=f \frac{Y}{Z}
$$

These are nonlinear.

Using homogenous coordinate, we have a linear relation:

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \quad x=u / w
$$

World to Camera Coordinate

Transformation between the camera and world coordinates. Here we rotate, then translate, to go from world to camera co-ordinates which is opposite of book, but is simpler and is the way in which OpenCV routines do it:

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{T}
$$

After R, and T we have converted from world to camera frame.
In the camera frame the z axis is along the optical center.

Camera Coordinates to Image Coordinates

$$
\begin{gathered}
x=\left(o_{x}-x_{i m}\right) S_{x} \quad y=\left(o_{y}-y_{i m}\right) S_{y} \\
S_{x}, S_{y}: \text { pixel sizes in millimeters per pixel }
\end{gathered}
$$

Camera co-ordinates x, and y are in millimetres
Image co-ordinates x_{im}, y_{im}, are in pixels
Center of projection $\mathrm{o}_{\mathrm{x}}, \mathrm{o}_{\mathrm{y}}$ is in pixels
Sign change because horizontal and vertical axis of the image and camera frame have opposite directions ${ }_{29}$

Image and Camera frames

Now we look from the camera outward and image origin is the top left pixel $(0,0)$

Put All Together - World to Pixel

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 / s_{x} & \mathbf{0} & o_{x} \\
\mathbf{0} & -\mathbf{1} / s_{y} & \boldsymbol{o}_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right] \quad \text { From camera to pixel } \quad \begin{array}{c}
x_{i m}=x_{1} / x_{3} \\
y_{i m}=x_{2} / x_{3}
\end{array}} \\
& =\left[\begin{array}{ccc}
-1 / s_{x} & 0 & o_{x} \\
0 & -1 / s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 / s_{x} & 0 & o_{x} \\
0 & -1 / s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \\
& \text { Add Rotation } \\
& \text { And Translation } \\
& =\left[\begin{array}{ccc}
-f / s_{x} & 0 & o_{x} \\
0 & -f / s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \\
& \text { Add projection } \\
& \text { Add Rotation } \\
& \text { And Translation } \\
& =K\left[\begin{array}{ll}
R & T
\end{array}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]\right.
\end{aligned}
$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$
\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
f x \\
f y \\
z
\end{array}\right] \quad \Rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

In practice: lots of coordinate transformations...

$$
\left[\begin{array}{c}
2 \mathrm{D} \\
\text { point } \\
(3 \mathrm{x} 1)
\end{array}\right)=\left(\begin{array}{c}
\text { Camera to } \\
\text { pixel coord. } \\
\text { trans. matrix } \\
(3 \times 3)
\end{array}\right)\left(\begin{array}{c}
\text { Perspective } \\
\text { projection matrix } \\
(3 \mathrm{x} 4)
\end{array}\right)\left[\begin{array}{c}
\text { World to } \\
\text { camera coord. } \\
\text { trans. matrix } \\
(4 \mathrm{x} 4)
\end{array}\right)\left(\begin{array}{c}
\\
3 \mathrm{D} \\
\text { point } \\
(4 \mathrm{x} 1)
\end{array}\right)
$$

Camera Parameters

- Extrinsic parameters define the location and orientation of the camera reference frame with respect to a world reference frame
- Depend on the external world, so they are extrinsic
- Intrinsic parameters link pixel co-ordinates in the image with the corresponding coordinates in the camera reference frame
- An intrinsic characteristic of the camera
- Image co-ordinates are in pixels
- Camera co-ordinates are in millimetres
- In formulas that do conversions the units must match!

Intrinsic Camera Parameters

$$
K=\left[\begin{array}{ccc}
-f / s_{x} & 0 & o_{x} \\
0 & -f / s_{y} & o_{y} \\
0 & 0 & \mathbf{1}
\end{array}\right]
$$

K is a 3×3 upper triangular matrix, called the Camera Calibration Matrix.

There are five intrinsic parameters:
(a) The pixel sizes in x and y directions s_{x}, s_{y} in millimeters/pixel
(b) The focal length f in millimeters
(c) The principal point ($\mathrm{O} \mathrm{o}, \mathrm{Oy}$) in pixels, which is the point where the optic axis intersects the image plane.
(d) The units of $f / S x$ and $f / S y$ are in pixels, why is this so?

Camera intrinsic parameters

- Can write three of these parameters differently by letting $\mathrm{f} / \mathrm{sx}=\mathrm{fx}$ and $\mathrm{f} / \mathrm{sy}=\mathrm{fy}$
- Then intrinsic parameters are ox,oy,fx,fy
- The units of these parameters are pixels!
- In practice pixels are square ($s x=s y$) so that means fx should equal fy for most cameras
- However, every explicit camera calibration process (using calibration objects) introduces some small errors
- These calibration errors make fx not exactly equal to fy
- So in OpenCV the intrinsic camera parameters are the four following ox,oy,fx,fy
- However fx is usually very close to fy and if this is not the case then there is a problem

Extrinsic Parameters and Proj. Matrix

$$
p_{i m}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=K\left[\begin{array}{ll}
R & T
\end{array}\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]=M\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]\right.
$$

$[\mathrm{R} \mid \mathrm{T}]$ defines the extrinsic parameters.
The 3×4 matrix $M=K[R \mid T]$ is called the projection matrix.
It takes 3d points in the world co-ordinate system and maps them to the appropriate image co-ordinates in pixels

Create a complete projection matrix

Camera located at $T_{c w}=\left[T_{x}, T_{y}, T_{z}\right]^{t}=[10,20,30]^{t}$
Camera aimed along z-axis, x, y axes parallel to world axes ($\mathrm{R}=\mathrm{I}$)

$$
T_{\mathrm{cw}}=\left[\begin{array}{l}
\mathbf{T}_{\mathrm{x}} \\
\mathrm{~T}_{\mathrm{y}} \\
\mathbf{T}_{z}
\end{array}\right]=\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]
$$

$$
R=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{\mathrm{zy}} & I_{z z}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
S=\left[\begin{array}{l}
-10 \\
-20 \\
-30
\end{array}\right]
$$

Camera has focal length $f_{x}=f_{y}=1000$ image $=640 \times 480$, assume $u_{0}=320, v_{0}=240$ Calculate complete 3×4 projection matrix

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} & \mathbf{P}_{14} \\
\mathbf{P}_{21} & \mathbf{P}_{22} & \mathbf{P}_{23} & \mathbf{P}_{24} \\
\mathbf{P}_{31} & \mathbf{P}_{32} & \mathbf{P}_{33} & \mathbf{P}_{34}
\end{array}\right]=\left[\begin{array}{ccc}
1000 & 0 & 320 \\
0 & 1000 & 240 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -10 \\
0 & 1 & 0 & -20 \\
0 & 0 & 1 & -30
\end{array}\right]=\left[\begin{array}{cccc}
1000 & 0 & 320 & -19600 \\
0 & \mathbf{1 0 0 0} & 240 & -27200 \\
0 & 0 & 1 & -\mathbf{3 0}
\end{array}\right]} \\
& u=\frac{u^{\prime}}{w^{\prime}} \quad v=\frac{v^{\prime}}{w^{\prime}}
\end{aligned}
$$

Using the projection matrix - example

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} & \mathbf{P}_{14} \\
\mathbf{P}_{21} & \mathbf{P}_{22} & \mathbf{P}_{23} & \mathbf{P}_{24} \\
\mathbf{P}_{31} & \mathbf{P}_{32} & \mathbf{P}_{33} & \mathbf{P}_{34}
\end{array}\right]=\left[\begin{array}{cccc}
1000 & 0 & 320 & -19600 \\
0 & 1000 & 240 & -27200 \\
0 & 0 & 1 & -30
\end{array}\right]} \\
& \quad u=\frac{u^{\prime}}{w^{\prime}} \\
& v=\frac{v^{\prime}}{w^{\prime}}
\end{aligned}
$$

- Where would the point $(20,50,200)$ project to in the image?

$$
\begin{aligned}
& u=u^{\prime} / w^{\prime}=64400 / 170=378.8 \\
& {\left[\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{r}
64400 \\
70800 \\
170
\end{array}\right]} \\
& v=v^{\prime} / w^{\prime}=70800 / 170=416.5 \\
& \text { - World point }(20,50,200) \text { project to pixel } \\
& \text { With co-ordinates of }(379,417)
\end{aligned}
$$

Using the projection matrix - example

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} & \mathbf{P}_{14} \\
\mathbf{P}_{21} & \mathbf{P}_{22} & \mathbf{P}_{23} & \mathbf{P}_{24} \\
\mathbf{P}_{31} & \mathbf{P}_{32} & \mathbf{P}_{33} \mathbf{P}_{34}
\end{array}\right]=\left[\begin{array}{cccc}
1000 & 0 & 320 & -19600 \\
0 & 1000 & 240 & -27200 \\
0 & 0 & 1 & -30
\end{array}\right]} \\
& \quad u=\frac{u^{\prime}}{W^{\prime}} \\
& v=\frac{v^{\prime}}{W^{\prime}}
\end{aligned}
$$

- Where would the point $(10,20,200)$ project to in the image?

$$
\begin{aligned}
& {\left[\begin{array}{l}
u^{\prime} \\
\mathbf{v}^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{r}
54400 \\
40400 \\
170
\end{array}\right]} \\
& u=u^{\prime} / w^{\prime}=54400 / 170=320 \\
& v=v^{\prime} / w^{\prime}=40800 / 170=240
\end{aligned}
$$

Effect of change in focal length

Small f is wide angle, large f is telescopic

perspective
weak perspective
increasing focal length \longrightarrow
increasing distance from camera

Orthographic Projection

Orthographic Projection

Orthographic Projection

Special case of perspective projection

- Distance from center of projection to image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

Weak Perspective Model

Assume the relative distance between any two points in an object along the principal axis is much smaller ($1 / 20^{\text {th }}$ at most) than the \bar{Z} average distance of the object. Then the camera projection can be approximated as:

$$
x=f \frac{X}{Z} \approx \frac{f}{\bar{Z}} X \quad y=f \frac{Y}{Z} \approx \frac{f}{\bar{Z}} Y
$$

This is the weak-perspective camera model. Sometimes called scaled orthography.

Weak Perspective Projection

plane

Weak Perspective

158
5 Camera Models

Impact of different projections

- Perspective projections
- Parallel lines in world are not parallel in the image
- Object projection gets smaller with distance from camera
- Weak perspective projection
- Parallel lines in the world are parallel in the image
- Object projection gets smaller with distance from camera
- Orthographic projection
- Parallel lines in the world are parallel in the image
- Object projection is unchanged with distance from camera

Ordinary Perspective

- Parallel lines in world - not parallel in image

Weak Perspective

- Parallel lines in world - parallel in image

MGHEMETNS

Image distortion due to optics

- Radial distortion which depends on radius r, distance of each point from center of image
- $r^{2}=(x-O x)^{2}+(y-O y)^{2}$

Radial distortion

$$
\begin{aligned}
& x_{\text {corracade }}=x\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right) \\
& y_{\text {corscece }}=y\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right)
\end{aligned}
$$

orrection uses three trameters, $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$

Radial Distortion

- Error is proportional to distance of pixel from the camera center (the radius of the point)

No Distortion

Barrel Distortion

Pincushion Distortion

Correcting Radial Distortions

Tangential Distortion

- (Ox, Oy) - center of projection) is not the center of image
- Also causes a more complex distortion of the image
- The physical retina may be slightly rotated

Tangential Distortion

- Lens not exactly parallel to the imaae blane

$$
\begin{aligned}
& x_{\text {correted }}=x+\left[2 p_{1} y+p_{2}\left(r^{2}+2 x^{2}\right)\right] \\
& y_{\text {corseded }}=y+\left[p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} x\right]
\end{aligned}
$$

Tangential distortion

- Correction uses two parameter $\mathrm{p}_{1}, \mathrm{p}_{2}$
- Both types of distortion are removed (image is un-distorted) and only then does standard calibration matrix K apply to the image
- Camera calibration computes both K and these five distortion parameters

How to find the camera parameters K

- Can use the EXIF tag for any digital image

- Has focal length fin millimeters but not the pixel size
- But you can get the pixel size from the camera manual
- There are only a finite number of different pixels sizes because the number of sensing element sizes is limited
- If there is not a lot of image distortion due to optics then this approach is sufficient (this is only a linear calibration)
- Can perform explicit camera calibration
- Put a calibration pattern in front of the camera
- Take a number of different pictures of this pattern
- Now run the calibration algorithm (different types)
- Result is intrinsic camera parameters (linear and non-linear) and the extrinsic camera parameters of all the images

Summary Questions

Why do we use homogeneous co-ordinates for image projection?
Write the projection equation in a linear form using a matrix with homogeneous co-ordinates.
What are the units of image co-ordinates and camera co-ordinates? How do you convert between them?
Why do the names extrinsic, and intrinsic parameters of a lens make sense?
What are the units of f / sx, and f / sy ? Implications?
What are characteristics of perspective, weak perspective and orthographic projection?
What are parameters of models for non-linear lens characteristics?

