
Geometric Model of Camera 

Dr. Gerhard Roth 

 

COMP 4102A 

Winter 2016 

Version 1 

1 



Similar Triangles 
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Geometric Model of Camera 

Perspective projection 
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fx 

Z

Y
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Parallel lines aren’t… 

Figure by David Forsyth 
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Lengths can’t be trusted... 
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Coordinate Transformation – 2D 
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Homogeneous Coordinates 

Go one dimensional higher: 
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2D Transformation with Homogeneous Coordinates 

2D coordinate transformation using homogeneous coordinates: 
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Homogeneous coordinates (In 2d) 

Two points are equal if and only if: 

x’/w’ = x/w   and   y’/w’= y/w 

w=0: points at infinity  
• useful for projections and curve drawing 

Homogenize = divide by w. 

Homogenized point example: 

x’ 

y’
 

w’
 

= 
64400       

70800         

170 

x=x’/w’ = 64400/170 = 378.8 
y=y’/w’ = 70800/170 = 416.5 
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Why use homogeneous co-ordinates 

• We require a composition (sequence of) 

rotations, translations and projections 

• Even the projection is a matrix multiplication 

• Each of these can be described by matrix 

operations using homogeneous coordinates 

• Composing them together, applying them 

one after the other just matrix multiplication 

• The final operation, which takes a 3d point 

and produces a 2d image is one big matrix 

multiplication 
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Translations with homogeneous 
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Scaling with homogeneous 
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Rotation with homogeneous co-ord’s 
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3D Rotation about X-Axis 

Representation in homogeneous co-ordinates 



3D Rotation about Y-Axis 

Representation in homogeneous co-ordinates 
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3D Rotation about Z-Axis 

Representation in homogeneous co-ordinates 
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3D Rotation Matrix – Euler Angles 

Rotate around each coordinate axis: 

              Rx                                  Ry                                Rz                           
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Combine the three rotations: RxRyRzR 

• Can describe any 3d rotation by a sequence of 

rotations about the three axis 

• So R = RxRyRz or RxRzRy or RyRxRz or RyRzRx 

or RzRxRy or RzRyRx 
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3d Rotation Matrix 

• When you specify the values for each axis 

you musts also specify order of operations 

• Different orders have different angle values 

• Succeeding rotations are about an already 

modified set of three axis 

• Remember matrix multiplication is not 

commutative AB is not same as BA 

• A rotation matrix has 9 elements but we 

need only three numbers to specify a 3d 

rotation uniquely! 
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3d Rotation Matrix - Examples 
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3D Rotation – Rodriguez  

• Rotations also described by axis and angle 

• Rotation axis (2 parameters) and amount of 

rotation (angle – 1 parameter) 

Can convert between 

Euler Angles and  

Rodriguez representation 
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Degrees of freedom 

• This is the number of parameters necessary 

to generate all possible instances of a given 

geometric object 

• A 2d rotation has one degree of freedom 
• Varying one parameter (angle) will generate every possible 

2d rotation 

• What are degrees of freedom of a 3d rotation 
• It is a 3 by 3 matrix with nine numbers so is it 9? 

• No, the answer is three (always!) 
• By varying three parameters we can generate every 

possible 3d rotation matrix (for every representation!) 

• Why is it 3 and not 9?  
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Rotation Matrices 

• Both 2d and 3d rotation matrices have two 

characteristics 

• They are orthogonal (also called orthonormal) 

 

 

• Their determinant is 1 

• Matrix below is orthogonal but not a rotation 

matrix because the determinate is not 1 

IRRT  1 RRT
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100

010

001

this is a reflection matrix 
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Rotation Matrices 

• Rows and columns of a rotation matrix are 

unit vectors 

• Every row is orthogonal to every other rows 
• Their dot product is zero 

• Every column is orthogonal to every other 

column 
• Their dot product is zero 

• These extra constraints mean that the 

entries in the rotation matrix are not 

independent 

• This reduces the degrees of freedom 
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3d Rotation Matrix - Inversions 

 

 

 

 

 

 

 

• Also for rotation matrices which we can see 

•   

24 

Remember that cos(-t) = cos(t) 

And that sin(-t) = -sin(t) 

IRRT  1 RRT



Homogeneous co-ordinates 

• Transformation – transform a point in an n 

dimensional space to another n dim point 
• Transformations are scale, rotations, translations, etc.  

• You can represent all these by multiplication by one 

appropriate matrix using homogeneous co-ordinates 

• Projection – transform a point in an n 

dimensional space to an m dim point 
• For projection m is normally less than n 

• Perspective projection is a projection (3d to 2d) 

• From the 3d world to a 2d point in the image 

• You can also represent a projection as matrix multiplication 

with one appropriate matrix and homogeneous co-ordinates 
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Four Coordinate Frames 
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Perspective Projection 
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X
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These are nonlinear. 
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World to Camera Coordinate 

TRXX  wc
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Transformation between the camera and world coordinates. 

Here we rotate, then translate, to go from world to camera 

co-ordinates which is opposite of book, but is simpler and  is 

the way in which OpenCV routines do it: 

After R, and T we have converted from world to camera frame. 

In the camera frame the z axis is along the optical center. 28 



Camera Coordinates to Image Coordinates 
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Camera co-ordinates x, and y are in millimetres 

Image co-ordinates  xim, yim, are in pixels 

Center of projection ox, oy is in pixels 

Sign change because horizontal and vertical axis of 

the image and camera frame have opposite directions. 
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Image and Camera frames  

Now we look from the camera outward 

and image origin is the top left pixel (0,0) 

Ximage 

Yimage 

Xcamera 

Ycamera 

(xim, yim) 

(ox,oy) 

Zcamera 
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Put All Together – World to Pixel 
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Add projection 

Add Rotation 
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divide by the third 

coordinate 

Perspective Projection Matrix 

Projection is a matrix multiplication using homogeneous 

coordinates 
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In practice: lots of coordinate transformations… 

World to  

camera coord.  

trans. matrix 

(4x4) 

Perspective 

projection matrix 

(3x4) 

Camera to  

pixel coord.  

trans. matrix  

(3x3) 

= 
2D 

point 

(3x1) 

3D 

point 

(4x1) 
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Camera Parameters 

• Extrinsic parameters define the location and 

orientation of the camera reference frame 

with respect to a world reference frame 
• Depend on the external world, so they are extrinsic 

• Intrinsic parameters link pixel co-ordinates in 

the image with the corresponding co-

ordinates in the camera reference frame 
• An intrinsic characteristic of the camera 

• Image co-ordinates are in pixels 

• Camera co-ordinates are in millimetres 
• In formulas that do conversions the units must match! 
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Intrinsic Camera Parameters 
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K is a 3x3 upper triangular matrix, called the  

Camera Calibration Matrix. 

There are five intrinsic parameters: 

(a) The pixel sizes in x and y directions            in millimeters/pixel 

(b) The focal length       in millimeters 

(c) The principal point (ox,oy) in pixels, which is the point 

where the optic axis intersects the image plane.  

(d) The units of f/Sx and f/Sy are in pixels, why is this so? 

yx ss ,

f
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Camera intrinsic parameters 

• Can write three of these parameters 

differently by letting f/sx = fx and f/sy = fy  
• Then intrinsic parameters are ox,oy,fx,fy 

• The units of these parameters are pixels! 

• In practice pixels are square (sx = sy) so that 

means fx should equal fy for most cameras 
• However, every explicit camera calibration process (using 

calibration objects) introduces some small errors 

• These calibration errors make fx not exactly equal to fy 

• So in OpenCV the intrinsic camera 

parameters are the four following ox,oy,fx,fy  
• However fx is usually very close to fy and if this is not the 

case then there is a problem 
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Extrinsic Parameters and Proj. Matrix 

[R|T] defines the extrinsic parameters. 

The 3x4 matrix M = K[R|T] is called the projection matrix. 

It takes 3d points in the world co-ordinate system and maps  

them to the appropriate image co-ordinates in pixels 
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Create a complete projection matrix 

37 

• Camera located at Tcw=[Tx, Ty, Tz]
t =[10,20,30]t 

• Camera aimed along z-axis, x,y axes parallel to world axes (R=I) 
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• Camera has focal length fx= fy=1000 
• image=640x480, assume u0=320, v0=240 
• Calculate complete 3x4 projection matrix 
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• Where would the point (20,50,200) project to in the image? 
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32

  P
33  

P
34 

X
w
 

Y
w 

Z
w 

1 

= 
1000   0     320   -19600 

   0   1000  240   -27200 

   0      0       1        -30 

20 

50
 

200
 

1 

u’ 

v’
 

w’
 

= 
64400       

70800         

170 

u=u’/w’ = 64400/170 = 378.8 
v=v’/w’ = 70800/170 = 416.5 
 
 • World point (20,50,200) project to pixel 
      With co-ordinates of (379,417) 

Using the projection matrix - example 
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Using the projection matrix - example 
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= 
P

11 
 P

12
  P

13
  P

14
 

P
21  

P
22   

P
23   

P
24 

P
31

  P
32

  P
33  

P
34 

1000   0     320   -19600 

   0   1000  240   -27200 

   0      0       1        -30 

Projection matrix 

u’ 

v’
 

w’
 

= 
P

11 
 P

12
  P

13
  P

14
 

P
21  

P
22   

P
23   

P
24 

P
31

  P
32

  P
33  

P
34 

X
w
 

Y
w 

Z
w 

1 

= 
1000   0     320   -19600 

   0   1000  240   -27200 

   0      0       1        -30 

10 

20
 

200
 

1 

u’ 

v’
 

w’
 

= 
54400

40400         

170 

u=u’/w’ = 54400/170 = 320 
v=v’/w’ = 40800/170 = 240 
 
 

• Where would the point (10,20,200) project to in the image? 



Effect of change in focal length 

Small f is wide angle, large f is telescopic  
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Orthographic Projection 
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Orthographic Projection 
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Orthographic Projection 

Special case of perspective projection 
• Distance from center of projection to image plane is infinite 

 

 

 

 

 

 

 

 

• Also called “parallel projection” 

• What’s the projection matrix? 

Image World 

Slide by Steve Seitz 
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Weak Perspective Model 

Assume the relative distance between any two points in an  

object along the principal axis is much smaller  

(1/20th at most) than the     average distance of the object.  

Then the camera projection can be approximated as: 

X
Z

f

Z

X
fx  Y

Z

f

Z

Y
fy 

This is the weak-perspective camera model. 

Sometimes called scaled orthography. 

Z
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Two step projection: 

 

 

 

 

 

 

 

 

                     image plane                            average depth 

plane 

 

Weak Perspective Projection 
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Z Zc 



Weak Perspective 
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Impact of different projections 

• Perspective projections 
• Parallel lines in world are not parallel in the image 

• Object projection gets smaller with distance from camera 

• Weak perspective projection 
• Parallel lines in the world are parallel in the image 

• Object projection gets smaller with distance from camera 

• Orthographic projection 
• Parallel lines in the world are parallel in the image 

• Object projection is unchanged with distance from camera 
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Ordinary Perspective 

• Parallel lines in world - not parallel in image 
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Weak Perspective 

• Parallel lines in world – parallel in image 

49 



Image distortion due to optics 

• Radial distortion which depends on radius r, 

distance of each point from center of image 

• r2 =  (x- ox)2  +(y- oy)2  

 

Correction uses three 

parameters, k1,k2,k3 
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Radial Distortion  

• Error is proportional to distance of pixel from 

the camera center (the radius of the point) 

Barrel – too far, Pincushion – too close 
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Correcting Radial Distortions 
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Tangential Distortion 

• (Ox, Oy) – center of projection) is not the center of image 

• Also causes a more complex distortion of the image 

53 



Tangential Distortion 

• Lens not exactly parallel to the image plane 

 

 

 

 

• Correction uses two parameter p1, p2 

• Both types of distortion are removed (image 

is un-distorted) and only then does standard 

calibration matrix K apply to the image 

• Camera calibration computes both K and 

these five distortion parameters 
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How to find the camera parameters K 

• Can use the EXIF tag for any digital image 
• Has focal length f in millimeters but not the pixel size 

• But you can get the pixel size from the camera manual 

• There are only a finite number of different pixels sizes 

because the number of sensing element sizes is limited 

• If there is not a lot of image distortion due to optics then this 

approach is sufficient (this is only a linear calibration)  

• Can perform explicit camera calibration 
• Put a calibration pattern in front of the camera 

• Take a number of different pictures of this pattern 

• Now run the calibration algorithm (different types) 

• Result is intrinsic camera parameters (linear and non-linear) 

and the extrinsic camera parameters of all the images 
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Summary Questions 

Why do we use homogeneous co-ordinates for image 
projection? 

Write the projection equation in a linear form using a 
matrix with homogeneous co-ordinates. 

What are the units of image co-ordinates and camera 
co-ordinates? How do you convert between them? 

Why do the names extrinsic, and intrinsic parameters of 
a lens make sense? 

What are the units of f/sx, and f/sy? Implications? 

What are characteristics of perspective, weak 
perspective and orthographic projection? 

What are parameters of models for non-linear lens 
characteristics? 

 

 

 
 


