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Linear algebra  

• Is an important area of mathematics 

• It is the basis of computer vision 

• Is very widely taught, and there are many 

resources and books available 

• We only focus on the basics 

• Need to understand matrices, vectors and 

their basic operations 



Linear Equations 

A system of linear equations, e.g. 
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can be written in matrix form, m rows and n columns: 
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or in general: 
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Matrix 

A matrix is an m×n array of numbers. 
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Example: 
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Matrix Arithmetic 

Matrix addition 
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Matrix multiplication 
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Review of Vectors and Matrices 

Q: Express A,B,C as m x n  

 

Matrices 

 

An m x n matrix has m rows and n columns (height by width, y by x) 
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Review of Vectors and Matrices 
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Matrix B   Matrix C 

 2 x 4           4 x 3 

matrix       matrix 

Result is 2 x 3 

jr + ku + lz + m3 

nr + ou + pz + q3 

 js + kv + l1 + m4 

ns + ov + p1 + q4 

 jt + ky + l2 + m5 

nt + oy + p2 + q5 



Multiplication not commutative 

BAAB 

Matrix multiplication is not commutative 

Example: 
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Symmetric Matrix 

We say matrix A is symmetric if 

AAT 

Example: 
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A symmetric matrix has to be a square matrix 



Inverse of matrix 

If A is a square matrix, the inverse of A, written A-1 satisfies: 

IAA 1 IAA 1

Where I, the identity matrix, is a diagonal matrix with all 1’s 

on the diagonal.  
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Vectors – matrices with one column 
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A vector is an n by 1 matrix, it is a column in our book 



Vector Arithmetic 
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Vector addition 

Vector subtraction 

Multiplication by scalar 
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Dot Product (inner product) 



















5

3

2

a



















2

3

4

b

  925)3(342

2

3

4

532 

















 baba T

nn

T bababababa  2211



Vectors: Dot Product (Inner product) 
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Think of the dot product as 

a matrix multiplication 

The magnitude is the dot 

product of a vector with itself 

The dot product is also related to the 

angle between the two vectors 



Vectors: Outer product 

Here u is an m by 1 column, v is n by 1 column 

so the outer product is m by n 



Trace of Matrix 

The trace of a matrix: 
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Orthogonal Matrix 

A matrix A is orthogonal if 

IAAT  1 AATor 

Example: 
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Matrix Transformation (and projections) 

A matrix-vector multiplication transforms one vector to another 
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Coordinate Rotation 
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Vectors and Points 

Two points in a Cartesian coordinate system define a vector 

P(x1,y1) 

Q(x2,y2) 

x 

y 
v 















12

12

yy

xx
v

P(x1,y1) 

Q(x2,y2) 

x 

y 
v 

A point can also be represented as a vector, defined by the point 

and the origin (0,0). 
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Note: point and vector are different; vectors do not have positions 



Least Squares 

When m>n for an m-by-n matrix A, bAx  has no solution. 

In this case, we look for an approximate solution. 

We look for vector      such that  x

2
bAx 

is as small as possible. 

This is called the least squares solution. 



Least Squares 

Least squares solution of linear system of equations 
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bAAxA TT 
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Normal equation: 
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The Least Square solution 

makes minimal. 



Least Square Fitting of a Line 

x 

y 

mm ydxc

ydxc

ydxc








22

11














































mm y

y

y

d

c

x

x

x


2

1

2

1

1

1

1

The best solution c, d is the one that minimizes: 
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Line equations: 
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Least Square Fitting - Example 

x 

y 

P1=(-1,1), P2=(1,1), P3=(2,3) 

Problem: find the line that best fit these three points: 

Solution:  
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Homogeneous System 

• m linear equations with n unknowns Ax = 0  

• Assume that m >= n-1 and rank(A) = n-1 

• Trivial solution is x = 0 but there are more 

• If we have a given solution x, s.t. Ax = 0 then 

c * x is also a solution since A(c* x) = 0 

• Need to add a constraint on x, 
• Usually make x a unit vector  

• Can prove that the solution of Ax = 0 

satisfying this constraint is the eigenvector 

corresponding to the only zero eigenvalue of 

that matrix  

1 x xT 
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Homogeneous System 

• This solution can be computed using the 

eigenvector or SVD routine 
• Find the zero eigenvalue (or the eigenvalue almost zero) 

• Then the associated eigenvector is the solution x 

• And any scalar times x is also a solution  

 



Linear Independence 

• A set of vectors is linear dependant if one of 

the vectors can be expressed as a linear 

combination of the other vectors. 

 

 

• A set of vectors is linearly independent if 

none of the vectors can be expressed as a 

linear combination of the other vectors. 
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Eigenvalue and Eigenvector 

We say that x is an eigenvector of a square matrix A if 

xAx 

 is called eigenvalue and      is called eigenvector. 

The transformation defined by A changes only the 

magnitude of the vector  x

Example: 
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5 and 2 are eigenvalues, and 
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Properties of Eigen Vectors 

• If 1, 2,…, q are distinct eigenvalues of a 

matrix, then the corresponding eigenvectors 

e1,e2,…,eq are linearly independent. 

 

• A real, symmetric matrix has real eigenvalues 

with eigenvectors that can be chosen to be 

orthonormal. 



SVD: Singular Value Decomposition 

TUDVA 

An mn matrix A can be decomposed into: 

U is mm, V is nn, both of them have orthogonal columns: 

IUUT 

D is an mn diagonal matrix. 

IVV T 

Example: 
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Singular Value Decomposition 

•Any m by n matrix A can be written as product of three 

matrices A = UDVT 

•The columns of the m by m matrix U are mutually 

orthogonal unit vectors, as are the columns of the n by 

n matrix V 

•The m by n matrix D is diagonal, and the diagonal 

elements,       are called the singular values 

•It is the case that  

•A matrix is non-singular if and only all of the singular 

values are not zero 

•The condition number of the matrix is 

•If the condition number is large, then then matrix is 

almost singular and is called ill-conditioned  
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Singular Value Decomposition 

•The rank of a square matrix is the number of linearly 

independent rows or columns 

•For a square matrix (m = n) the number of non-zero 

singular values equals the rank of the matrix 

•If A is a square, non-singular matrix, it’s inverse can be 

written as                           where  

• The squares of the non zero singular values are the 

non-zero eigenvalues of both the n by n matrix            

and of the m by m matrix 

•The columns of U are the eigenvectors of 

•The columns of V are the eigenvectors of       
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