Dealing with Image

The mariachis would serenade
And they would not shut up till they were paid.

Tom Lehrer, In Old Mexico

Attenuating or, ideally, suppressing image noise is important because any computer vision
system begins by processing intensity values. This chapter introduces a few, basic noise models
and filtering methods, which constitute an initial but useful toolkit for many practical situations.

Chapter Overview

Section 3.1 discusses the concept of noise and how to quantify it. It also introduces Gaussian
and impulsive noise, and their effects on images.

Section 3.2 discusses some essential linear and a nonlinear filterin g methods, aimed to attenuate
random and impulsive noise.

What You Need to Know to Understand this Chapter

* The basics of signal theory: sampling theorem (Appendix, section A.3), Fourier transforms,
and linear filtering.

3.1 Image Noise

Chapter 2 introduced the concept of acquisition noise, and suggested a method to
estimate it. But, in general, the term noise covers much more.
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Noise

In computer vision, noise may refer to any entity, in images, data or intermediate results, that is
not interesting for the purposes of the main computation.

For example, one can speak of noise in different cases:

* For image processing algorithms, like edge or line detection, noise might be the
spurious fluctuations of pixel values introduced by the image acquisition system.

* For algorithms taking as input the results of some numerical computation, noise
can be the errors introduced in the latter by random fluctuations or inaccuracies
of input data, the computer’s limited precision, round-off errors, and the like.

* For algorithms trying to group lines into meaningful objects, noise is the contours
which do not belong to any meaningful object.

'¥  In computer vision, what is considered noise for a task is often the interesting signal for a
different task.!

Different types of noise are countered by different techniques, depending on the
noise’s nature and characteristics. This chapter concentrates on image noise. It must be
clear that noise filtering is a classic topic of both signal and image processing, and the
literature on the subject is vast (see section 3.4, Further Readings). This chapter is just
meant to provide a few starting tools which prove useful in many practical situations.

It 1s now time to formalize better our dramatis persona.

Image Noise

We shall assume that the main image noise is additive and random; that is a spurious, random
signal, n(i, j), added to the true pixel values I (i, j):

1G, j)=1G, j)+nG, j) (3.1)
Noise Amount

The amount of noise in an image can be estimated by means of o, the standard deviation of the
randomsignal n(i, j). Itis important to know how strong is the noise with respect to the interesting
signal. This is specified by the signal-to-noise ratio, or SNR:

SNR=2 (3.2)
On

where oy is the standard deviation of the signal (the pixel values I(i, j)). The SNR is often

expressed in decibel:
Os

SNRyp=10log;y — (3.3)
a

n

L This observation was made by Jitendra Malik.
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¥  Additive noise is an adequate assumption for the image acquisition systems introduced in
Chapter 2, but in some cases the noise might not be additive. For instance, multiplicative
noise, whereby I = nI, models image degradation in television lines and photographs owing
to grain size.

Notice that we assume that the resolution of the quantized grey levels is sufficient
to sample the image appropriately; that is, to represent all significant variations of
the image irradiance.’ Coarse quantization can introduce spurious contours and is
thus called quantization noise. Byte images (256 grey levels per pixel), introduced in
Chapter 2, appear to be adequate for most practical purposes and are extremely popular.

3.1.1 Gaussian Noise

In the absence of information, one often assumes n(i, j) to be modelled by a white,
Gaussian, zero-mean stochastic process. For each location (i, j), this amounts to thinking
of n(i, j) as a random variable, distributed according to a zero mean Gaussian distri-
bution function of fixed standard deviation, which is added to I(i, j) and whose values
are completely independent of each other and of the image in both space and time.
This simple model predicts that noise values are distributed symmetrically around
zero and, consequently, pixel values I (i, j) around their true values I (i, j); this is what
you expect from good acquisition systems, which, in addition, should guarantee low
noise levels. Moreover, it is easier to deal formally with Gaussian distributions than
with many other statistical models. To illustrate the effect of Gaussian noise on images,
Figure 3.1 (a) shows a synthetic grey-level “checkerboard” pattern and the profile of the
grey levels along a horizontal scanline. Figure 3.1 (b) shows the same image corrupted
by additive Gaussian noise, and the profile of the grey levels along the same scanline.

¥ The Gaussian noise model is often a convenient approximation dictated by ignorance: if
we do not know and cannot estimate the noise characteristics, we take it to be Gaussian. Be
aware, however, that white Gaussian noise is just an approximation of additive real noise!
You should always try and discover as much as possible about the origin of the noise; e.g.,
investigating which sensor acquired the data, and design suppression methods optimally
tailored to its characteristics. This is known as image restoration, another vast chapter of
Image processing.

3.1.2 Impulsive Noise

Impulsive noise, also known as spoft or peak noise, occurs usually in addition to the one
normally introduced by acquisition. Impulsive noise alters random pixels, making their
values very different from the true values and very often from those of neighboring
pixels too. Impulsive noise appears in the image as a sprinkle of dark and light spots.
It can be caused by transmission errors, faulty elements in the CCD array, or external
noise corrupting the analog-to-digital conversion.

2 Of course, what a significant variation is depends on what you are after. This is discussed further in Chapter 4.
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(a) (b) (c)

Figure 3.1 (a) Synthetic image of a 120 x 120 grey-level “checkerboard” and grey-level profile
along a row. (b) After adding zero-mean Gaussian noise (o = 5). (¢) After adding salt and pepper
noise (see text for parameters).

Salt-and-pepper noise is a model adopted frequently to simulate impulsive Nnoise
in synthetic images. The noisy image values I;,(h, k) are given by

I(h, k) x <
Imin + Y(max — Imin) X > |

Loy (h, k) = [ (3.4)

where [ is the true image, x, y € [0, 1] are two uniformly distributed random variables, /
is a parameter controlling how much of the image is corrupted, and imin, imax hOW severe
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1s the noise. You can obtain saturated salt-and-pepper noise turning y into a two-valued
variable (y =0 or y = 1), and setting i,,;, = 0 and i,,,, = 255.
To illustrate the effects of salt and pepper noise on images, Figure 3.1 (right) shows

the “checkerboard” pattern and the same scanline of Figure 3.1 (left) corrupted by salt
and pepper noise With iy, =0, imex =255, and I = .99.

3.2 Noise Filtering

Problem Statement: Noise Suppression, Smoothing, and Filtering

Given an image I corrupted by noise n, attenuate n as much as possible (ideally, eliminate it
altogether) without altering I significantly.

Attenuating or, if possible, suppressing image noise is important as the result of
most computations on pixel values might be distorted by noise. An important example
is computing image derivatives, which is the basis of many algorithms: any noise in
the signal can result 1n serious errors 1n the derivatives (see Exercise 3.3). A common
technique for noise smoothing 1s linear filtering, which consists in convolving the image
with a constant matrix, called mask or kernel® As a reminder, here is the basic linear
filtering algorithm.

Algorithm LINEAR_FILTER

Let I be a N x M image, m an odd number smaller than both N and M, and A the kernel of a
linear filter, that 1s a m x m mask. The filtered version /4 of I at each pixel (i, j) is given by the
discrete convolution

m m

2z 2
IaG, y=I+xA= Y " Y AMKIG—h, j—k (3.5)

h=—2 k=12

where * indicates discrete convolution, and m/2 integer division (e.g., 3/2 =1).

A linear filter replaces the value 7(i, j) with a weighted sum of I values in a
neighborhood of (i, j); the weights are the entries of the kernel. The effects of a linear
filter on a signal can be better appreciated in the frequency domain. Through the
convolution theorem, the Fourier transform of the convolution of 7 and A is simply the
product of their Fourier transforms F(/) and F(A). Therefore, the result of convolving
a signal with A is to attenuate (or suppress) the signal frequencies corresponding to low
(or zero) values of |F(A)|, spectrum of the filter A.

3The name linear is due to the fact that the convolution with a constant kernel models space- and time-
invariant linear systems. From this point of view, the kernel is the impulse response of the filter.
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3.2.1 Smoothing by Averaging

If all entries of A in (3.5) are non-negative, the filters performs average smoothing. The
simplest smoothing kernel is the mean filter, which replaces a pixel value with the mean
of its neighborhood; for instance, with m =3

e -

(111
1111 (3.6)
9|1 1

— e

Aaug =

i  If the sum of all kernel entries is not one, as it happens for averaging kernels, 74 (i, j) must
be divided by the sum of the entries, to avoid that the filtered image becomes brighter than
the original.

Why does such a filter attenuate noise? Intuitively, averaging takes out small
variations: Averaging m? noisy values around pixel (i, j) divides the standard deviation
of the noise by vm? = m.

Frequency Behavior of the Mean Filter. 1n the frequency domain we have that
the Fourier transform of a 1-D mean filter kernel of width 2W is the “sinc” function

2 sin(wW)

w

sinc(w) =

(Figure 3.3 shows an example in 2-D). Since the signal frequencies falling inside the
main lobe are weighted more than the frequencies falling in the secondary lobes, the
mean filter can be regarded as an approximate “low-pass” filter.

Limitations of Averaging. Averaging is simple but has problems, including at
least the following.

1. Signal frequencies shared with noise are lost; this implies that sharp signal vari-
ations are filtered out by averaging, and the image is blurred. As we shall see in
Chapter 4, blurring affects the accuracy of feature localization.

2. Impulsive noise is only attenuated and diffused, not removed.

3. The secondary lobes in the Fourier transform of the mean filter’s let noise into the
filtered image.

3.2.2 Gaussian Smoothing

Gaussian smoothing is a particular case of averaging, in which the kernel is a 2-D Gaus-
sian. Its effect is illustrated by Figure 3.2, which shows the results of Gaussian smoothing
applied to the noisy “checkerboards” of Figure 3.1(center and right), corrupted by
Gaussian and impulsive noise respectively. Notice that impulsive noise has only been
attenuated; in fact, each spike has also been spread 1n space.

Frequency Behavior of the Gaussian Kernel. The Fourier transform of a Gauss-
ian is still a Gaussian and, hence, has no secondary lobes. This makes the Gaussian kernel
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(a) (b)

Figure 3.2 (a) Results of applying Gaussian filtering (kernel
width 5 pixel, o = 1) to the “checkerboard” image corrupted by
Gaussian noise, and grey-level profile along a row. (b) Same for
the “checkerboard” image corrupted by salt and pepper noise.

a better low-pass filter than the mean filter. A comparison of the mean and Gaussian
filters in both the spatial and frequency domain in 2-D is shown in Figure 3.3.

Separability of the Gaussian Kernel. Gaussian smoothing can be implemented
efficiently thanks to the fact that the kernel i1s separable:
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(a) (b)

Figure 3.3 (a) The plot of a 5 x 5 Gaussian kernel of width 5 (top) and its Fourier transform
(bottom). (b) The same for a mean-filter kernel.
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This means that convolving an image I with a 2-D Gaussian kernel G 1s the same
as convolving first all rows, then all columns with a 1-D Gaussian having the same
o. The advantage is that time complexity increases linearly with mask size, instead
of quadratically (see Exercise 3.4). The next box gives the obvious algorithm for a
separable kernel implemented in the special case of the Gaussian kernel.
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Figure 3.4 (a) 1-D Gaussian (dotted) and real samples (circles) for 5 x 5 kernel. (b) Plot of
corresponding integer kernel.

Algorithm SEPAR_FILTER

To convolve an image I with a m x m 2-D Gaussian kernel G with o0 = o

1. Build a 1-D Gaussian mask g, of width m, with o, = o¢;
2. Convolve each row of I with g, yielding a new image /,;
3. Convolve each column of [, with g.

Building Gaussian Kernels. Thanks to the separability of the Gaussian kernel,
we can consider only 1-D masks. To build a discrete Gaussian mask, one has to sample
a continuous Gaussian. To do so, we must determine the mask width given the Gaus-
sian kernel we intend to use, or, conversely, the o of the continuous Gaussian given
the desired mask width. A relation between ¢ and the mask width w (typically an odd
number) can be obtained imposing that w subtends most of the area under the Gaus-
sian. An adequate choice is w = 5o, which subtends 98.76% of the area. Fitting this
portion of the Gaussian between the endpoints of the mask, we find that a 3-pixel mask
corresponds to o3 = 3/5 = 0.6 pixel; a 5-pixel mask to o5 = 5/5 = 1 pixel; in general,

0w = (3.8)

Sampling a continuous Gaussian yields real kernel entries. Filtering times can be

greatly reduced by approximated integer kernels so that image values being integers too,

no floating point operations are necessary at all. To build an integer kernel, you simply

normalize the real kernel to make its smallest entry 1, round off the results, and divide

by the sum of the entries. Figure 3.4 shows the plot of a 1-D Gaussian profile, the real
samples taken, and the 5 x 5 integer kernel ([1, 9, 18, 9, 1]).



60 Chapter 3  Dealing with Image Noise

Algorithm INT_GAUSS_KER

To build an approximate, integer kernel G;:

1. Compute a floating point kernel G(h. k) the same size as G;; let gmin = G (0, 0) be the
minimum value of G.

2. Determine the normalization factor f = 1/gmin-

3. Compute the entries of the non-normalized filter as G;:(h, k) =int|fG(h, k)], where int
indicates closest integer.

3.2.3 Are our Samples Really Gaussian?

You must be aware that problems lurk behind the straightforward recipe we gave for
building discrete Gaussian kernels. It is instructive to take a closer look at least at one,
sampling. The pixelization imposes a fixed sampling interval of 1 pixel. If the pixel width
is taken as unit, by virtue of the sampling theorem (see Appendix, section A.3), we
cannot reconstruct completely from its samples a signal containing frequencies higher
than 0.5 pixel'l, as any significant component at lw| > w.=27(05) =7 is lost. Notice
that w. is fixed only by the pixelization step, not by the signal.

What are the consequences for building discrete Gaussian kernels? In the contin-
uum, the Fourier transform of the (Gaussian

2

A

g(x’ {}") — E:'_l;r.r

is the Gaussian g(w,0’) witho’' =1/0. As g(w, o') is not bandlimited, sampling g(x, o)
on the pixel grid implies necessarily the loss of all components with |w| > w,. For rela-
tively small o this means that the Fourier transform of g(x, o), g(w,0"),1s substantially
different from zero well outside the interval [—m, ], as shown in Figure 3.5. To avoid
aliasing, the best we can do 1s to try keeping most of the energy of g(w, o’) within the
interval [—m, w]. Applying the “98.86% of the area” criterion in the frequency domain,

we find
5

S50’ = — <2nm
o
or

o > i = (0.796.
2

The preceding inequality tells you that you cannot sample appropriately a Gaussian
kernel whose o is less than 0.8 (in pixel units) no matter how many spatial samples you
keep!

We can also interpret this result in terms of the minimum size for a Gaussian
kernel. Since o = w/5, for w = 3 we have o = 0.6. Therefore, you cannot build a faithful
Gaussian kernel with just 3 samples. For w = 5, instead, we have ¢ =1 which means
that 5 samples are enough. What happens 1f you ignore all this? Figure 3.6 shows that
the inverse FFT of the FFT of the original Gaussian g(x, o) 1s significantly different
from g(x, o) for o =0.6 (w = 3). In accordance with our prediction, a much smaller
difference is found for o =1 (w =35).




Gaussian Smoothing by Repeated Averaging. Repeated averaging (RA) is a
simple and efficient way to approximate Gaussian smoothing. It is based on the fact
that, by virtue of the central limit theorem, convolving a 3 x 3 averaging mask » times
with an image / approximates the convolution of 7 with a Gaussian mask of o =
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Figure 3.5 The Fourier transforms of two
sampled Gaussians, for w =3 (o = 0.6,
dotted line) and w =5 (o =1, solid line).
Notice that a smaller portion of the transform
corresponding to o =1 is lost between —n

and .

andsize 3(n +1) —n =2n + 3.
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n/3

i  Notice that RA leads to a different relation between ¢ and » from the one we obtained
from the area criterion (Exercise 3.6).
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Figure 3.6 Continuous Gaussian kernels (dotted), sampled real kernels, and continuous kernels

reconstructed from samples (solid), for o0 = 0.6 (w =3) (a) and 0 =1 (w = 5) (b) respectively.
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Algorithm REP_AVG

Let A * B indicate the convolution of matrices A and B. Let I be the input image. Define the 3 x 3
RA mask

[T 2 i
R=70|2 12 2 (3.9)
1 2 T

To convolve I with an approximated Gaussian kernel of o = /n/3:

L. '!rlr'.'z.'-_r=‘r
2. Fori=1,...,n, Les=Les*R

You might be tempted to combine separability and repeated averaging, as this
would yield a very efficient algorithm indeed. But are you sure that the kernel defined
in REP_AVG is separable? Using separability with a nonseparable kernel means that
the result of REP_AVG is different from the application of the 2-D mask, which
may result in errors in further processing; image differentiation is once again an apt
example.

A safe way to combine separability and repeated averaging is cascading. The 1dea
is that smoothing with Gaussian kernels of increasingly large standard deviations can
also be achieved by convolving an image repeatedly with the same Gaussian kernel. In
this way, each filtering pass of REP_AVG is surely separable (see Exercise 3.7).

3.2.4 Nonlinear Filtering

In section 3.2.1, we listed the main problems of the averaging filter: blur, poor feature
localization, secondary lobes in the frequency domain, and incomplete suppression of
peak noise. Gaussian filters solve only the third one, as the Fourier transform of a
Gaussian has no secondary lobes. The remaining problems are tackled efficiently by
nonlinear filtering; that is, filtering methods that cannot be modelled by convolution.

The median filter is a useful representative of this class. A median filter just
replaces each pixel value I (i, j) with the median of the values found in a local neigh-
borhood of (i, j). As with averaging, the larger the neighborhood, the smoother the
result.

Algorithm MED_FILTER

Let / be the input image, I, the filtered image, and n an odd number.
For each pixel (i, j):

1. Compute the median m(i, j) of the valuesinan x n neighborhood of (i, j), {{(i +h, j +
k). h,k € [—n/2,n/2]}, where n/2 indicates integer division.

2. Assign I,,(i, j)=m(, j)
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Figure 3.7 (a) Results of applying median filtering (3-pixel
wide) to the “checkerboard™ image corrupted by Gaussian
noise, and grey-level profile along the same row of Figure 3.2.
(b) Same for the “checkerboard™ image corrupted by impulsive
noise.

Figure 3.7 shows the effects of median filtering on the “checkerboard” image
corrupted by Gaussian and impulsive noise (Figure 3.1 center and right, respectively).
Compare these results with those obtained by Gaussian smoothing (Figure 3.2): Median
filtering has suppressed impulsive noise completely. Contours are also blurred less by the

median than by the Gaussian filter; therefore, a median filter preserves discontinuities
better than linear, averaging filters.
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3.3 Summary

After working through this chapter you should be able to:

Q explain the concept of noise, image noise, and why noise smoothing is important
for computer vision

0 design noise-smoothing algorithms using Gaussian and median filtering

Q decide whether it is appropriate to use linear or median smoothing filters in specific
situations

3.4 Further Readings

Noise filtering and image restoration are classic topics of noise and image processing.
Detailed discussions of image processing methods are found in several books; for
instance, [4, 3, 10, 8]. Papoulis [7] is a good reference text for Fourier transforms.

Repeated averaging for computer vision was first reported by Brady ez al [1].
Cai [2] discusses several linear filtering methods in the context of diffusion smoothing.
Witkin [11] and Lindeberg [5] provide a good introduction to scale-space represen-
tations, the study of image properties when smoothing with Gaussians of increasing
standard deviation (the scale parameter). One reason for keeping multiple scales is that
some image features may be lost after filtering with large kernels, but small kernels
could keep in too much noise. Alternative methods for representing signals at multiple
scales include pyramids [9] and wavelets [6] (see also references therein).

3.5 Review

Questions

3 3.1 Explain the concept of image noise, how it can be quantified, and how it can
affect computer vision computations.

7 3.2 How would you estimate the quantization noise in a range image in terms
of mean and standard deviation? Notice that this allows you to compare directly
quantization and acquisition noise.

7 3.3 Explain why a non-negative kernel works as a low-pass filters, and in which
assumptions it can suppress noise.

g

3.4 What is a separable kernel? What are the advantages of separability?

J

3.5 What are the problems of the mean filter for noise smoothing? Why and in
what sense is Gaussian smoothing better?

O 3.6 Explain why the sampling accuracy of a 1-D Gaussian filter with o = 0.6
cannot be improved using more than three spatial samples.

J

3.7 What is repeated averaging? What are its effects and benefits?

J

3.8 What is the difference between cascading and repeated averaging?

J

3.9 Can you think of any disadvantage of cascading? (Hint: Which standard
deviations do you achieve?)
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