262 Chapter 10 Recognition

equations (10.9) forms a linear, overconstrained, homogeneous system in the entries of
T that we write

At =0, (10.10)

with A the 2n x 9 matrix of coefficients and t = [Ty1, T12, . . ., T33] ' . The compatibility
of the lines I; and L; can be checked by looking at the SVD of the matrix A, A=UDV'
(Appendix, section A.6). If the effective rank of A is 8 (that is, the least singular value
of A 1s very small) all the lines are compatible and t, as usual, is given by the column of
V corresponding to the least singular value. Otherwise, the lines are not compatible.

In the assumption that the matrix T passed the compatibility test for lines, you
are left with the problem of testing the compatibility for the conics ¢; featuring in the
defimtionof g¢1,...,8rp (sayi =1,...,m) with the corresponding model conics C;.
This can be done by looking at the ratio between each of the nine coefficients of c;
and TC;T'. If the ratio k; is approximately the same for all coefficients, the matrix
I' passed the global compatibility test and you may proceed to step 5. Otherwise, the
model hypthesis O ¢ discarded.

In step 5, there are two points to make. First, how do we backproject lines and
conics? For lines, we backproject each I; by applying the transformation 7 to the model
line L; like 1n (10.9). For conics, we obtain the backprojection of each ¢; by computing
TC;T'. Notice that the formal difference between this expression and the right hand
side of (10.8) 1s due to the fact that T denotes a projective transformation of lines in the
former and of points in the latter. In mathematical terms, 7 in the former is the inverse
transpose of T 1n the latter. Second, “sufficiently close” (verification 2) means that the
distance between backprojected features should never be larger than a few pixels; exact
figures depend on resolution.

10.4 Appearance-Based Identification

Finally, we address Problem 2 of section 10.1: “Is this part of the image an instance of X?”
And we address the question by using images instead of features as basic components of
object models.

10.4.1 Images or Features?

E

The key 1dea behind appearance-based identification is simple: To store images of 3-D
objects as their representation. Instead of representing object O through its geometric
features and their spatial relations, we represent O with the set of its possible appearances:
that is, the set of images taken, ideally, from all possible viewpoints and with all possible
illumination directions. In practice, we use a sufficiently large number of viewpoints and
illuminations directions. As an example, Figure 10.5 shows a 12-image representation
of a tov car. We can create a database of models for identification by building such a set

- =i I o R R e -
- T e

*We consider only direction for simplicity, but, as we know from Chapter 2, other illumination parameters
play a role in determining pixel values.

Section 10.4 Appearance-Based Identification

e

L R

)
N g i

Figure 10.5 A simple database exemplifying appearance-based object representation.
Only the viewpoint, not the illumination, was changed to obtain the views shown.

for all objects of interest. Identitying an object, then, means to find the set containing
the image which 1s most similar to the one to be recognized.

Problem Statement

Given an 1image, /, containing an object to identify, and a database of object models, each one
formed by a set of images showing the object under a large number of viewpoints and illumination
conditions, find the set containing the image which is most similar to /.

A desirable characteristic of appearance-based identification, as presented, is that
object models can be compared directly with input data, as both are images. Feature-
based models (like the ones used with invariants and interpretation trees), instead,
require that features be detected and described before data and model can be compared.
Unfortunately there 1s a price to pay: the database may become extremely large even for
limited numbers of objects and illumination conditions. For example, assuming 128 x 128
1mages, at one byte per pixel, 100 viewpoints per object, and 10 illumination directions,
the representation of a single object would occupy about 64 megabytes of memory!
Theretore the practical problem is, can we devise a way to keep memory occupation
within manageable limits while performing appearance-based recognition?

264 Chapter 10 Recognition

10.4.2 Image Eigenspaces

We shall arrive at an appearance-based algorithm, the parametric eigenspace method in
three steps:

1. We define a quantitative method to compare images and introduce some necessary
assumptions.

2. We introduce an efficient, appearance-based object representation, which makes
it feasible to search a large database of images.

3. We give algorithms to build the representation and to perform identification.

Comparing Images. A simple, quantitative way to compare two images, say I
and I, both N x N for simplicity, is to compute their correlation, c:

N N

1
c=hol=—) » h(.j)h,j.

i=1 j=1

where K 1s a normalizing constant, and o denotes image correlation. The larger c, the
more similar /1 and /.

This 1s simple enough, but we must take some precautions. As we are really
interested in comparing 3-D objects, not just images, we need assumptions to guarantee
that correlation 1s meaningful for our purposes.

Assumptions

1. Each image contains one object only.
2. The objects are imaged by a fixed camera under weak perspective.

3. The 1images are normalized in size; that is, the image frame is the minimum rectangle
enclosing the largest appearance of the object.

4. 'The energy of the pixel values of each image i1s normalized to 1; that is, Zf‘;l Z;N=1 13,) =
1.

S. The object 1s completely visible and unoccluded in all images.

All these assumptions are consequences of the fact that we want to compare 3-D
objects by comparing their images. You should be able to explain the reasons behind
each assumption (see Review Questions for hints).

Efficient Image Comparison with Eigenspaces. Our next goal is to devise an
etficient method to search a large image database in order to find the image most
similar to a new one, in the correlation sense. The database contains the appearance-
based representations of several objects; each object is represented by a set of images,
taken by different viewpoints and with light coming from different directions. Such
a database 1s suggested by Figure 10.6, which shows only one image per object for |
reasons of space. Clearly, if we store a full image for each view, and many views for |

Section 10.4 Appearance-Based ldentification

LR R W

Figure 10.6 Images from a small appearance-based database composed of twelve toy cars.
Only one 1image per object is shown.

each object, the size of such a database becomes prohibitively large, and search based
on brute-force correlation unfeasible. Instead, we represent objects in eigenspace. To
introduce eigenspaces and their advantages, we need to regard images as vector, and
state a fundamental theorem.

To transtorm a 2-D image into a 1-D vector, we just scan the image top to bottom
and left to right. In this way, a N x N image, X, is represented by a N*-dimensional
vector

= | X11, X12. .. X1n, X21,. .. XNN]

Notice that this representation allows us to write image correlation as the dot product of
two vectors.” For instance, the correlation of images X1 and X, represented by vectors
X1, X respectively, becomes

From now on, we shall use vectors for images. And here is the fundamental theorem.

>We assume that the constant K in the correlation definition 1s 1.

266 Chapter 10 Recognition

Theorem: Eigenspace Representation

Let xq, ... x, be N*-dimensional vectors, and X = % D _i—1X; their average. Given the N 2xn
matrix

= |(x1 — X)| . - X)],

we can write each x; as

n
Xj =X+) gjie;
i=1

where eq, ... e, are the eigenvectors of the covarmnce matrix, Q = XX ', corresponding to the
n (nonzero) eigenvalues of Q, and g; = [g1, g2, . gN] 1s the vector of the components of X; in
eigenspace.

Now let us go back to our database of all images (all objects, all viewpoints, all
illumination directions). Assuming O objects, with P viewpoints and L illumination
directions for each object, the database contains O PL images. Using the procedure
suggested by the theorem, we can build the covariance matrix, Q, of the whole database,
and represent each image, x’ ol with its vector of elgenspace coordinates, g° - @ 1s clearly
a very large matrix, and g 7 1S the same size as x? »» but here comes the first advantage of
eigenspaces: only the components associated to the largest eigenvalues of Q are significant
to represent the images. In other words, assuming that the nonzero eigenvalues A1 . . . A,
of Q aresuchthat A1 > A, > ... A, and A; 0 fori > k, we can write

k
X; %Zgﬁef + X,
=1

and 1gnore all the remaining n — k& components If k < n Each image, x;, is therefore
represented by a point of coordinates g ! ; In a k-dimensional eigenspace, a substantially
smaller subspace of the original, n-dimensional eigenspace.

So far for one image, but how do we represent a set of images; that is, all the
views in the representation of the o-th object? Imagine to move through the views of
the representation; as pose and illumination change continuously, the point g° 5 moves

continuously in eigenspace, sweeping a so-called manifold,® g° = g°(p, 1), where p and
I are vectors defining the object pose and the illumination direction, respectively. The

set of eigenspace points associated to the images of the o-th object is a sampling of the
associated manifold.’

Do not reel at the word “manifold”! You do not need any knowledge of manifolds to understand this section,
and manifolds are replaced by curves in the algorithm boxes below. Notice that, if only one parameter is
allowed to change between images, i.e., g°(v), v a real number, the manifold can be viewed as a curve in
eigenspace; if two parameters can change, a surface.

"1f necessary, we can estimate the continuous manifold by interpolating between adjacent samples.

Section 10.4 Appearance-Based |Identification 267

How do eigenspaces allow us to perform image correlation, and why do they
make correlation more etficient? The key 1s that the Euclidean distance in eigenspace is
equivalent to image correlation, and the advantage 1s in the fact that eigenspace points
have only k coordinates. To show this, we first notice that the correlation of two image
vectors, x; and xp, with grey levels normalized as in our assumptions (||x;||* = [|x2[|? = 1),
can be written through their Euclidean distance:

Ix1 — x2[1* =2(1 — ||x; x2)),

so that maximizing correlation 1s equivalent to minimizing distance. The distance be-
tween image vectors, in turn, can be approximated by the distance in the k-dimensional

eigenspace, [1g; — gl

N n
2 2
Ixi —x20” =11 Y giiei — Y geil
i=1 =1
k k
~ 2
~ Y g —) gieil
=1 =1

k
= || Z(gli — gi)eill’
i=1

k
= 2(815 — 82i)°
=1

= |lg1 — g2I°.

And now we realize why correlation i1s computed more efficiently in eigenspace: Instead
of O(n) products needed by ||x; — x> |2, we pertorm only O (k) products for ||g; — gzl\z.
As, 1n practice, n 1s usually larger than 100 and k£ smaller than, say, 20, we are reducing
a minimum of n? = 10000 products to a maximum of k% = 400, saving two orders of
magnitude!

Let us summarize it all. First, eigenspace points represent images with fewer num-
bers. Second, images are correlated efficiently by computing distances in eigenspace.
Third, and most importantly, eigenspaces suggest a way of learning object models auto-
matically: we acquire the complete set of all possible views for each object o,

() 0 s, 0 0
{Xn» L SPIEERR STER. VIR 'XPL} ;

reduce the dimensionality as described above, and compute the corresponding, discrete
manifold in eigenspace, {g7,, &7,, - - - 87,,85 - - - 8, }- To identify an object from a new
image y, we project y in eigenspace (using the eigenvectors of the covariance matrix
of all the OPL 1mages in the database), obtaining a point g,, then look for the object
manifold g°(p, 1) closest to g,. So 3-D appearance-based identification is solved as a
minimume-distance problem in eigenspace.

268 Chapter 10 Recognition

The Parametric Eigenspace Method. This section contains two algorithm boxes:
one to learn appearance-based models, one to identify objects from new images. As
the learning stage can be very expensive in terms of memory occupation, we suggest
a small-scale version of the algorithm, which uses small images, assumes illumination
fixed, and constrains pose changes to rotations around a fixed axis (which means the
manifold becomes a curve in eigenspace). You can easily extend our version to consider
illumination direction, full pose parameters, and larger images.®

Algorithm EIGENSPACE_LEARN

We consider the assumptions stated at the beginning of this section valid; moreover, we assume
a fixed camera, fixed illumination conditions, and images of N x N pixels.

1. For each object o to be represented,o=1... O:

(a) place the object on the turntable;

(b) acquire a set of n images by rotating the turntable by 3“10& each time;

(c) in all images, make sure to adjust the background so that the object can be easily
segmented from the background;

(d) segment the object from the background (see Exercise 10.9);

(¢) normalize the images in scale and energy as stated in the assumptions;

(f) represent the normalized images as vectors, x°, where p is the rotation index, p =

less. . R
2. Compute the average image vector, X, of the complete database {x}, X, XE X2
X }

3. Form the N? x N? covariance matrix, O=XX", with X = [x%!x%\ . .x%lx%l . .xf].

4. Compute the eigenvalues of Q, keep the first k largest eigenvalues and the associated
eigenvectors, eq, . . . €.

S. for each object, o:

(a) compute the k-dimensional eigenspace points corresponding to the n images:

g, =le1l...e] x) —X);

(b) store the discrete eigenspace curve {g‘i’, .. ,g;’,, . ,gg}, as the representation of
object o.

The output is a set of O discrete curves in the k-dimensional eigenspace, each representing a
3-D object.

¥ As detailed in the Appendix, section A.6, you do not actually need to compute the eigen-
values and eigenvectors of XX '. Thanks to a fundamental property of the singular value

®1f you have a few gigabytes to spare, that is.

Section 10.4 Appearance-Based ldentification 269

decomposition, the eigenvalues of X X ' are the same as the eigenvalues of the n x n matrix
X ' X (a matrix of much smaller size) and the eigenvectors of XX | can be computed from
the corresponding eigenvectors of X ' X.

Notice that the dimensionality reduction is carried out on the global database.
This ensures that the k important eigenvectors record visual information of all objects
In the database. Conversely, as we see next, recognition is performed in the eigenspace
of individual objects. To begin with, we suggest you try EIGENSPACE_LEARN with
N =64, O =5, n = 32. This means that Q is 4096 x 4096, and X is 4096 x 32, all rather
reasonable numbers.

' Toimplement EIGENSPACE_LEARN, you need a turntable to change the viewpoint by
controlled rotations. The best would be to use a computer-controlled turntable, but the dish
of an old record player, turning at constant speed, will do for the first attempts.

We now turn to the identification algorithm. Obviously enough, we assume that
the learning and 1dentification stage are run with the same illumination conditions and
camera position.

Algorithm EIGENSPACE_IDENTIF

The mnputis a N x N image, I, of one of the objects in the database. The image I must satisfy
the assumptions stated at the beginning of this section and acquired so that the object can be

easily segmented from the background. We assume the same illumination conditions and camera
position adopted in EIGENSPACE_LEARN.

1. Segment the object from the background.

2. Normalize I in scale and energy, and represent the normalized image as a vector, i.

3. Compute the k-dimensional eigenspace point corresponding to i:

g=|e]...e] (i —X),

where x 1s the average image vector of the whole database.
4. Find the eigenspace point, g, created by EIGENSPACE_LEARN, closest to g.

The output is the object associated to the curve on which g lies; that is, the identity of the
objectin /.

Now for a few points of practical importance. First, finding the point of a curve
or surface which is closest to a given point is not trivial; if the curve is represented by a
high number of points (as in our case), brute force can prove too expensive. Second, it
may not always be true that k < n. Third, finding the eigenvalues of very large matrices
is computationally expensive, and special algorithms exist for this purpose. Finally, the

270 Chapter 10 Recognition

higure-ground segmentation necessary to zero out background pixels is not trivial, and,
In general, is simple only for certain classes of objects and with controlled scenes.

10.5 Concluding Remarks on Object Identification

How do the methods presented compare with each other? Although simple, INT_
TREE 1s a reasonable algorithm for real images. It copes with missing features, noisy
features, and multiple object instances. The wild card inflates complexity, which be-
comes exponential in the number of model and data features; branch-and-bound and
other methods (see Further Readings) alleviate this problem. INT_TREE performs
grouping and identification simultaneously (see the four problems of section 10.1): It
selects which image features are most likely to belong to the object, and performs the
1dentity test. The inevitable price is a rather high complexity. Alignment or hybrid meth-
ods are another way to reduce the complexity of IT search. Such methods match only
the number of data features strictly necessary for carrying out verification. More of this
1s discussed in the next chapter.

Invariants provide image measurements independent of viewpoint and intrinsic
parameters, and suggest an easy strategy for model acquisition from real images. These
are very valuable characteristics for practical recognition systems. However, their us-
ability 1s subject to the possibility of defining invariants for the objects of interest, but
not many invariants are known and easy to compute for 3-D shapes. Other points re-
quiring attention include grouping, which is shared by all classifications methods based
on local features, and the discriminational power of each invariant (how reliably can
different objects be told apart given noisy images).

It can be more laborious to build models suitable for an interpretation-tree al-
gorithm, as we presented it, than for invariants. Moreover, interpretation tree locate
instances of a given object in an image, and require model search to recognize all ob-
jects present in an image; invariants, instead, support direct model indexing, and do
not require model search. However, interpretation trees take care of feature grouping;
invariant do not.

Invariants-based methods allow one to build model libraries from only one or
two views per object, as opposed to the many views required to build a parametric
eigenspace. However, eigenspaces can be built for any 3-D shape and do not require
feature extraction, while invariants can cater only for special shape classes and depend
on the performance of the feature extractor. Again, eigenspaces do not require feature
grouping, invariants do. A disadvantage of parametric eigenspace methods is that they
are vulnerable to occlusion and sensitive to segmentation.

10.6 3-D Object Modelling

As promised at the beginning of this chapter, we now bring together the hints to 3-D
object modelling scattered throughout this chapter. By now you have certainly realized
that designing adequate models is tremendously important, and, indeed, 3-D object
modelling 1s a much-investigated issue in computer vision. The aim of this section
1s not to list the many representations in existence (although some examples will be

e 2 i S R R T R R o R e = T S T 1 (. et S M WP (Wl g n LS L W L N g N

322 Appendix A Appendix

Step 4: Classifying Local Shape. Finally, the shape classification given in Chap-

ter 4 1s achieved by defining two further quantities, the mean curvature, H, and the
Gaussian curvature, K:

_kl + k»
2

i == K = kqk»>.

One can show that the Gaussian curvature measures how fast the surface moves away
from the tangent plane around P, and in this sense is an extension of the 1-D curvature

k. The formulae giving H and K for a range surface in r;; form, (x, y, h(x, y)) are given
in Chapter 4.

References

M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall,
Englewood Cliffs (NJ) (1976).

A.6 Singular Value Decomposition

The aim of this section is to collect the basic information needed to understand the
Singular Value Decomposition (SVD) as used throughout this book. We start g1ving
the definition of SVD for a generic, rectangular matrix A and discussing some related
concepts. We then illustrate three important applications of the SVD:

* solving systems of nonhomogeneous linear equations;
* solving rank-deficient systems of homogeneous linear equations;

* guaranteeing that the entries of a matrix estimated numerically satisfy some given
constraints (e.g., orthogonality).

Definition

Singular Value Decomposition

Any m x n matrix A can be written as the product of three matrices:
A=UDV'. (A.6)

The columns of the m x m matrix U are mutually orthogonal unit vectors, as are the columns

of the n x n matrix V. The m x n matrix D is diagonal; its diagonal elements, o;, called singular
values, are such that oy >0, >...0, > 0.

=" While both U and V are not unique, the singular values o; are fully determined by A.

Section A.6 Singular Value Decomposition 323

Some important properties now follow.

Properties of the SVD

Property 1. The singular values give you valuable information on the singularity
of a square matrix, A square matrix, A, is nonsingular if and only if all its singular
values are different from zero. Most importantly, the o; also tell you how close A 1s
to be singular: the ratio

ol
C=—,
On
called condition number, measures the degree of singularity of A. When 1/C 1s compa-
rable with the arithmetic precision of your machine, the matrix A is ill-conditioned and,
for all practical purposes, can be considered singular.

Property 2. If A is a rectangular matrix, the number of nonzero o; equals the
rank of A. Thus, given a fixed tolerance, € (typically of the order of 107°), the number
of singular values greater than € equals the effective rank ot A.

Property 3. If A is a square, nonsingular matrix, its inverse can be written as
A'=vD U’
Be A singular or not, the pseudoinverse of A, A™, can be written as
AT=vD;UT,

with D, : equal to D! for all nonzero singular values and zero otherwise. If A is
nonsingular, then D l—=pland At =41

Property 4. The columns of U corresponding to the nonzero singular values span
the range of A, the columns of V corresponding to the zero singular value the null space
of A.

Property 5. 'The squares of the nonzero singular values are the nonzero eigen-
values of both the n x n matrix A" A and m x m matrix AA'. The columns of U are
eigenvectors of AA ', the columns of V eigenvectors of A'A. Morevoer, Au; = o}V
and A ' v; = oxug, where u; and vy are the columns of U and V corresponding to oy.

Property 6. One possible distance measure between matrices can use the
Frobenius norm. The Frobenius norm of a matrix A 1s ssmply the sum of the squares of
the entries a;; of A, or

|AllF =) a. (A7)

5]

324

Appendix A Appendix

By plugging (A.6) in (A.7), it follows that
|AlF=) of.

We are now ready to summarize the applications of the SVD used throughout this
book.

Least Squares

Assume you have to solve a system of m linear equations,
AX =Db,

for the unknown n-dimensional vector x. The m x n matrix A contains the coefficients
of the equations, the m-dimensional vector b the data. If not all the components of b

are null, the solution can be found by multiplying both sides of the above equation for
A" to obtain

A'Ax=A"b.
It follows that the solution is given by
x=(A"TA)TAD.

This solution 1s known to be optimal in the least square sense.

It is usually a good idea to compute the pseudoinverse of A' A through SVD. In
the case of more equations than unknowns the pseudoinverse is more likely to coincide
with the inverse of A' A, but keeping an eye on the condition number of A" A (Property
1) won’t hurt.

=" Notice that linear fitting amounts to solve exactly the same equation. Consequently, you
can use the same strategy!

Homogeneous Systems

Assume you are given the problem of solving a homogeneous system of m linear
equations 1in n» unknowns

Ax =0,

with m > n — 1 and rank(A) = n — 1. Disregarding the trivial solution x = 0, a solution
unique up to a scale factor can easily be found through SVD. This solution is simply
proportional to the eigenvector corresponding to the only zero eigenvalue of A' A (all
other eigenvalues being strictly positive because rank(A) = n — 1). This can be proven
as follows.

Since the norm of the solution of a homogeneous system of equations 1s arbitrary,
we look for a solution of unit norm 1n the least square sense. Theretore we want to
minimize

|AX|* = (Ax) ' Ax =x'A Ax,

Section A.6 Singular Value Decomposition 325

subject to the constraint

X' X==1.
Introducing the Lagrange multiplier A this is equivalent to minimize the Lagrangian
Lx)=x'A"Ax — A(x 'x — 1).
Equating to zero the derivative of the Lagrangian with respect to x gives
A'Ax — Ax =0.

This equation tells you that A is an eigenvalue of A' A, and the solution, x = e;, the
corresponding eigenvector. Replacing x with e;, and A" Ae; with Ae, in the Lagrangian
yields

L(ek) ==

Therefore, the minimum is reached at A = 0, the least eigenvalue of A" A. But from
Properties 4 and 5, it follows that this solution could have been equivalently established
as the column of V corresponding to the only null singular value of A (the kernel of A).
This is the reason why, throughout this book, we have not distinguished between these
two seemingly different solutions of the same problem.

Enforcing Constraints

One often generates numerical estimates of a matrix, A, whose entries are not all
independent, but satisfy some algebraic constraints. This is the case, for example, of
orthogonal matrices, or the fundamental matrix we met in Chapter 7. What 1s bound
to happen is that the errors introduced by noise and numerical computations alter the
estimated matrix, call it A, so that its entries no longer satisfy the given constraints. This
may cause serious problems if subsequent algorithms assume that A satisfies exactly the
constraints.

Once again, SVD comes to the rescue, and allows us to find the closest matrix
to A, in the sense of the Frobenius norm (Property 6), which satisfies the constraints
exactly. This is achieved by computing the SVD of the estimated matrix, A=UDVT, and
estimating A as UD'V ", with D’ obtained by changmg the singular values of D to those
expected when the constraints are satisfied exactly.* Then, the entries of A=UD'V'
satisfy the desired constraints by construction.

References

G. Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich, Or-
lando (FL) (1988).

If A is a good numerical estimate, its singular values should not be too far from the expected ones.

	262.jpg
	263.jpg
	264.jpg
	265.jpg
	266.jpg
	267.jpg
	268.jpg
	269.jpg
	270.jpg
	322.jpg
	323.jpg
	324.jpg
	325.jpg

