Digital Snapshots

Verweile doch! Du bist so schon!?
Goethe, Faust

This chapter deals with digital images and their relation to the physical world. We learn the
principles of image formation, define the two main types of images in this book (intensity and
range images), and discuss how to acquire and store them in a computer.

Chapter Overview

Section 2.2 considers the basic optical, radiometric, and geometric principles underlying the
formation of intensity images.

Section 2.3 brings the computer into the picture, laying out the special nature of digital images,
their acquisition, and some mathematical models of intensity cameras.

Section 2.4 discusses the fundamental mathematical models of intensity cameras and their
parameters.

Section 2.5 introduces range images and describes a class of range sensors based on intensity
cameras, so that we can use what we learn about intensity imaging.

What You Need to Know to Understand this Chapter

 Sampling theorem (Appendix, section A.3).
* Rotation matrices (Appendix, section A.9).

! Stop! You are so beautiful!
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16 Chapter 2  Digital Snapshots

2.1 Introduction

This chapter deals with the main ingredients of computer vision: digital images. We
concentrate on two types of images frequently used in computer vision:

intensity images, the familiar, photographlike images encoding light intensities, ac-
quired by television cameras;

range images, encoding shape and distance, acquired by special sensors like sonars or
laser scanners.

Intensity images measure the amount of light impinging on a photosensitive device;
range images estimate directly the 3-D structure of the viewed scene through a variety of
techniques. Throughout the book, we will develop algorithms for both types of images.*

It is important to stress immediately that any digital image, irrespective of its
type, is a 2-D array (matrix) of numbers. Figure 2.1 illustrates this fact for the case of
intensity images. Depending on the nature of the image, the numbers may represent
light intensities, distances, or other physical quantities. This fact has two fundamental
consequences.

e The exact relationship of a digital image to the physical world (i.e., its nature of
range or intensity image) is determined by the acquisition process, which depends
on the sensor used.

e Any information contained in images (€.g., shape, measurements, or object iden-
tity) must ultimately be extracted (computed) from 2-D numerical arrays, in which
it is encoded.

In this chapter, we investigate the origin of the numbers forming a digital image;
the rest of the book is devoted to computational techniques that make explicit some of
the information contained implicitly in these numbers.

2.2 Intensity Images

We start by introducing the main concepts behind intensity image formation.

2.2.1 Main Concepts

In the visual systems of many animals, including man, the process of image formation
begins with the light rays coming from the outside world and impinging on the photore-
ceptors in the retina. A simple look at any ordinary photograph suggests the variety of
physical parameters playing a role in image formation. Here 1s an incomplete list:

Optical parameters of the lens characterize the sensor’s optics. They include:

« lens type,
. focal length,

2 Although, as we shall see, some algorithms make sense for intensity images only.
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Figure 2.1 Digital images are 2-D arrays of numbers: a 20 x 20 grey-level image of an eye
(pixels have been enlarged for display) and the corresponding 2-D array.

» field of view,

« angular apertures.

Photometric parameters appear in models of the light energy reaching the sensor after
being reflected from the objects in the scene. They include:

» type, Intensity, and direction of illumination,

» reflectance properties of the viewed surfaces,

- effects of the sensor’s structure on the amount of light reaching the photore-
ceptors.

Geometric parameters determine the image position on which a 3-D point is projected.
They include:

= type of projections,

» position and orientation of camera in space,

» perspective distortions introduced by the imaging process.
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Figure 2.2 The basic elements of an imaging device.

All the above plays arole in any intensity imaging device, beita photographic cam-
era. camcorder, or computer-based system. However, further parameters are needed to
characterize digital images and their acquisition systems. These include:

e the physical properties of the photosensitive matrix of the viewing camera,
e the discrete nature of the photoreceptors,
e the quantization of the intensity scale.

We will now review the optical, radiometric, and geometric aspects of image
formation.

2.2.2 Basic Optics

We first need to establish a few fundamental notions of optics. As for many natural
visual systems, the process of image formation in computer vision begins with the light
rays which enter the camera through an angular aperture (or pupil), and hit a screen
or image plane (Figure 2.2), the camera’s photosensitive device which registers light
intensities. Notice that most of these rays are the result of the reflections of the rays

emitted by the light sources and hitting object surfaces.

Image Focusing. Any single point of a scene reflects light coming from possibly
many directions, so that many rays reflected by the same point may enter the camera.
In order to obtain sharp images, all rays coming from a single scene point, P, must
converge onto a single point on the image plane, p, the image of P.If this happen, we
say that the image of P is in focus; if not, the image is spread over a circle. Focusing all
rays from a scene point onto a single image point can be achieved in two ways.

1. Reducing the camera’s aperture 10 a point, called a pinhole. This means that only
one ray from any given point can enter the camera, and creates a one-to-one
correspondence between visible points, rays, and image points. This results in very
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sharp, undistorted images of objects at different distances from the camera (see
Project 2.1).

2. Introducing an optical system composed of lenses, apertures, and other elements,
explicitly designed to make all rays coming from the same 3-D point converge
onto a single image point.

An obvious disadvantage of a pinhole aperture is its exposure time; that is, how long
the image plane is allowed to receive light. Any photosensitive device (camera film,
electronic sensors) needs a minimum amount of light to register a legible image. As a
pinhole allows very little light into the camera per time unit, the exposure time necessary
to form the image is too long (typically several seconds) to be of practical use.® Optical
systems, instead, can be adjusted to work under a wide range of illumination conditions
and exposure times (the exposure time being controlled by a shutter).

&  Intuitively, an optical system can be regarded as a device that aims at producing the same
image obtained by a pinhole aperture, but by means of a much larger aperture and a shorter
exposure time. Moreover, an optical system enhances the light gathering power.

Thin Lenses. Standard optical systems are quite sophisticated, but we can learn
the basic ideas from the simplest optical system, the thin lens. The optical behavior of a
thin lens (Figure 2.3) is characterized by two elements: an axis, called optical axis, going
through the lens center, O, and perpendicular to the plane; and two special points, F;
and F,, called left and right focus, placed on the optical axis, on the opposite sides of
the lens, and at the same distance from O. This distance, called the focal length of the
lens, 1s usually indicated by f.

By construction, a thin lens deflects all rays parallel to the optical axis and coming
from one side onto the focus on the other side, as described by two basic properties.

Thin Lens: Basic Properties

1. Any ray entering the lens parallel to the axis on one side goes through the focus on the
other side.

2. Any ray entering the lens from the focus on one side emerges parallel to the axis on the
other side.

The Fundamental Equation of Thin Lenses. Our next task is to derive the
fundamental equation of thin lenses from the basic properties 1 and 2. Consider a point
P, not too far from the optical axis, and let Z + f be the distance of P from the lens
along the optical axis (Figure 2.4). By assumption, a thin lens focuses all the rays from
P onto the same point, the image point p. Therefore, we can locate p by intersecting
only two known rays, and we do not have to worry about tracing the path of any other.

3 The exposure time is, roughly, inversely proportional to the square of the aperture diameter, which in turn
1s proportional to the amount of light that enters the imaging system.
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Figure 2.3 Geometric optics of a thin lens (a perpendicular view to
the plane approximating the lens).

Note that by applying property 1 to the ray P Q and property 2 totheray PR, PQ
and PR are deflected to intersectata certain point on the other side of the thin lens. But
since the lens focuses all rays coming from P onto the same point, P Q and PR must
ntersect at p! From Figure 2.4 and using the two pairs of similar triangles < PF;S >
and < ROF, > and < psF; > and < QOF, >, W€ obtain immediately

2z = fz. (21)

Setting 7—=7Z+ fandz=z+f,(2.1) reduces to our target equation.

The Fundamental Equation of Thin Lenses

+ (2.2)

|

1 1
Z f

i The ray going through the lens center, O, named the principal ray, goes through p un-
deflected.

Field of View. One last observation about optics. Let d be the effective diameter
of the lens, identifying the portion of the lens actually reachable by light rays.
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Figure 2.4 Imaging by a thin lens. Notice that, in general, a real lens has two
different focal lengths, because the curvatures of its two surfaces may be different.

The situation depicted here 1s a special case, but it 1s sufficient for our purposes.
See the Further Readings at the end of this chapter for more on optics.

i5° We call d the effective diameter to emphasize the difference between d and the physical
diameter of the lens. The aperture may prevent light rays from reaching the peripheral
points of the lens, so that 4 1s usually smaller than the physical diameter of the lens.

The effective lens diameter and the focal length determine the field of view of the
lens, which is an angular measure of the portion of 3-D space actually seen by the camera.
It 1s customary to define the field of view, w, as half of the angle subtended by the lens
diameter as seen from the focus:

tan w = LA (2.3)

2F
This 1s the minimum amount of optics needed for our purposes. Optical models of
real imaging devices are a great deal more complicated than our treatment of thin
(and i1deal) lenses; problems and phenomena not considered here include spherical

aberration (defocusing of nonparaxial rays), chromatic aberration (different defocusing
of rays of different colors), and focusing objects at different distances from the camera.*

4The fundamental equation of thin lenses implies that scene points at different distances from the lens come
in focus at different image distances. The optical lens systems of real cameras are designed so that all points
within a given range of distances are imaged on or close to the image plane, and therefore acceptably in focus.
This range is called the depth of field of the camera.
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Figure 2.5 Illustration of the basic radiometric concepts.

The Further Readings section at the end of this chapter tell where to find more about
optics.

2.2.3 Basic Radiometry

Radiometry is the essential part of image formation concerned with the relation among
the amounts of light energy emitted from light sources, reflected from surfaces, and
registered by sensors. We shall use radiometric concepts to pursue two objectives:

1. modelling how much of the illuminating light 1s reflected by object surfaces;

2. modelling how much of the reflected light actually reaches the image plane of the
camera.

Definitions. We begin with some definitions, illustrated in Figure 2.5 and sum-
marized as follows:

Image Irradiance and Scene Radiance

The image irradiance is the power of the light, per unit area and at each point p of the image
plane.

The scene radiance is the power of the light, per unit area, ideally emitted by each point P of
a surface in 3-D space in a given direction d.

2 Ideally refers to the fact that the surface in the definition of scene radiance might be
the illuminated surface of an object, the radiating surface of a light source, or even a
fictitious surface. The term scene radiance denotes the total radiance emitted by a point;
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sometimes radiance refers to the energy radiated from a surface (emitted or reflected),
whereas irradiance refers to the energy incident on a surface.

Surface Reflectance and Lambertian Model. A model of the way in which a
surface reflects incident light is called a surface reflectance model. A well-known one is
the Lambertian model, which assumes that each surface point appears equally bright
from all viewing directions. This approximates well the behavior of rough, nonspecular
surfaces, as well as various materials like matte paint and paper. If we represent the
direction and amount of incident light by a vector I, the scene radiance of an ideal
Lambertian surface, L, is simply proportional to the dot product between I and the unit
normal to the surface, n:

L=pl"n (2.4)

with p > 0 a constant called the surface’s albedo, which is typical of the surface’s
material. We also assume that I'n is positive; that is, the surface faces the light source,
This is a necessary condition for the ray of light to reach P. If this condition is not met,
the scene radiance should be set equal to 0.

We will use the Lambertian model in several parts of this book; for example, while
analyzing image sequences (Chapter 8) and computing shape from shading (Chapter 9).
Intuitively, the Lambertian model is based on the exact cancellation of two factors. Ne-
glecting constant terms, the amount of light reaching any surface is always proportional
to the cosine of the angle between the illuminant and the surface normal n (that is,
the effective area of the surface as seen from the illuminant direction). According to
the model, a Lambertian surface reflects light in a given direction d proportionally to
the cosine of 4, the angle between d and n. But since the surface’s area seen from the
direction d is inversely proportional to cos 6, the two cos 6 factors cancel out and do
not appear in (2.4).

Linking Surface Radiance and Image Irradiance. Our next task is to link the
amounts of light reflected by the surfaces, L, and registered by the imaging sensor, E.

Assumptions and Problem Statement

Given a thin lens of diameter d and focal length f, an object at distance Z from the lens, and an
image plane at distance Z’ from the lens, with f, Z, and Z’ as in (2.1), find the relation between
image irradiance and scene radiance.

In order to derive this fundamental relation, we need to recall the geometric notion
of solid angle. The solid angle of a cone of directions is the area cut out by the cone on
the unit sphere centered in the cone’s vertex. Therefore, the solid angle o subtended
by a small, planar patch of area § A at distance r from the origin (Figure 2.6) is

dA cos Y

S = —— (2.5)
¥
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Figure 2.6 The definition of solid angle.

with v the angle between the normal to 5A and the ray that points from the origin to
5 A. The factor cos ¥ ensures the proper foreshortening of the area 5 A as seen from the
origin.

We now write the image irradiance at an image point, p, as the ratio between 8 P,
the power of light over a small image patch, and 81, the area of the small image patch:

3P
E=—. 2.6
37 - (29)
If 50O is the area of a small surface patch around P, L the scene radiance at P in the
direction toward the lens, AS the solid angle subtended by the lens, and 6 the angle
between the normal to the viewed surface at P and the principal ray (Figure 2.7), the
power 8 P is given by §OLAS2 (the total power emitted in the direction of the lens)

multiplied by cos 6 (the foreshortening of the area §O as seen from the lens):

§P =8O0LAS cos 6. (2.7)

Figure 2.7 Radiometry of the image formation process.
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Combining (2.6) and (2.7), we find

00
E = LARK cos{-‘)g. (2.8)

We still need to evaluate AQ2 and § O /81. For the solid angle AS2 (Figure 2.7), (2.5) with
5A = md?/4 (lens area), ¥ = « (angle between the principal ray and the optical axis),
and r = Z/ cos a (distance of P from the lens center) becomes

T i Cﬂ'53 o

AQ=—d
4" 72

For the solid angle §2;, subtended by a small image patch of area §7 (see Figure 2.7),
(2.5) with A =481, ¢y = a,and r = f/ cos o gives

(2.9)

Q, — 6l cos o | (2.10)
(f/ cos @)?
Similarly, for the solid angle §€2o subtended by the patch § O on the object side, we have
) 6
s O cos | (2.11)
(Z/ cos a)?

It is clear from Figure 2.7 that §2; = §Q2¢; hence, their ratio is 1, so that dividing (2.11)
by (2.10) we obtain

2
Y (5) (2.12)
81 cos@ \ f

Ignoring energy losses within the system, and plugging (2.9) and (2.12) into (2.8), we
finally obtain the desired relation between E and L.

The Fundamental Equation of Radiometric Image Formation

T d 2 4
E(p)= L(P)I (-f) Cos” «. (2.13)

Equation (2.13) says that the illumination of the image at p decreases as the fourth
power of the cosine of the angle formed by the principal ray through p with the optical
axis. In the case of small angular aperture, this effect can be neglected; therefore, the
image irradiance can be regarded as uniformly proportional to the scene radiance over
the whole image plane.

The nonuniform illumination predicted by (2.13) is hard to notice in ordinary
images, because the major component of brightness changes 1s usually due to the spatial
gradient of the image irradiance. You can try a simple experiment to verify the effect
predicted by (2.13) by acquiring an image of a Lambertian surface illuminated by diffuse
light (see Exercise 2.2).
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=  We make no substantial distinction among image irradiance, intensity, and brightness.
Be warned, however, that a distinction does exist; although it is not relevant for our
purposes. The intensity is the grey level recorded by an image and is linked to irradiance
by a monotonic relation depending on the sensor. Brightness often indicates the subjective
human perception of the image intensity.

The fundamental equation of radiometric image formation also shows that the
quantity f/d, called the F-number, influences how much light is collected by the camera:
the smaller the F-number, the larger the fraction of L which reaches the image plane.
The F-number is one of the characteristics of the optics. As shown by (2.13), image
irradiance is inversely proportional to the square of the F-number (see footnote 3 in
this chapter).

2.2.4 Geometric Image Formation

We now turn to the geometric aspect of image formation. The aim is to link the position
of scene points with that of their corresponding image points. To do this, we need to
model the geometric projection performed by the sensor.

The Perspective Camera. The most common geometric model of an intensity
camera is the perspective or pinhole model (Figure 2.8). The model consists of a plane
7, the image plane, and a 3-D point O, the center or focus of projection. The distance
between 7 and O is the focal length. The line through O and perpendicular to 7 1s the
optical axis,> and o, the intersection between 7 and the optical axis, 18 named principal
point or image center. As shown in Figure 2.8, p, the image of P, is the point at which the
straight line through P and O intersects the image plane . Consider the 3-D reference
frame in which O is the origin and the plane & is orthogonal to the Z axis, and let
P=|X,Y, Z]T and p = [x, v, z]T. This reference frame, called the camera frame, has
fundamental importance in computer vision. We now will write the basic equations of
perspective projections in the camera frame.

Perspective Camera: Fundamental Equations

In the camera frame, we have

(2.14)

& [n the camera frame, the third component of an image point is always equal to the focal
length (as the equation of the plane n is z = f). For this reason, we will often write
p=|x, y]' instead of p = [x, ¥, 1.

5You should link these definitions of focal length and optical axis with those in section 2.2.2.
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Figure 2.8 The perspective camera model.

Note that (2.14) are nonlinear because of the factor 1/Z, and do not preserve
either distances between points (not even up to a common scaling factor), or angles
between lines. However, they do map lines into lines (see Exercise 2.3).

The Weak-Perspective Camera. A classical approximation that turns (2.14) into
linear equations is the weak-perspective camera model. This model requires that the
relative distance along the optical axis, §z, of any two scene points (that 1s, the scene’s
depth) is much smaller than the average distance, Z, of the points from the viewing
camera. In this case, for each scene point, P, we can write

X f
=f—x =X
b A
Y f
y fZ > (2.15)

¥  Indicatively, the weak-perspective approximation becomes viable for §z < Z /20 approxi-
mately.

These equations, (2.15), describe a sequence of two transformations: an ortho-
graphic projection, in which world points are projected along rays parallel to the optical
7 6 .
axis,’ that 1s,

6 Analytically, the orthographic projection is the limit of the perspective projection for f — oo. For f — oo,
we have Z — oo and thus f)Z — 1.
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followed by isotropic scaling by the factor f/ Z. Section 2.4 shows that this and other
camera models can also be derived in a compact matrix notation. Meanwhile, it is time
for a summary.

The Perspective Camera Model

In the perspective camera model (nonlinear), the coordinates (x, y) of a point p, image of the 3-D
point P=[X,Y, Z]T.. are given by

X
I:ff
Y
y=r>

The Weak-Perspective Camera Model

If the average depth of the scene, Z. is much larger than the relative distance between any two
scene points along the optical axis, the weak-perspective camera model (linear) holds:

s

x==X
Z

}‘=£Y.
Z

All equations are written in the camera reference frame.

2.3 Acquiring Digital Images

In this section, we now discuss the aspects of image acquisition that are special to digital
images, namely:

e the essential structure of a typical image acquisition system
e the representation of digital images in a computer
e practical information on spatial sampling and camera noise

2.3.1 Basic Facts

How do we acquire a digital image into a computer? A digital image acquisition system
consists of three hardware components: a viewing camera, typically a CCD (Charged
Coupled Device) camera, a frame grabber, and a host computer, on which processing
takes place (Figure 2.9).’

7This is the standard configuration, but not the only possibility. For instance, several manufacturers commer-
cialize smart cameras, which can acquire images and perform a certain amount of image processing.
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Figure 2.9 Essential components of a digital image acquisition system,

The input to the camera is, as we know, the incoming light, which enters the
camera’s lens and hits the image plane. In a CCD camera, the physical image plane is the
CCD array, a n x m rectangular grid of photosensors, each sensitive to light intensity.
Each photosensor can be regarded as a tiny, rectangular black box which converts light
energy into a voltage. The output of the CCD array is usually a continuous electric
signal, the video signal, which we can regard as generated by scanning the photosensors
in the CCD array in a given order (e.g., line by line) and reading out their voltages. The
video signal is sent to an electronic device called a frame grabber, where it is digitized
into a 2-D, rectangular array of N x M integer values and stored in a memory buffer.
At this point, the image can be conveniently represented by a N x M matrix, E, whose
entries are called pixels (an acronym for picture elements), with N and M being two fixed
integers expressing the image size, in pixels, along each direction. Finally, the matrix E
is transferred to a host computer for processing.

For the purposes of the following chapters, the starting point of computer vision is
the digitized image, E. Here are the main assumptions we make about E.

Digital Images: Representation

A digital image is represented by a numerical matrix, E, with N rows and M columns.

E(i, j) denotes the image value (image brightness) at pixel (i, j) (i-th row and j-th column),
and encodes the intensity recorded by the photosensors of the CCD array contributing to that
pixel.

E(i, j) is an integer in the range [0, 255].

This last statement about the range of E (i, j) means that the brightness of animage
point can be represented by one byte, or 256 grey levels (typically 0 is black, 255 white).
This is an adequate resolution for ordinary, monochromatic (or grey-level) images and
is suitable for many vision tasks. Color images require three monochromatic component
images (red, green, blue) and therefore three numbers. Throughout this book, we shall
always refer to grey-level images.

If we assume that the chain of sampling and filtering procedures performed by
camera and frame buffer does not distort the video signal, the image stored in the
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frame buffer is a faithful digitization of the image captured by the CCD array. However,
the number of elements along each side of the CCD arrays is usually different from the
dimensions, in pixels, of the frame buffer. Therefore, the position of the same point
on the image plane will be different if measured in CCD elements or image pixels;
more precisely, measuring positions from the upper left corner, the relation between the
position (x;m, yim) (in pixels) in the frame buffer image and the position (xccp, Yccb)
(in CCD elements) on the CCD array is given by

H
N CCD
m
o= —y _ 2.16
y 2 IECD (2.16)

Note that n/N and m/M in (2.16) are not the only parameters responsible for a different
scaling of the image with respect to the CCD array along the horizontal and vertical
direction: the different ratio of horizontal and vertical sizes of the CCD array has exactly
the same effect. This is illustrated in Figure 2.10. The image stored in the computer
memory consists of a squared grid of N x N pixels (Figure 2.10(a)). By inspection, it 1s
easy to see that a grid of n x n CCD elements with an aspect ratio of n/m between the
horizontal and vertical CCD element size (Figure 2.10(b)) produces exactly the same
distorsion of an m x n CCD array with squared elements (Figure 2.10(c)).

(a)

(b) (c)

Figure 2.10 The same distortion of a given pattern on the CCD array (a) is produced by
a n x n grid of rectangular elements of aspect ratio n/m (b), and by a m x n grid of squared
elements (c).
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In summary, it 1s convenient to assume that the CCD elements are always in
one-to-one correspondence with the image pixels and to introduce effective horizontal
and vertical sizes to account for the possible different scaling along the horizontal and
vertical direction. The effective sizes of the CCD elements are our first examples of
camera parameters, which are the subject of section 2.4.

2.3.2 Spatial Sampling

The spatial quantization of images originates at the very early stage of the image
formation process, as the photoreceptors of a CCD sensor are organized in a rectangular
array of photosensitive elements packed closely together. For simplicity, we assume that
the distance d between adjacent CCD elements (specified by the camera manufacturer)
is the same in the horizontal and vertical directions. We know from the sampling theorem
that 4 determines the highest spatial frequency, v., that can be captured by the system,
according to the relation

1
=0
How does this characteristic frequency compare with the spatial frequency spectrum of
images? A classical result of the diffraction theory of aberrations states that the imaging
process can be expressed in terms of a linear low-pass filtering of the spatial frequencies
of the visual signal. (For more information about the diffraction theory of aberrations,
see the Further Readings.) In particular, if a 1s the linear size of the angular aperture
of the optics (e.g., the diameter of a circular aperture), A the wavelength of light, and f

the focal length, spatial frequencies larger than

' a
UC:E

do not contribute to the spatial spectrum of the image (that is, they are filtered out).

In a typical image acquisition system, the spatial frequency v, 1s nearly one order
of magnitude smaller than v.. Therefore, since the viewed pattern may well contain
spatial frequencies larger than v., we expect aliasing. You can convince yourself of the
reality of spatial aliasing by taking images of a pattern of equally spaced thin black
lines on a white background (see Exercise 2.6) at increasing distance from the camera.
As predicted by the sampling theorem, if n is the number of the CCD elements in the
horizontal direction, the camera cannot see more than n’ vertical lines (with n’ somewhat
less than n/2, say n’ ~ n/3). Until the number of lines within the field of view remains
smaller than »’, all the lines are correctly imaged and resolved. Once the limit is reached,
if the distance of the pattern is increased further, but before blurring effects take over,
the number of imaged lines decreases as the distance of the pattern increases!

=  The main reason why spatial aliasing is often neglected is that the amplitude (that is, the

information content) of high-frequency components of ordinary images is usually, though
by no means always, very small.



32

Chapter 2  Digital Snapshots

2.3.3 Acquisition Noise and How to Estimate It

Let us briefly touch upon the problem of noise introduced by the imaging system and
how 1t 1s estimated. The effect of noise is, essentially, that image values are not those
expected, as these are corrupted during the various stages of image acquisition. As a
consequence, the pixel values of two images of the same scene taken by the same camera
and 1n the same light conditions are never exactly the same (try it!). Such fluctuations
will introduce errors in the results of calculations based on pixel values; it is therefore
important to estimate the magnitude of the noise.

The main objective of this section is to suggest a simple characterization of image
noise, which can be used by the algorithms of following chapters. Noise attenuation, in
particular, is the subject of Chapter 3.

An obvious way to proceed is to regard noisy variations as random variables,
and try to characterize their statistical behavior. To do this, we acquire a sequence of
images of the same scene, in the same acquisition conditions, and compute the pointwise
average of the image brightness over all the images. The same sequence can also be used
to estimate the signal-to-noise ratio of the acquisition system, as follows.?

Algorithm EST_NOISE

We are given n images of the same scene, Eg, Eq.. . ., E,_1, which we assume square (N x N) for
simplicity.
Foreachi, j=0,...,N —1,let

n—1
—— o
EG.j)=~ ) Ei. ])
k=)
|
n—1 2
i) = EG.)— Ec(i. i)? 2.1
oG, ) H_1§{ iy ) = Ex(is ) (2.17)

The quantity o (i, j) is an estimate of the standard deviation of the acquisition noise at each pixel.
The average of o (i, j) over the image is an estimate of the average noise, while max; jel0....N=1]
{o (i, j)} an estimate of the worst case acquisition noise.

=== Notice that the beat frequency of some fluorescent room lights may skew the results of
EST_NOISE.

Figure 2.11 shows the noise estimates relative to a particular acquisition system. A
static camera was pointed at a picture posted on the wall. A sequence of n = 100 images
was then acquired. The graphs in Figure 2.11 reproduce the average plus and minus

The signal-to-noise ratio is usually expressed in decibel (d B), and is defined as 10 times the logarithm in
base 10 of the ratio of two powers (in our case, of signal and noise). For example, a signal-to-noise ratio of
100 corresponds to 10log;(100 = 20d B.
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[ 5 greylevels

scan line

Figure 2.11 Estimated acquisition noise. Graphs of the average image
brightness, plus (solid line) and minus (dotted line) the estimated standard
deviation, over a sequence of images of the same scene along the same
horizontal scan line. The image brightness ranges from 73 to 211 grey levels.

the standard deviation of the image brightness (pixel values) over the entire sequence,
along an horizontal scanline (image row). Notice that the standard deviation 1s almost
independent of the average, typically less than 2 and never larger than 2.5 grey values.
This corresponds to an average signal-to-noise ratio of nearly one hundred.

Another cause of noise, which is important when a vision system is used for fine
measurements, is that pixel values are not completely independent of each other: some
cross-talking occurs between adjacent photosensors in each row of the CCD array,
due to the way the content of each CCD row is read in order to be sent to the frame
buffer. This can be verified by computing the autocovariance Cgg(i, j) of the image of
a spatially uniform pattern parallel to the image plane and illuminated by diffuse light.

Algorithm AUTO_COVARIANCE

Letc=1/N*, Ny=N—i'—1,and Ny =N — j"—1. Given an image E, foreachi’, j'=0,...,
N — 1 compute

Nl-r er

Ceeli', j)=c Y Y (EG, ) —EGEG+i,j+j)~EG+1,]+7)  (218)
i=0 j=0
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Figure 2.12 Autocovariance of the image of a uniform
pattern for a typical image acquisition system, showing
cross-talking between adjacent pixels along i'.

i The autocovariance should actually be estimated as the average of the autocovariance
computed on many images of the same pattern. To minimize the effect of radiometric
nonlinearities (see (2.13)), Ceg should be computed on a patch in the central portion of
the image.

Figure 2.12 displays the graph of the average of the autocovariance computed on
many images acquired by the same acquisition system used to generate Figure 2.11. The
autocovariance was computed by means of (2.18) on a patch of 16 x 16 pixels centered In
the image center. Notice the small but visible covariance along the horizontal direction:
consistently with the physical properties of many CCD cameras, this indicates that the
grey value of each pixel is not completely independent of that of its neighbors.

2.4 Camera Parameters

We now come back to discuss the geometry of a vision system in greater detail. In
particular, we want to characterize the parameters underlying camera models.

2.4.1 Definitions

Computer vision algorithms reconstructing the 3-D structure of a scene or computing
the position of objects in space need equations linking the coordinates of points in 3-D
space with the coordinates of their corresponding image points. These equations are
written in the camera reference frame (see (2.14) and section 2.2.4), but it is often
assumed that

e the camera reference frame can be located with respect to some other, known,
reference frame (the world reference frame), and
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* the coordinates of the image points in the camera reference frame can be obtained
from pixel coordinates, the only ones directly available from the image.

This 1s equivalent to assume knowledge of some camera’s characteristics, known in
vision as the camera’s extrinsic and intrinsic parameters. Our next task is to understand
the exact nature of the intrinsic and extrinsic parameters and why the equivalence holds.

Definition: Camera Parameters

The extrinsic parameters are the parameters that define the location and orientation of the camera
reference frame with respect to a known world reference frame.

The intrinsic parameters are the parameters necessary to link the pixel coordinates of an image
point with the corresponding coordinates in the camera reference frame.

In the next two sections, we write the basic equations that allow us to define the
extrinsic and intrinsic parameters in practical terms. The problem of estimating the
value of these parameters is called camera calibration. We shall solve this problem in
Chapter 6, since calibration methods need algorithms which we discuss in Chapters 4

and 5.

2.4.2 Extrinsic Parameters

The camera reference frame has been introduced for the purpose of writing the funda-
mental equations of the perspective projection (2.14) in a simple form. However, the
camera reference frame is often unknown, and a common problem is determining the
location and orientation of the camera frame with respect to some known reference
frame, using only image information. The extrinsic parameters are defined as any set
of geometric parameters that identify uniquely the transformation between the unknown
camera reference frame and a known reference frame, named the world reference frame.

A typical choice for describing the transformation between camera and world
frame 1s to use

* a 3-D translation vector, T, describing the relative positions of the origins of the
two reference frames, and

e a3 x 3rotation matrix, R, an orthogonal matrix (R' R = RR' = I) that brings the
corresponding axes of the two frames onto each other.

The orthogonality relations reduce the number of degrees of freedom of R to three (see
section A.9 in the Appendix). |

In an obvious notation (see Figure 2.13), the relation between the coordinates of
a point P in world and camera frame, P,, and P, respectively, is

P.=RP, -T), (2.19)
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Z

W

Figure 2.13 The relation between camera and world coordinate
frames.

with
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Definition: Extrinsic Parameters

The camera extrinsic parameters are the translation vector, T, and the rotation matrix, R (or,
better, its free parameters), which specity the transformation between the camera and the world
reference frame.

2.4.3 Intrinsic Parameters

The intrinsic parameters can be defined as the set of parameters needed to characterize
the optical, geometric, and digital characteristics of the viewing camera. For a pinhole
camera, we need three sets of intrinsic parameters, specifying respectively

e the perspective projection, for which the only parameter is the focal length, f;
e the transformation between camera frame coordinates and pixel coordinates;
e the geometric distortion introduced by the optics.

From Camera to Pixel Coordinates. To find the second set of intrinsic param-
eters, we must link the coordinates (xim, yim) Of an image point in pixel units with the
coordinates (x, y) of the same point in the camera reference frame. The coordinates
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(xim, Yim) can be thought of as coordinates of a new reference frame, sometimes called
image reference frame.

The Transformation between Camera and Image Frame Coordinates

Neglecting any geometric distorsions possibly introduced by the optics and in the assumption that
the CCD array is made of a rectangular grid of photosensitive elements, we have

J X = —(Xjm — Ox)Sx

- y=—(Yim — 0y)$y (2.20)

with (oy, 0y) the coordinates in pixel of the image center (the principal point), and (sx, s,) the
effective size of the pixel (in millimeters) in the horizontal and vertical direction respectively.

Therefore, the current set of intrinsic parameters 1s f, oy, 0y, Sy, §y.

1 The sign change in (2.20) is due to the fact that the horizontal and vertical axes of the image
and camera reference frames have opposite orientation.

In several cases, the optics introduces image distortions that become evident
at the periphery of the image, or even elsewhere using optics with large fields of
view. Fortunately, these distortions can be modelled rather accurately as simple radial
distortions, according to the relations

x = xg(1 + kyr* + kor®)
y = ya(1 + kyr? + kpr)

with (x4, y4) the coordinates of the distorted points, and r* = xJ + y5. As shown by
the equations above, this distortion is a radial displacement of the image points. The
displacement is null at the image center, and increases with the distance of the point
from the image center. k; and k; are further intrinsic parameters. Since they are usually
very small, radial distortion is ignored whenever high accuracy is not required in all
regions of the image, or when the peripheral pixels can be discarded. If not, as k; << &,
k, is often set equal to 0, and k; is the only intrinsic parameter to be estimated in the
radial distortion model.

=  The magnitude of geometric distortion depends on the quality of the lens used. As a rule of
thumb, with optics of average quality and CCD size around 500 x 500, expect distortions of
several pixels (say around 5) in the outer cornice of the image. Under these circumstances,
a model with k> = 0 is still accurate.

It is now time for a summary.
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Intrinsic Parameters

The camera intrinsic parameters are defined as the focal length, f, the location of the image
center in pixel coordinates, (ox, 0y), the effective pixel size in the horizontal and vertical direction
(sx, §y), and, if required, the radial distortion coefficient, kq.

2.4.4 Camera Models Revisited

We are now fully equipped to write relations linking directly the pixel coordinates of an
image point with the world coordinates of the corresponding 3-D point, without explicit
reference to the camera reference frame needed by (2.14).

Linear Version of the Perspective Projection Equations. Plugging (2.19) and
(2.20) into (2.14) we obtain

( ) fRIT(P"” — D
—Xim — Ox)8x =
7 R](P, —T)
oy —B ) = 2.2
(Yim — Oy)Sy fR}(Pw T (2.21)

whereR;.i = 1,2, 3,isa 3-D vector formed by the i-th row of the matrix R. Indeed, (2.21)
relates the 3-D coordinates of a point in the world frame to the image coordinates of
the corresponding image point, via the camera extrinsic and intrinsic parameters.

s Notice that, due to the particular form of (2.21), not all the intrinsic parameters are
independent. In particular, the focal length could be absorbed into the effective sizes of
the CCD elements.

Neglecting radial distortion, we can rewrite (2.21) as a simple matrix product. To
this purpose, we define two matrices, M;n, and M.,,, as

— f/5x 0 Oy
M;‘ﬂ; — 0 —f/S}: ﬂ}:
0 0 1

and

-
rip ri2 r3 —R{T
L

Myy=\|rn 2 3 R, T,
T
ry3 rz 3 —RyT

so that the 3 x 3 matrix M;,; depends only on the intrinsic parameters, while the 3 x 4
matrix M., only on the extrinsic parameters. If we now add a “1” as a fourth coordinate of
P, (thatis, express P,, in homogeneous coordinates), and form the product M, Mex:Py),
we obtain a linear matrix equation describing perspective projections.
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The Linear Matrix Equation of Perspective Projections

X
X1 Yw
X2 = MEHIME.::I ZLL
w

A3

What is interesting about vector [x1, x2, x;.-,]T is that the ratios (x1/x3) and (x3/x3)
are nothing but the image coordinates:

X1/X3 = Xim
X2/ X3 = Yim-
Moreover, we have separated nicely the two steps of the world-image projection:

e M,,; performs the transformation between the world and the camera reference
frame;

* M;,, performs the transformation between the camera reference frame and the
image reference frame.

=¥  In more formal terms, the relation between a 3-D point and its perspective projection on
the image plane can be seen as a linear transformation from the projective space, the space
of vectors [X,,, Yy, Z,, I]T, to the projective plane, the space of vectors [xq, x2, Ig,]T. This
transformation is defined up to an arbitrary scale factor and so that the matrix M has only
11 independent entries (see review questions). This fact will be discussed in Chapter 6.

The Perspective Camera Model. Various camera models, including the perspec-
tive and weak-perspective ones, can be derived by setting appropriate constraints on
the matrix M = M;,; M,,,. Assuming, for simplicity, o, =0, =0 and s, = sy=1, M can
then be rewritten as

—fru —friz —frizs fR/T
M=|—-frn —frn —fris fR)T
r3j r3 ri3 —RT

When unconstrained, M describes the full-perspective camera model and is called
projection matrix.

The Weak-Perspective Camera Model. To derive the form of M for the weak-
perspective camera model, we observe that the image p of a point P is given by

- fR{(T - P)
p=M ZZ =| fR)(T-P) |. (2.22)

. R, (P-T)
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But || RBT (P — T)| is simply the distance of P from the projection center along the optical
axis: therefore, the basic constraint for the weak-perspective approximation can be
written as

R, (P; — P)
R](P-T)

<< 1, (2.23)

where Py, P, are two points in 3-D space, and P the centroid of Py and P». Using (2.23),
(2.22) can be written for P=P;,i =1, 2, as

fR (T —P))
pi~ | fRy (T —P))
R;/(P-T)

Therefore, the projection matrix M becomes

—frii —fria —friz fR|T
Myp=\| —fra1 —frn —frzs fR,T
0 0 0 R;P-T)

The Affine Camera Model. Another interesting camera model, widely used in
the literature for its simplicity, is the so-called affine model, a mathematical generaliza-
tion of the weak-perspective model. In the affine model, the first three entries in the last
row of the matrix M are equal to zero. All other entries are unconstrained. The affine
model does not appear to correspond to any physical camera, but leads to simple equa-
tions and has appealing geometric properties. The affine projection does not preserve
angles but does preserve parallelism.

The main difference with the weak-perspective model is the fact that, in the affine
model, only the ratio of distances measured along parallel directions 1s preserved. We
now move on to consider range images.

2.5 Range Data and Range Sensors

In many applications, one wants to use vision to measure distances; for example, to steer
vehicles away from obstacles, estimate the shape of surfaces, or inspect manufactured
objects. A single intensity image proves of limited use, as pixel values are related to
surface geometry only indirectly; that is, through the optical and geometrical properties
of the surfaces as well as the illumination conditions. All these are usually complex to
model and often unknown. As we shall see in Chapter 9, reconstructing 3-D shape from
a single intensity image is difficult and often inaccurate. Can we acquire images encoding
shape directly? Yes: this is exactly what range sensors do.

Range Images

Range images are a special class of digital images. Each pixel of a range image expresses the
distance between a known reference frame and a visible point in the scene. Therefore, a range
image reproduces the 3-D structure of a scene, and is best thought of as a sampled surface.
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