Image Features

Quel naso dritto come una salita
Quegli occhi allegri da italiano in gita.!

Paolo Conte, Bartali

This and the following chapter consider the detection, location and representation of special
parts of the image, called image features, usually corresponding to interesting elements of the
scene.

Chapter Overview
Section 4.1 introduces the concept of image feature, and sketches the fundamental issues of
feature detection, on which many computer vision algorithms are based.

Section 4.2 deals with edges, or contour fragments, and how to detect them. Edge detectors are
the basis of the line and curve detectors presented in the next chapter.

Section 4.3 presents features which do not correspond necessarily to geometric elements of the
scene, but are nevertheless useful.

Section 4.4 discusses surface features and surface segmentation for range images.

What You Need to Know to Understand this Chapter

* Working knowledge of Chapter 2 and 3.

e Basic concepts of signal theory.

* Eigenvalues and eigenvectors of a matrix.

* Elementary differential geometry, mainly surface curvatures (Appendix, section A.5).

I The nose as straight as an uphill road; The merry eyes of an Italian on holidays.
67

68 Chapter4 Image Features

4.1 What Are Image Features?

In computer vision, the term image feature refers to two possible entities:

1. a global property of an image or part thereof, for instance the average grey level,
the area in pixel (global feature); or

2. a part of the image with some special properties, for instance a circle, a line, or
a textured region in an intensity image, a planar surface in a range image (local
feature).

The sequence of operations of most computer vision systems begins by detecting and
locating some features in the input images. In this and the following chapter, we con-
centrate on the second definition above, and illustrate how to detect special parts of
intensity and range images like points, curves, particular structures of grey levels, or sur-
face patches. The reason for this choice is that most algorithms in the following chapters
assume that specific, local features have already been located. Here, we provide ways
of doing that. Global features are indeed used in computer vision, but are less useful
to solve the problems tackled by Chapters 7, 8, 9, 10 and 11. We assume therefore the
following definition.

Definition: Image Features

Image features are local, meaningful, detectable parts of the image.

Meaningful means that the features are associated to interesting scene elements
via the image formation process. Typical examples of meaningful features are sharp
intensity variations created by the contours of the objects in the scene, or image regions
with uniform grey levels, for instance images of planar surfaces. Sometimes the image
features we look for are not associated obviously to any part or property of the scene, but
reflect particular arrangements of image values with desirable properties, like invariance
or ease of detectability. For instance, section 4.3 discusses an example of features which
prove adequate for tracking across several images (Chapter 8). On the other hand, the
number of pixels of grey level 134 makes a rather unuseful feature, as, in general, it
cannot be associated to any interesting properties of the scene, as individual grey levels
change with illumination and viewpoint.

Detectable means that location algorithms must exist, otherwise a particular fea-
ture is of no use! Different features are, of course, associated to different detection
algorithms; these algorithms output collections of feature descriptors, which specify the
position and other essential properties of the features found in the image. For instance, a
descriptor for line features could specify the coordinates of the segment’s central point,
the segment’s length, and its orientation. Feature descriptors are used by higher-level
programs; for instance, in this book, chains of edge points (section 4.2) are used by line
detectors (Chapter 5); lines, in turn, are used by calibration (Chapter 6) and recognition
algorithms (Chapter 10).

Section 4.2 Edge Detection 69

2= In 3-D computer vision, feature extraction is an intermediate step, not the goal of the
system. We do not extract lines, say, just to obtain line maps; we extract lines to navigate
robots in corridors, to decide whether an image contains a certain object, to calibrate the
intrinsic parameters of a camera, and so on. The important corollary is that it does not
make much sense to pursue “perfect” feature extraction per se, as the adequacy of a feature
detection algorithm should be ultimately assessed in the context of the complete system.? Of
course reasonably general performance criteria can and should be applied to test feature
extraction modules independently (see section 4.2.4).

4.2 Edge Detection
4.2.1 Basics

Definition: Edges

Edge points, or simply edges, are pixels at or around which the image values undergo a sharp
variation.

Problem Statement: Edge Detection

Given an image corrupted by acquisition noise, locate the edges most likely to be generated
by scene elements, not by noise.

Figure 4.1 illustrates our definition. It shows an intensity image and the intensity
profile along the scanline shown: notice how the main sharp variations correspond to
significant contours.® Notice that image noise too causes intensity variations, which
results 1n spurious edges; a good edge detection algorithm, or edge detector, should
suppress most of them.,

¥ The term “edge” is also used to refer to connected chains of edge points, that is, contour
fragments. Edge points are sometimes called edgels (for “edge elements”).

There are various reasons for our interest in edges. The contours of potentially
interesting scene elements like solid objects, marks on surfaces, and shadows, all gen-
erate intensity edges. Moreover, image lines, curves and contours, which are often the
basic elements for stereopsis, calibration, motion analysis and recognition, are detected
from chains of edge points. Finally, line drawings are common and suggestive images for
humans. Throughout, we refer to intensity images, but it makes perfect sense to apply
edge detection to range images as well (see review questions).

Our next task is to make the problem more precise. Edge detection in computer
vision 1s typically a three-step process.

2 Incidentally, this is true of any intermediate module of a vision system.

3 Image edges are commonly presented as “discontinuities in the underlying irradiance function,” but it seems
more accurate to speak of “sharp image variations” than “discontinuities”. The reason is that the scene
radiance is low-pass filtered by the optics (Chapter 2) and the resulting image brightness cannot have real
0-order discontinuities.

70 Chapter4 Image Features

(b)

Figure 4.1 (a) A 325 x 237-pixel image, with scanline i = 56 highlighted. (b) The intensity
profile along the highlighted scanline. Notice how the main intensity variations indicate the
borders of the hair region along the scanline.

The Three Steps of Edge Detection

Noise Smoothing. Suppress as much of the image noise as possible, without destroying the true
edges. In the absence of specific information, assume the noise white and Gaussian.

Edge Enhancement. Design a filter responding to edges; that is, the filter’s output is large at edge
pixels and low elsewhere, so that edges can be located as the local maxima in the filter’s
output.

Edge Localization. Decide which local maxima in the filter’s output are edges and which are just
caused by noise. This involves:

. thinning wide edges to 1-pixel width (nonmaximum suppression);
. establishing the minimum value to declare a local maxima an edge (thresholding).

Edge detection algorithms are found in their tens in the literature of computer vi-
sion and image processing. Many produce similar results. Instead of taking you through
a plethora of algorithms, we introduce directly the Canny edge detector, probably the
most used edge detector in today’s machine vision community. Canny’s detector is opti-
mal in a precise, mathematical sense; going through the main ideas behind its derivation

Section 4.2 Edge Detection 71

is an instructive example of good practice in the design of low-level vision algorithms.
We shall also sketch two other edge detection algorithms.

4.2.2 The Canny Edge Detector

To arrive at Canny’s edge detector, we need to:

1. formulate a mathematical model of edges and noise;

2. formulate quantitative performance criteria, formalizing desirable properties of
the detector (e.g., good immunity to noise);

3. synthesize the best filter given models and performance criteria. We shall be
looking for a linear filter (see Chapter 3), asitis easy to manipulate and implement.

Here is the skeleton of the algorithm we are going to derive. We shall build the
missing algorithms in the next sections.

Algorithm CANNY_EDGE_DETECTOR

Given an image /:

1. apply CANNY_ENHANCER to [:
2. apply NONMAX_SUPPRESSION to the output of CANNY_ENHANCER;
3. apply HYSTERESIS_THRESH to the output of NONMAX_SUPPRESSION.

Modelling Edges and Noise. Edges of intensity images can be modelled accord-
ing to their intensity profiles. For most practical purposes, a few models are sufficient to
cover all interesting edges, and these are illustrated in Figure 4.2 for the 1-D case.

= You should think of the 1-D signals shown in Figure 4.2 as cross-sections of 2-D images
along a line of arbitrary orientation (not necessarily a row or column).

Step edges (Figure 4.2 (a)) are probably the most common type in intensity images.
They occur typically at contours of image regions of different intensities. In most cases,
the transition occurs over several pixels, not just one; one speaks then of ramp edges.
Ridge edges (Figure 4.2 (b)) are generated by thin lines. Clearly, wide ridges can be
modelled by two step edges. Roof edges (Figure 4.2 (c)) are relatively rare, but may
appear along the intersection of surfaces. Notice that steps and ridges correspond to
sharp variations of the intensity values, while roofs correspond to variations of their
first derivatives.

A good step-edge detector will actually find all edges necessary for most purposes,
and for this reason we concentrate on step edge detectors. The output we want 1s a list
of step edge descriptors, each of which should include the essential properties shown in
the box that follows:

72 Chapter4 Image Features

M
/ o)
/ y AN

(a)

Left: 1deal step (top, transition occurs over one pixel) and ramp edges. Right: corresponding
noisy version, obtained by adding Gaussian noise (standard deviation 5% of the step height).

ideal noisy

o~
"."I.I'r'

. A
)

(b

Left: ideal ridge edges. Right: corresponding noisy version, obtained as for step edges.

Y\,
_/’\‘w — M f M\,\/M\

ANWAN

Left: ideal roof edges. Right: corresponding noisy version, obtained as for step edges.

\
VNS

Figure 4.2 Three types of 1-D edge profiles.

Section 4.2 Edge Detection 73

EDGE
NORMAL

EDGE
DIRECTION

Figure 4.3 Illustration of edge normal
and edge direction. The edge position
considered is (2,2), with the origin in the
upper left corner.

The Essential Edge Descriptor

Edge normal: for edges in 2-D images, the direction (unit vector) of the maximum intensity
variation at the edge point. This identifies the direction perpendicular to the edge (Figure 4.3).
Edge direction: the direction perpendicular to the edge normal, and therefore tangent to the
contour of which the edge is part (Figure 4.3). This identifies the direction tangent to the edge.
Edge position or center: the image position at which the edge islocated, along the perpendicular
to the edge. This is usually saved in a binary image (1 for edge, O for no edge).
Edge strength: a measure of the local image contrast; i.e., how marked the intensity variation
is across the edge (along the normal).

We model the ideal, 1-D step edge as

0 x<0

)= A x>0

(4.1)

And here 1s a summary of the assumptions we are making.

Assumptions

® The edge enhancement filter 1s linear.
¢ The filter must be optimal for noisy step edges.
¢ The image noise is additive, white and Gaussian.

Criteria for Optimal Edge Detection. We must now express the characteristics
we expect of an optimal edge detector, that is, formalize optimality criteria.

Criterion 1: Good Detection. The optimal detector must minimise the probability
of false positives (detecting spurious edges caused by noise), as well as that of missing real
edges.

74

Chapter 4 Image Features

This 1s achieved by maximising the signal-to-noise ratio (SNR), defined here as
the ratio of the root-mean-squared (RMS) responses of the filter to the ideal step edge
(4.1) and the noise, respectively. Let f be the impulse response of the 1-D filter, and
assume the filter’s width is 2W. Consider the 1-D signal in (4.1) centered in x = 0 (the
edge’s center). The response of a linear filter f to this edge is

W 0
f G(—t)f(t)dt=A f(t)dt, (4.2)

W —-W

and the good-detection criterion becomes

Al 1Y F)d
— | [y f(0)dt (43)

”U\/f_;l,f f2(t)dr

where nj is the RMS noise amplitude per unit length.*

Criterion 2: Good Localization. The edges detected must be as close as possible to
the true edges.

This can be formalized by the reciprocal of the RMS distance of the detected edge

from the center of the true edge. It can be proven that, in our assumptions, this results
In

Al £ O
W 12 .
”U\/f—w fe(t)de

We omit the rather complex derivation (see Further Readings). We now notice that
(4.3) and (4.4) identify two performance measures for step edge detectors (call them ¥
and A), which depend only on the filter, and not on either noise or step magnitude. In
particular, ¥ and A are defined by

LOC =

(4.4)

SNR = i):(f) LOGC= iA(f’). (4.5)
iy no
The product £ A is a measure of how well the filter f satisfies both criteria simulta-
neously, so we must look for the f maximing £ A. One can prove that this product is
maximized for f(x) = G(—x) in [-W, W]. Therefore, the optimal, 1-D step edge detector
is a simple difference operator, or box filter.

Unfortunately, something is still missing. The response of a difference operator to
a noisy edge contains many local maxima (Figure 4.4), not just the one we are after. We
need, therefore, a third criterion, which is really a constraint.

Single Response Constraint. The detector must return one point only for each true
edge point; that is, minimize the number of local maxima around the true edge created by
noise. Without going into details, this is formalized by imposing that the mean distance
between local maxima caused by the noise (which can be estimated from the statistics
of the noise) only be some fraction of the filter’s half-width W.

*Incidentally, you have just learned (or been reminded of) the expression of the RMS response of a linear
filter to white, Gaussian noise; that is, the denominator of (4.3).

Section 4.2 Edge Detection 75

3
2.
da
(a) A
0 N
i, ~0.5 0 0.5 1
| 0.5 - -
1 —\ '
(b) O | 0 V\
_'| .
~0.5 - R
_20 0 20 -10 0 10
2 2 4
EIIIII' 1t *
[
L [1 4
(C) 0 \III II../\/\/ 0'\—‘\/\/‘\/‘\/\/'_/\,-\/_,
[
M A Il‘ ‘.-1 -
= ~0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 4.4 (a) Noisy, step edge, corrupted by additive Gaussian noise (standard
deviation i1s 15% of the uncorrupted step’s height). (b) The box filter (left) and the
first derivative of a Gaussian (right). (¢) Response to the noisy edge of the box filter
(left) and of the first derivative of a Gaussian. The latter contains fewer local maxima
thanks to the smoothing effect of the Gaussian. Notice the different amplitudes of
the two responses due to the different amplitudes of the filters.

One consequence of our formalization is definitely worth noting. Suppose we take
a spatially scaled version of the filter, that is, f,,(x) = f(x/w). One can prove that

N :
T (fw) = VWE(S) A(fw)—\/—aﬁ(f) (4.6)

that 1s, a larger filter improves detection, but worsens localization by the same amount,
and vice versa. We can summarize this important result as follows.

The Localization-Detection Tradeoff

We can reach an optimal compromise between the location and detection criteria by adjusting
the filter’s spatial scale, but we cannot improve both criteria simultaneously.

Optimal Step Edge Enhancement. Given our edge and noise models, and the
design criteria, we can obtain the optimal enhancing filter f as the function maximizing

76

Chapter4 Image Features

the product A(f)Z(f) (criteria 1 and 2), under the constraint of single response. We
have turned edge detection into a constrained optimization problem, that is, a well-
formalized mathematical problem with clear assumptions.

The bad news 1s that it can be proven that the solution is unique, but it is very
difficult to find closed-form solutions. We can, however, evaluate numerically criteria
(4.3) and (4.4) for candidate operators f, and pick the best performer.> In this way,
one realises that a very good approximation of the ideal step edge detector is the first
derivative of a Gaussian, which proves only 20% worse than the ideal operator with
respect to (4.3) and (4.4).°

So far we have worked with 1-D signals, but how about 2-D images? The key to
generalization 1s that the 1-D treatment still applies in the direction of the edge normal.
Since we do not know a priori where the normal is, we should compute, at each image
point, the result of applying 1-D directional filters in all possible directions. Therefore,
the optimal, 2-D edge detector would involve a set of 1-D filters spanning a large
number of orientations. Such filters would be implemented by narrow masks, elongated
along the edge direction; the mask’s shorter cross-section is the ideal 1-D detector,
and the longer (in the perpendicular direction) is Gaussian, which contributes to noise
smoothing.

This laborious method can be simplified significantly. One can use a circular
Gaussian filter, which amounts to applying Gaussian smoothing to the image followed
by gradient estimation, and use the gradient to estimate all the directional derivatives
required. This 1s less accurate than applying directional filters but adequate for most
practical cases. In this way, we estimate the edge strength as

s(i, /) = IV(G % I) | (4.7)
and the edge normal as
V(G x I)
= 4.8
"TIVG D] e

Here 1s an algorithm implementing a practical approximation of the optimal step edge
enhancer.’

Algorithm CANNY_ENHANCER

The 1input 1s /, an intensity image corrupted by noise. Let G be a Gaussian with zero mean and
standard dewviation o.

> This can be done for any edge class, not only step edges. All integrals evaluated using the step edge model
change; see Canny’s original article (Further Readings) for details.

 And 90% of the single-response criterion, although this figure is rather complicated to achieve.

"Notice that this algorithm implements edge descriptors through a set of images. An alternative would be to
define a data structure gathering all the properties of an edge.

Section 4.2 Edge Detection 77

1. Apply Gaussian smoothing to I (algorithm LINEAR_FILTER of Chapter 3 with a Gaus-
sian kernel discretising G), obtaining J =1 x G.

2. For each pixel (i, j):

(a) compute the gradient components, J, and J, (Appendix, section A.2);
(b) estimate the edge strength

esti, j) = \JI2G.) + 2.)

(c) estimate the orientation of the edge normal

e (i, j) = arctan —=
Jy

The output is a strength image, E,, formed by the values es(i, j), and an orientation image, E,,
formed by the values e, (i, j).

i To make the implementation as efficient as possible, you can use the fact that V(G x 1) =
VG * I (thatis, convolve the image with the 1-D first derivative of a Gaussian) and Gaussian
separability. You can also use lookup tables to store the square root values.

e The value of o to be used depends on the length of interesting connected contours, the
noise level, and the localization-detection trade off.

We must now find the position of edge centers and discard as many noisy edges as
possible in the output of the enhancing filter. This is done in two steps: nonmaximum
suppression and thresholding.

Nonmaximum Suppression. The strength image, E;, output by CANNY_
ENHANCER may contain wide ridges around the local maxima. Nonmaximum sup-
pression thins such ridges to produce 1-pixel wide edges. Here is an essential algorithm,
using a rather coarse quantisation of edge normal directions (4-levels).

Algorithm NONMAX_SUPPRESSION

The input is the output of CANNY_ENHANCER, that is, the edge strength and orientation
images, E; and E,. Consider the four directions d . . . ds, identified by the 0°, 45°, 90° and 135°
orientations (with respect to the horizontal axis image reference frame).

For each pixel (i, j):

1. find the direction, E'k. which best approximates the direction E,(i, j) (the normal to the
edge);

2. if E(i, j) is smaller than at least one of its two neighbors along dy. assign In(i, j) =0
(suppression); otherwise assign In(i, j) = E;(i. j).

The output is an image, Iy(i, j), of the thinned edge points (that 1s, Es(i, j) after suppressing
nonmaxima edge points).

78 Chapter4 Image Features

Figure 4.5 Strength images output by CANNY_ENHANCER run on Figure 4.1, after
nonmaximum suppression, showing the effect of varying the filter’s size. that is, the standard
deviation, o, of the Gaussian. Left to right: o = 1, 2, 3 pixel.

Figure 4.5 shows the output of our implementation of CANNY_ENHANCER,
after nonmaximum suppression, when run on the image in Figure 4.1 (left)® with three
values of standard deviation of the filtering Gaussian. Notice how smaller filters capture
shorter edges, but several of these do not belong to any interesting contour in the image
(e.g., background edges).

Thresholding. The image output by NONMAX_SUPPRESSION, Iy, still con-
tains the local maxima created by noise. How do we get rid of these? We can try to
discard all pixels of value less than a threshold, but this has two problems:

* if we set a low threshold in the attempt of capturing true but weak edges, some
noisy maxima will be accepted too (false contours):

* the values of true maxima along a connected contours may fluctuate above and
below the threshold, fragmenting the resulting edge (streaking).

A solution 1s hysteresis thresholding.

Algorithm HYSTERESIS_THRESH

The input 1s Iy, the output of NONMAX_SUPPRESSION, E,. the edge orientation image, and
;. T, two thresholds such that 7; < 1,.
For all the edge points in Iy, and scanning /y in a fixed order:

1. Locate the next unvisited edge pixel, Ix (i, j), such that In(i, j) >)

Without the highlighted scanline, obviously!

Section 4.2 Edge Detection 79

2. Starting from Iy(i, j), follow the chains of connected local maxima, in both directions
perpendicular to the edge normal, as long as /y > 7;. Mark all visited points, and save a
list of the locations of all points in the connected contour found.

The output is a set of lists, each describing the position of a connected contour in the image,
as well as the strength and the orientation images, describing the properties of the edge points.

Hysteresis thresholding reduces the probability of false contours, as they must
produce a response higher than 7, to occur, as well as the probability of streaking, which
requires now much larger fluctuations to occur than in the single-threshold case.

= If 7, is large, 1; can also be set to 0.

Notice that HYSTERESIS_THRESH performs edge tracking: it finds chains of
connected edge maxima, or connected contours. The descriptors for such chains, saved
by HYSTERESIS_THRESH in addition to edge point descriptors, can be useful for
curve detection.

= Notice that Y-junctions will be split by NONMAX_SUPPRESSION. How serious this is de-
pends on what the edges are computed for. A possible solution is to modify HYSTERESIS _
THRESH so that it recognizes Y-junctions, and interrupt all edges.

Figure 4.6 shows the output of our implementation of NONMAX_SUPPRESSION
and HYSTERESIS_THRESH when run on the images in Figure 4.5. All contours are
one pixel wide, as desired.

Figure 4.6 Output of HYSTERESIS_THRESH run on Figure 4.5, showing the effect of varying
the filter’s size. Left to right: o = 1, 2, 3 pixel. The grey levels has been inverted (black on white)
for clarity.

80

Chapter 4 Image Features

4.2.3 Other Edge Detectors

Early edge detection algorithms were less formalized mathematically than Canny’s.
We sketch two examples, the Roberts and the Sobel edge detectors, which are easily
implemented in their essential form.

Algorithm ROBERTS_EDGE_DET

The input is formed by an image, I, and a threshold, 7.~

1. apply noise smoothing as appropriate (for instance, Gaussian smoothing in the absence of
information on noise: see Chapter 3), obtaining a new image /;

2. filter I, (algorithm LINEAR_FILTER, Chapter 3) with the masks

ERi

obtaining two images /1 and /3;
3. estimate the gradient magnitude at each pixel (i, j) as

Gl j) =12, j) + I2G. j).
obtaining an image of magnitude gradients, G;
4. mark as edges all pixels (i, j) such that G(i, j) > T.

The output is the location of edge points obtained in the last step.

.l

Algorithm SOBEL_EDGE_DET
Same as for ROBERTS_EDGE_DET, but replace step 2. with the following.

2. filter I, (algorithm LINEAR_FILTER, Chapter 3) with the masks

" -1 -2 -1 -1 0 1]
0 0 O 2 M) 2
I SHN - S O | =1 0 1_
obtaining two images I and /5.

Notice that the element special to these two detectors is the edge-enhancing filter
(see Review Questions). Figure 4.7 shows an example of Sobel edge detection.

4.2.4 Concluding Remarks on Edge Detection

Evaluating Edge Detectors. The ultimate evaluation for edge detectors which
are part of larger vision systems is whether or not a particular detector improves the
performance of the global system, other conditions being equal. For instance, within an

Section 4.2 Edge Detection 81

Figure 4.7 Left: output of Sobel edge enhancer run on Figure 4.1. Middle: edges detected
by thresholding the enhanced image at 35. Right: same, thresholding at 50. Notice that some
contours are thicker than one pixel (compare with Figure 4.5).

Inspection system, the detector leading to the best accuracy in the target measurements,
and acceptably fast, is to be preferred.

However, it 1s useful to evaluate edge detectors per se as well. We run edge
detectors 1n the hope of finding the contours of interesting scene elements; therefore,
one could think that an edge detector is good “if it finds object contours”, and in a
sense this 1s true. But it 1s also imprecise and unfair, because edge detectors do not
know about “objects contours™ at all; they look for intensity variations, and we must
evaluate algorithms for what they actually know and do. Specific edge detectors can be
evaluated

® theoretically (e.g., for edge enhancement filters, using Canny’s criteria in sec-
tion 4.2.2);

* experimentally, estimating various performance indices in a large number of ex-
periments with synthetic images (Appendix, section A.1)), in which all edge and
noise parameters are perfectly known and vary in realistic ranges. Performance
indices include

« the number of spurious edges (which is an estimate a posteriori of the proba-
bility of false detection),

- the number of. true edges missed (which is an estimate a posteriori of the
probability of misses),

« the average and RMS errors of estimates of edge position and orientation.

Subpixel-Precision Edge Detection. All the edge detectors in this chapter iden-
tify the pixel which contains the center of the true edge center. In fact, the center could
be anywhere within the pixel, so that the average accuracy is 0.5 pixel. In precision ap-
plications, half a pixel may correspond to unacceptably large errors in millimiters, and

82

Chapter4 Image Features

it is important to locate the edge position with subpixel precision. For instance, in com-
mercial laser scanners (Chapter 2) an accuracy of about 0.25mm is a common target,
and half a pixel may correspond to less than 0.5mm. The easiest way to achieve subpixel
resolution is to locate the peak of a parabola interpolating three values in the output of
CANNY_ENHANCER, namely at the edge pixel and at its two neighbours along the
edge normal. Of course, any information available on edge profiles and noise should be
exploited to improve on the parabola method.

4.3 Point Features: Corners

Although the mathematics of edge detection may seem involved, edges can be char-
acterized intuitively in geometric terms: they are the projection of object boundaries,
surface marks, and other interesting elements of a scene. We now give an example of
image features that can be characterized more easily than edges in mathematical terms,
but do not correspond necessarily to any geometric entities of the observed scene. These
features can be interpreted as corners, but not only in the sense of intersections of im-
age lines; they capture corner structures in patterns of intensities. Such features prove
stable across sequences of images, and are therefore interesting to track objects across
sequences (Chapter 8).

How do we detect corner features? Consider the spatial image gradient, [E_r, E }.] !

(the subscripts indicate partial differentiation, e.g., E, = %) Consider a generic image
point, p, a neighbourhood Q of p, and a matrix, C, defined as

2
-k, 5| "

where the sums are taken over the neighbourhood Q. This matrix characterizes the
structure of the grey levels. How?

The key to the answer 1s in the eigenvalues of C and their geometric interpretation.
Notice that C 1s symmetric, and can therefore be diagonalized by a rotation of the
coordinate axes; thus, with no loss of generality, we can think of C as a diagonal matrix:

A 0
L= [0 lzi| '
The two eigenvalues, A1 and A,, are both nonnegative (why?); let us assume A; > A;.
The geometric interpretation of A, and A, can be understood through a few particular
cases. First, consider a perfectly uniform Q: the image gradient vanishes everywhere, C
becomes the null matrix, and we have A; = A, = 0. Second, assume that Q contains an
ideal black and white step edge: we have A =0, A; > 0, and the eigenvector associated
with A; is parallel to the image gradient. Note that C is rank deficient in both cases,
with rank 0 and 1 respectively. Third, assume that Q contains the corner of a black
square against a white background: as there are two principal directions in Q, we
expect A1 > A2 > 0, and the larger the eigenvalues, the stronger (higher contrast) their

corresponding image lines. At this point, you have caught on with the fact that the
eigenvectors encode edge directions, the eigenvalues edge strength. A corner is identified

Section 4.3 Point Features: Corners 83

(a) (b)

Figure 4.8 Corners found in a 8-bit, synthetic checkerboard image, corrupted by two
realizations of synthetic Gaussian noise of standard deviation 2. The corner is the bottom right
point of each 15 x 15 neighbourhood (highlighted).

by two strong edges; therefore, as A{ > Ay, a corner is a location where the smaller
eigenvalue, Ay, is large enough.

Time for examples. Figure 4.8 shows the corners found in a synthetic image of a
checkerboard, with and without additive noise. Figure 4.9 shows the corners found in
the image of a building, and the histogram of the A, values. The shape of this histogram
i1s rather typical for most natural images. If the image contains uniform regions, or many
almost 1deal step edges, the histogram has a second peak at A, = 0. The tail (right) of the
histogram 1s formed by the points for which A, 1s large, which are precisely the points
(or, equivalently, the neighbourhoods) we are interested in. Figure 4.10 shows another
example with a road scene.

(a) (b) (c)

Figure 4.9 (a): original image of a building. (b): the 15 x 15 pixel neighbourhoods of some of
the image points for which A; > 20. (c): histogram of A; values across the image.

Chapter 4 Image Features

Figure 4.10 (a):image of an outdoor scene. The corner is the bottom right point of each 15 x 15
neighbourhood (highlighted). (b): corners found using a 15 x 15 neighbourhood.

We reiterate that our feature points include high-contrast image corners and 'I-
junctions generated by the intersection of object contours (as the corners in Figure 4.8),
but also corners of the local intensity pattern not corresponding to obvious scene
features (as some of the corners in Figure 4.10). In general terms, at corners points the
intensity surface has two well-pronounced, distinctive directions, associated to eigenvalues
of C both significantly larger than zero.

We now summarize the procedure for locating this new type of image features.

Algorithm CORNERS

The input is formed by an image, /, and two parameters: the threshold on A5, 7, and the linear
size of a square window (neighbourhood), say 2N + 1 pixels.

1. Compute the image gradient over the entire image /;
2. For each image point p:

(a) form the matrix C of (4.9) over a 2N + 1) x (2N + 1) neighbourhood Q of p;
(b) compute A3, the smaller eigenvalue of C;
(c) if A > 7, save the coordinates of p into a list, L.

3. Sort L in decreasing order of A;.

4. Scanning the sorted list top to bottom: for each current point, p, delete all points appearing
further on in the list which belong to the neighbourhood of p.

The output is a list of feature points for which A, > t and whose neighbourhoods do not
overlap.

Section 4.4 Surface Extraction from Range Images 85

Algorithm CORNERS has two main parameters: the threshold, r, and the size of
the neighbourhood, (2N + 1). The threshold, t, can be estimated from the histogram
of A, (Exercise 4.6), as the latter has often an obvious valley near zero (Figure 4.9).

t= Notice that such valley i1s not always present (Exercise 4.7).

Unfortunately, there 1s no simple criterion for the estimation of the optimal size of the
neighbourhood. Experience indicates that choices of N between 2 and 10 are adequate
in most practical cases.

.= In the case of corner points, the value of N is linked to the location of the corner within the
neighbourhood. As you can see from Figure 4.9, for relatively large values of N the corner
tends to move away from the neighbourhood center (see Exercise 4.8 for a quantitative
analysis of this effect).

4.4 Surface Extraction from Range Images

Many 3-D objects, especially man-made, can be conveniently described in terms of the
shape and position of the surfaces they are made of. For instance, you can describe a
cone as an object formed by two surface patches, one conical and one planar, the latter
perpendicular to the axis of the former. Surface-based descriptions are used for object
classification, pose estimation, and reverse engineering, and are ubiquitous in computer
graphics.

As we have seen in Chapter 2, range images are basically a sampled version of the
visible surfaces in the scene. Therefore, ignoring the distortions introduced by sensor
imperfections, the shape of the image surface’ and the shape of the visible scene surfaces
are the same, and any geometric property holding for one holds for the other too. This
section presents a well-known method to find patches of various shapes composing the
visible surface of an object. The method, called HK segmentation, partitions a range
image into regions of homogeneous shape, called homogeneous surface patches, or just
surface patches for short.!° The method is based on differential geometry; Appendix,
section A.S gives a short summary of the basic concepts necessary.

. The solution to several computer vision problems involving 3-D object models are simpler
when using 3-D features than 2-D features, as image formation must be taken into account
for the latter.

?That is, the image values regarded as a surface defined on the image plane.

10 Notice that surface patches are the basic ingredients for building a surface-based CAD model of an object
automatically.

	4-67.jpg
	4-68.jpg
	4-69.jpg
	4-70.jpg
	4-71.jpg
	4-72.jpg
	4-73.jpg
	4-74.jpg
	4-75.jpg
	4-76.jpg
	4-77.jpg
	4-78.jpg
	4-79.jpg
	4-80.jpg
	4-81.jpg
	4-82.jpg
	4-83.jpg
	4-84.jpg
	4-85.jpg

