More Image Features

T e B o i L SRR

There was an old man of West Dumpet
Who possessed a large nose like a trumpet

Edward Lear, The Book of Nonsense

This chapter develops further the discussion on image features, introducing more features and
related detection algorithms.

Chapter Overview

Section 5.1 introduces grouping and model fitting, and their relation.

Section 3.2 presents the Hough transform, a class of algorithms for locating lines and curves in
images.

Section 5.3 describes three algorithms for fitting ellipses to noisy image data.

Section 3.4 introduces deformable contours, a special class of algorithms for curve detection and
description.

Section 5.5 tackles the problem of forming groups of line segments likely to belong to the same
object. ’

What You Need to Know to Understand this Chapter

* Working knowledge of the previous chapters.
* [east-squares parameter fitting (Appendix, sections A.6 and A.7).
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Chapter 5 More Image Features

Introduction: Line and Curve Detection

Lines and curves are important features in computer vision because they define the
contours of objects in the image. This chapter presents methods to detect lines, ellipses,
and general closed contours. Here is a statement of our task.

Problem Statement: Line and Curve Detection

Given the output of an edge detector run on an image, 1, find all the instances of a given curve
(e.g., a line or an ellipse) or parts thereof (e.g., line segments or arcs of ellipse) in /.

Strictly speaking, the detection of image lines can be performed directly; that is,
by template matching: One can look for the peaks of the convolution between the image
and a set of masks matched to long, linear edges in all possible orientations. There are
at least two disadvantages: First, accurate line location requires a large set of masks;
second, we again run into all the problems connected to filter design that we discussed in
Chapter 4. Trying to apply template matching to curves worsen the problem. Therefore,
we follow an alternative plan: We start with CANNY_EDGE_DETECTOR, and we
feed the resulting edge image to the line or ellipse detectors. We shall depart from this
plan only when looking for general-shape, closed image contours (section 5.4), which
will be fit to intensity images directly.

Under this assumption, line and curve detection splits logically into two subprob-
lems:

Grouping: Which image points compose each instance of the target curve in the image?

Model fitting: Given a set of image points probably belonging to a single instance of the
target curve, find the best curve interpolating the points.

In the previous chapter, we have seen that edge detection procedures like
HYSTERESIS_THRESH, for example, solve the grouping problem by providing an or-
dered list of edge points (or chain). Let us now understand the problem of model fitting.
Assume we know that certain image points lie, say, on a line. Because of pixelization and
errors introduced by image acquisition and edge detection, there is no line going exactly
through all the points; we must look for the best compromise line we can find. So we
write the equation of a generic line (the mathematical model), a'x = ax + by + ¢ =0,
and look for the parameter vector, a,, which results in a line going as near as possible
to each image point. The vector a, is computed by defining a distance function, D, be-
tween the line and the set of image points, and looking for the minimum of D over all
possible a. Very often, D is a squared distance, and finding a, implies solving a least
squares problem.

This chapter introduces algorithms for curve fitting and grouping, as well as algo-
rithms that perform both grouping and model fitting at the same time, but are suitable
only for lines and simple curves.
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5.2 The Hough Transform

The Hough transform (henceforth called HT) was introduced to detect complex pat-
terns of points in binary images and became quickly a very popular algorithm to detect
lines and simple curves. The key idea is to map a difficult pattern detection problem (find-
ing instances of a given curve) into a simple peak detection problem in the space of the
parameters of the curve. We start with an image of contour points, such as the output
of an edge detector. The contour points needs not to be grouped 1n edge chains.

5.2.1 The Hough Transform for Lines

We begin by introducing the two basic steps of HT work using the case of lines:

1. Transform line detection into a line intersection problem. Any line, y = mx + n, 1s
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identified by a unique parameter pair, (m, n). Therefore, the line is represented b
a point in the m, n plane (the parameter space). Conversely, any point p = [x, y]
in the image corresponds to a line n = x(—m) + y In parameter space, which, as m
and n vary, represents all possible image lines through p. Therefore, a line defined
by N collinear image points, p; ... pn, 1S 1dentified in parameter space by the
intersection of the lines associated with p; ... pn, as illustrated 1n Figure 5.1 for
N =2

Transform line intersection in a simple peak detection problem, or search for a
maximum. Imagine to divide the m, n plane into a finite grid of cells, the resolution
of which depends on the accuracy we need, and to associate a counter, c(m, n),
initially set to zero, to each cell. Assume for simplicity that the image contains only
one line, (m’, n’), formed by points p; . .. py. For each image point, p;, increment

Image points: (10,22). (30.62) Parameter space: n = =10m+22, n = -30m+&2
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Figure 5.1 Illustration of the basic idea of the Hough transform for lines. The two image points
(a) are mapped onto two lines in parameter space (b). The coordinates of the intersection of
these lines are the parameters (m, n) of the image line through the two points.
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all counters on the corresponding line in parameter space. All the parameter-space
lines,/; . ..ly,associatedtop; .. .pw, go through (m’,n’),sothatc(m’,n’) = N. Any
other counter on/; . .. Iy is 1. Therefore, the image line is identified simply by the
peak of c(m, n) in parameter space.

To make things work, several (if straightforward) extensions are necessary.

Keeping the Parameter Space Finite. Both m and n can take on values in
[—o00, 00], which implies that we cannot sample the whole parameter space. To min-
imize the risk of missing interesting parameter ranges, we can sample wide intervals
for both m and n, but at the price of reducing resolution, as there is a limit to the size
of the discrete parameter space that we can search in acceptable time. Moreover, the
(m, n) parametrization does not capture the bundle x = k, with k a constant. The polar
representation p = x cos 6 + y sin 8 where p represents the distance between the image
origin and the line, and 6 the line orientation, solves both problems: The intervals of
variation of p and @ are finite, and any line can be represented.

&  Notice that an image point is now represented by a sinusoid, not a line, 1n parameter
space.

Simultaneous Detection of Multiple Lines. Edge images may contain many
lines. To find them all, you simply look for all local maxima of c(m, n).

Effect of Nonlinear Contours. Edge images usually contain points not belonging
to any line, for instance curved contours, or just noise introduced by the edge detector.
These points result in a spread of low, random counter values throughout the parameter
space. Consequently, a multitude of local, noisy peaks appears, and we must divide the
peaks created by noise from those identifying lines. The simplest way to achieve this is
to threshold c(m, n).

Noise. Because of pixelization and the limited accuracy of edge detection, not
all the parameter-space lines corresponding to the points of an image line intersect at
the same point. Consequently, the image points do not contribute to one counter only,
but to several counters within a small neighborhood of the correct one, so that the peak
identifying the line is spread over that neighborhood. This phenomenon is reinforced by
the presence of noisy points. Depending on the resolution of the parameter space and
the accuracy required, one can estimate the true parameters just as the local maximum
(m’,n’), or as a weighted average of the values (m, n) in a neighborhood of (m’, n’)
such that c(m, n) > tc(m’, n"), where 7 is a fixed fraction (e.g., 0.9) and the weights are
proportional to the counters’ values.

As an example, Figure 5.2 (a) shows a synthetic 64 x 64 image of two lines. Only a
subset of the lines’ points are present, and spurious points appear at random locations.
Figure 5.2 (b) shows the counters in the associated (m, n) parameter space.
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Figure 5.2 (a) An image containing two lines, sampled irregularly, and several random points.
(b) Plot of the counters in the corresponding parameter space (how many points contribute to
each cell (m, n)). Notice that the main peaks are obvious, but there are many secondary peaks.

We are now ready for the following algorithm:

Algorithm HOUGH_LINES

The input is E, a M x N binary image in which each pixel E(i, j) is 1 if an edge pixel, 0
otherwise. Let p4, 8, be the arrays containing the discretized intervals of the p, 8 parameter spaces
(p € [0,V M2 + N?],6 € [0, n]), and R, T, respectively, their number of elements.

1. Discretize the parameter spaces of p and 6 using sampling steps 3p, 86, which must yield
acceptable resolution and manageable size for p; and 6.

2. Let A(R, T) be an array of integer counters (accumulators); initialize all elements of A to
ZEro.

3. For each pixel, E(i, j),such that E(i, j)=1andforh=1...T

(a) let p =1 cos @(h) + j sin 8,4(h);
(b) find the index, k, of the element of p,; closest to p;
(c) increment A(k, k) by one.

4. Find all local maxima (kp, k) such that A(k,, h,) > v, where 7 1s a user-defined threshold.

The output is a set of pairs (p4(kp), 84(hp)), describing the lines detected in E in polar form.

5 If an estimate m,(p) of the edge direction at image point p is available, and we assume that
mg(p) 1s also the direction of the line through p, a unique cell (mgy,ng =y — mgx) can be
identified. In this case, instead of the whole line, we increment only the counter at (mg, n;);
to allow for the uncertainty associated with edge direction estimates, we increment all the
cells on a small segment centered in (m,, n,), the length of which depends inversely on the
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reliability of the direction estimates. This can speed up considerably the construction of the
parameter space.

5.2.2 The Hough Transform for Curves

The HT is easily generalized to detect curves y = f(x, a), where a = [di;+: @ p]T 1S a
vector of P parameters. The basic algorithm is very similar to HOUGH_LINES.

Algorithm HOUGH_CURVES

The input is as in HOUGH_LINES. Let y = f(x, a) be the chosen parametrization of a target
curve.

1. Discretize the intervals of variation of a1, . . . , ap with sampling steps yielding acceptable
resolution and manageable size for the parameter space. Let 51, . . . , s, be the sizes of the
discretized intervals.

2. Let A(s1,s2...sp) be an array of integer counters (accumulators), and initialize all its
elements to zero.

3. For each pixel E(i, j) such that E(i, j) = 1, increment all counters on the curve defined by
y= f(x,a)1n A.

4. Find all local maxima a,, such that A(a,,) > 7, where 7 is a user-defined threshold.

The output is a set of vectors, a; . . . ap, describing the curve instances detected in E.

=  The size of the parameter space increases exponentially with the number of model parame-
ters, and the time needed to find all maxima becomes rapidly unacceptable. This is a serious
limitation. In particular, assuming for simplicity that the discretized intervals of all param-
eters have the same size N, the cost of an exhaustive search for a curve with p parametersis
proportional to N?. This problem can be tackled by variable-resolution parameter spaces
(see Question 5.6).

5.2.3 Concluding Remarks on Hough Transforms

The HT algorithm is a voting algorithm: Each point “votes” for all combinations of
parameters which may have produced itif it were part of the target curve. From this point
of view, the array of counters in parameter space can be regarded as a histogram. The
final total of votes, c(m), in a counter of coordinates m indicates the relative likelihood
of the hypothesis “a curve with parameter set m exists in the image.”

The HT can also be regarded as pattern matching: the class of curves identified by
the parameter space is the class of patterns. Notice that the HT is more efficient than
direct template matching (comparing all possible appearances of the pattern with the
image).

The HT has several attractive features. First, as all points are processed indepen-
dently, it copes well with occlusion (if the noise does not result in peaks as high as those
created by the shortest true lines). Second, it is relatively robust to noise, as spurious
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points are unlikely to contribute consistently to any single bin, and just generate back-
ground noise. Third, it detects multiple instances of a model in a single pass.

The major limitation of the HT is probably the rapid increase of the search time
with the number of parameters in the curve’s representation. Another limitation is that
non-target shapes can produce spurious peaks in parameter space: For instance, line
detection can be disturbed by low-curvature circles.

5.3 Fitting Ellipses to Image Data

Many objects contain circular shapes, which almost always appear as ellipses in intensity
images (but see Exercise 5.5); for this reason, ellipse detectors are useful tools for
computer vision. The ellipse detectors we consider take an image of edge points in input,
and find the best ellipse fitting the points. Therefore this section concentrates on ellipse
fitting, and assumes that we have identified a set of image points plausibly belonging to a
single arc of ellipse.

Problem Statement: Ellipse Fitting

-
Letp; ... pn beasetof N image points, p; = [x;, vi]'. Letx = [.rz, Xy, y%, x, ¥, 1] ,p =[x, }!]Tﬁ
and

f(P,H)=xTa=axz—|—bx}-'—+—cy2+dx—+—gy+f:{]

the implicit equation of the generic ellipse, characterized by the parameter vectora = |a, b, c,d, e,
£l

Find the parameter vector, a,, associated to the ellipse which fits p; . .. py best in the least
squares sense, as the solution of

N
min } | [D(p;, a)]’ (5.1)
i=1 _

where D(p;, a) is a suitable distance.

&  Notice that the equation we wrote for f(p, a) is really a generic conic. We shall have more
to say about this point later.

What is a suitable distance? There are two main answers for ellipse fitting, the
Euclidean distance and the algebraic distance.

5.3.1 Euclidean Distance Fit

The first idea is to try and minimize the Euclidean distance between the ellipse and the
measured points. In this case, problem (5.1) becomes

N
. 12
min _2_1 lp — pil (5.2)
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under the constraint that p belongs to the ellipse:

f(p,a)=0.

Geometrically, the Euclidean distance seems the most appropriate. Unfortunately, it
leads only to an approximate, numerical algorithm. How does this happen? Let us try
Lagrange multipliers to solve problem (5.2). We define an objective function

N
L=)_llp—pil® -2/ (p,a),
=1

and set §& = - =0 which yield

p—pi =AVf(p,a). (5.3)

Since we do not know p, we try to express it as a function of computable quantities. To
do this, we introduce two approximations:

1. We consider a first-order approximation of the curve

0=f(p,a)~ f(pi,a) +[p—pi]' Vfpia). (54)

2. We assume that the p; are close enough to the curve, so that V f(p) = V f (p:).
Approximation 2 allows us to rewrite (5.3) as

P—Pi= )"?f(ph ﬂ)&
which, plugged into (5.4), gives

- _f(l]h ﬂ)
IV £ (pi, a)lI7
Substituting in (5.3), we finally find
| | f(pi, ) |
PPl = v i

This is the equation we were after: It allows us to replace, in problem (5.2), the unknown
quantity ||p — p;: || with a function we can compute. The resulting algorithm is as follows:

Algorithm EUCL_ELLIPSE_FIT

The input is a set of N image points, py, . . . , py. We assume the notation introduced in the problem
statement box for ellipse fitting.

1. Set a to an initial value ay.
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2. Using ag as initial point, run a numerical minimization to find the solution of

N 2
: f(pi, a)
e ; V7 (@i )2

The output is the solution vector a,,, defining the best-fit ellipse.

i A reasonable initial value is the solution of the closed-form algorithm discussed next
(section 5.3.2).

How satisfactory is EUCL_ELLIPSE_FIT? Only partially. We started with the
true (Euclidean) distance, the best possible, but were forced to introduce approxima-
tions, and arrived at a nonlinear minimization that can be solved only numerically. We
are not even guaranteed that the best-fit solution is an ellipse: It could be any conic, as
we imposed no constraints on a. Moreover, we have all the usual problems of numerical
optimization, including how to find a good initial estimate for a and how to avoid getting
stuck in local minima.

=  The good news, however, is that EUCL_ELLIPSE_FIT can be used for general conic fitting.
Of course, there is a risk that the result is not the conic we expect (see Further Readings).

A logical question at this point is: If using the frue distance implies anyway
approximations and a numerical solution, can we perhaps find an approximate distance
leading to a closed-form solution without further approximations? The answer is yes,
and the next section explains how to do it.

5.3.2 Algebraic Distance Fit

=T ==

Definition: Algebraic Distance

The algebraic distance of a point p from a curve f(p, a) =0 is simply | f (p, 8)|.

The algebraic distance is different from the true geometric distance between a
curve and a point; in this sense, we start off with an approximation. However, this is the
only approximation we introduce, since the algebraic distance turns problem (5.1) into
a linear problem that we can solve in closed form and with no further approximations.

Problem (5.1) becomes

N
: T2
m;n .E_l |x; a | (5.5)

To avoid the trivial solution a = 0, we must enforce a constraint on a. Of the several
constraints possible (see Further Readings), we choose one which forces the solution
to be an ellipse:
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-0 0 =2 0 0 07
O 1 0 0 00
b> —dac=a' _02 g g g g g a=a Ca=—l. (5.6)
0 0 0 0 0O
L0 0 0 O 0 0O_

=  Notice that this can be regarded as a “normalized” version of the elliptical constraint
b?> —4dac < 0, as a is only defined up to a scale factor.

We can find a solution to this problem with no approximations. First, we rewrite
problem (5.5) as

min la’ X" Xa| = min la’ Sall, (5.7)
where
= 5 -
IE X1)1 }5 x1 y1 1
e Xy X2Y2 ..y'zl X2 )2 1 (58)

x% xnYN Yy xn YN 1

In the terminology of constrained least squares, X is called the design matrix, S = X ' X
the scatter matrix, and C the constraint matrix. Again using Lagrange multipliers, we
obtain that problem (5.7) is solved by

Sa = ACa. (5.9)

This is a so-called generalized eigenvalue problem, which can be solved in closed form. It
can be proven that the solution, a,, 1s the eigenvector corresponding to the only negative
eigenvalue. Most numerical packages will find the solution of problem (5.9) for you,
taking care of the fact that C 1s rank-deficient. The resulting algorithm 1s very simple.

Algorithm ALG_ELLIPSE_FIT

The inputis a set of N image points, py, . . ., py. We assume the notation introduced in the problem
statement box for ellipse fitting.

1. Build the design matrix, X, as per (5.8).
2. Build the scatter matrix, $ = X ' X.

3. Build the constraint matrix, C, as per (5.6).

4. Use a numerical package to compute the eigenvalues of the generalized eigenvalue prob-
lem, and call A, the only negative eigenvalue.

The output 1s the best-fit parameter vector, a,, given by the eigenvector associated to A,.

Figure 5.3 shows the result of ALG_ELLIPSE_FIT run on an elliptical arc cor-
rupted by increasing quantities of Gaussian noise.
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Figure 5.3 Example of best-fit ellipses found by ALG_ELLIPSE_FIT for the same arc of
ellipse, corrupted by increasingly strong Gaussian noise. From left to right, the noise varies from
3% to 20% of the data spread (figure courtesy of Maurizio Pilu, University of Edinburgh).

ALG_ELLIPSE_FIT tends to be biased towards low-eccentricity solutions, indeed
a characteristic of all methods based on the algebraic distance. Informally, this means
that the algorithm prefers fat ellipses to thin ellipses, as shown in Figure 5.4. The reason
is best understood through the geometric interpretation of the algebraic distance.

Geometric Interpretation of the Algebraic Distance (Ellipses)

Consider a point p; not lying on the ellipse f(p,a)=0. The algebraic distance, f(p;, a), 1s
proportional to

. )~
0=1— (r+2d) |
r

where r is the distance of the ellipse from its center along a line which goes through p;, and d 1s
the distance of p; from the ellipse along the same line (Figure 5.5).
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Figure 5.4 Illustration of the low-eccentricity bias introduced by the algebraic distance.
ALG_ELLIPSE_FIT was run on 20 samples covering half an ellipse, spaced uniformly along
x, and corrupted by different realizations of rather strong, Gaussian noise with constant
standard deviation (o = 0.08, about 10% of the smaller semiaxis). The best-fit ellipse (solid) is
systematically biased to be “fatter” than the true one (dashed).
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®p,

Figure 5.5 Illustration of the distances d and r
in the geometric interpretation of the algebraic
distance, Q. At a parity of d, Q is larger at P; than
at Py.

=  Notice that this interpretation is valid for any conic. For hyperbolae, the center 1s the
intersection of the asymptotes; for parabolae, the center is at infinity.

For any fixed d, Q is maximum at the intersection of the ellipse with its smaller
axis (e.g., P, in Figure 5.5) and minimum at the intersection of the ellipse with its larger
axis (e.g., Py in Figure 5.5). Therefore, the algebraic distance is maximum (high weight)
for observed points around the flat parts of the ellipse, and minimum (low weight) for
observed points around the pointed parts. As a consequence, a fitting algorithm based
on Q tends to believe that most data points are concentrated in the flatter part of the
ellipse, which results in “fatter” best-fit ellipses.

5.3.3 Robust Fitting

One question which might have occurred to you is: Where do the data points for ellipse
fitting come from? In real applications, and without a priori information on the scene,
finding the points most likely to belong to a specific ellipse is a difficult problem. In some
cases, it is reasonable to expect that the data points can be selected by hand. Failing that,
we rely on edge chaining as described in HYSTERESIS_THRESH. In any case, it is very
likely that the data points contain outliers.

Outliers are data points which violate the statistical assumptions of the estima-
tor. In our case, an outlier is an edge point erroneously assumed to belong to an ellipse
arc. Both EUCL_ELLIPSE_FIT and ALG_ELLIPSE_FIT, as least-squares estimators,
assume that all data points can be regarded as true points corrupted by additive, Gaus-
sian noise; hence, even a small number of outliers can degrade their results badly. Robust
estimators are a class of methods designed to tolerate outliers.! A robust distance that

I Section A.7 in the Appendix gives a succinct introduction to robust estimators.
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often works well is the absolute value, which is adopted by the following algorithm for
robust ellipse fitting.

Algorithm ROB_ELLIPSE_FIT

The input is a set of N image points, p1, . . ., py. We assume the notation introduced in the problem
statement box for ellipse fitting.

1. run ALG_ELLIPSE_FIT, and call its solution ay.

2. Using ag as initial value, run a numerical minimization to find a solution of

N
minz | K;Tﬂ]
a

1=]

The output is the solution, a,,, which identifies the best-fit ellipse.

Figure 5.6 illustrates the problems caused by outliers to ALG_ELLIPSE_FIT,
and allows you to compare the result of ALG_ELLIPSE_FIT with those of ROB_
ELLIPSE FIT, started from the solution of ALG_ELLIPSE_FIT, in conditions of
severe noise (that is, lots of outliers and Gaussian noise). Both algorithms were run
on 40 points from half an ellipse, spaced uniformly along x, and corrupted by different
realizations of Gaussian noise with constant standard deviation (o = 0.05, about 7% of
the smaller semiaxis, a). About 20% of the points were turned into outliers by adding

a uniform deviate in [—a, a] to their coordinates. Notice the serious errors caused to
ALG_ELLIPSE_FIT by the outliers, which are well tolerated by ROB_ELLIPSE_FIT.

5.3.4 Concluding Remarks on Ellipse Fitting

With moderately noisy data, ALG_ELLIPSE_FIT should be your first choice. With
seriously noisy data, the eccentricity of the best-fit ellipse can be severely underesti-
mated (the more so, the smaller the arc of ellipse covered by the data). If this is a
problem for your application, you can try EUCL_ELLIPSE_FIT, starting it from the so-
lution of ALG_ELLIPSE_FIT. With data containing many outliers, the results of both
EUCL_ELLIPSE FIT and ALG_ELLIPSE_FIT will be skewed; in this case, ROB_
ELLIPSE_FIT, started from the solution of ALG_ELLIPSE_FIT should do the trick
(but you are advised to take a look at the references in section A.7 in the Appendix
if robustness is a serious issue for your application). If speed matters, your best bet is
ALG_ELLIPSE_FIT alone, assuming you use a reasonably efficient package to solve
the eigenvalue problem, and the assumptions of the algorithms are plausibly satisfied.

What “moderately noisy” and “seriously noisy” mean quantitatively depends on
your data (number and density of data points along the ellipse, statistical distribution,
and standard deviation of noise). In our experience, ALG_ELLIPSE_FIT gives good
fits with more than 10 points from half an ellipse, spaced uniformly along x, and
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Figure 5.6 Comparison of ALG_ELLIPSE_FIT and ROB_ELLIPSE_FIT when fitting to data
severely corrupted by outliers. The circles show the data points, the asterisks suggest the robust
fit, the solid line show the algebraic fit, and the dots the true (uncorrupted) ellipse.

corrupted by Gaussian noise of standard deviation up to about 5% of the smaller
semiaxis. Section 5.7 suggests Further Readings on the evaluation and comparison of
ellipse-fitting algorithms.

5.4 Deformable Contours

Having discussed how to fit simple curves, we now move on to the general problem of
fitting a curve of arbitrary shape to a set of image edge points. We shall deal with closed
contours only.

A widely used computer vision model to represent and fit general, closed curves
is the snake, or active contour, or again deformable contour. You can think of a snake
as an elastic band of arbitrary shape, sensitive to the intensity gradient. The snake 1s
located initially near the image contour of interest, and is attracted towards the target
contour by forces depending on the intensity gradient.
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