
Appearance Based Recognition

Dr. Gerhard Roth

Winter 2011

Recognition (Section 10.4)

• Given an image I, containing a single object and

a database of images find the image in the

database that is most similar to image I

• One possible way to recognize objects
• Database has views of same object under different conditions

• Input image is “close” to one of these database views

• Commonly used in face recognition systems
• Database has number of faces (standard position)

• Input image is a single face (standard position)

= ?

Assumptions in appearance recognition

1. Each image contains only a single object.

2. The objects are imaged by a fixed camera

under weak perspective.

3. The images are normalized in size: that is

the image frame is the minimum rectangle

enclosing the largest appearance of this

object.

4. The energy of the pixel values is normalized

to one:

5. The object is completely visible and

unconcluded in all images.

 



N

i

N

i

jiI
1

2

1

1,

Comparing Images

• First transform 2D image into a 1D vector
• A single N x N image X, becomes an N2 dimensional vector

• x = [X11,X12,…,X1N,X21,…,XNN]T

• Now given two images X1 and X2, and the two
vectors x1 and x2 how do we compare them?

• One way, is to find distance between them
according to some norm (usually L2)
• Dist(x1, x2) = || x1 – x2 || (just sum of squares of differences)

• If x1 and x2 are normalized (||x1|| =1,||x2||=1)
• Then x1 and x2 can be compared by correlation

• This is the dot product Dot(x1, x2) =

• If Dist(x1, x2) = 0 or Dot(x1, x2)=1 the x1 and x2

are identical

21 xx 

Euclidian Distance and Correlation

• In image processing language
• Dist(x1, x2) is called Euclidian distance (L2 norm)

• Dot(x1, x2) is called image correlation

• Given a single image y and a database of m
images labeled x1, x2, …, xm

• Want to find closest image in database to y?
• Perform correlation and find largest result

• Compute Euclidian distance and find smallest result

– They both get the same answer (can be proven)

• This will be the best match (see example program)

• How long does this take?
• Time is proportional to m * N2, where N2 is number of pixels

in the original image

• Takes a long time since N2 is large and so is m

Problems with this approach

• May need a very large database
• Require a different image for different lighting conditions

• Not much can be done about this issue in a simple way

– Just hope that enough memory is available

• Often will require a lot of time
• As in the previous slide to find the best match we need to do

convolution against every image in the database

• Can not do much about size of database
• This problem is intrinsic to the basic approach

• But we can decrease the execution time
• By using the eigenspace or Principal Components Method

• Sometimes called the PCA approach

Covariance of two variables

• Consider two variables x and y

• Covariance measures degree of linear
relationship between x and y

• Now larger (smaller) cov(x,y) indicates a
higher (lower) degree of linear relationship
• Degree of linear relationship also called redundancy

• cov(x,y) can be plus or minus however
always true that cov(x,y) = cov(y,x)

• This is a relationship between two variables

  

)1(
),cov(1











n

yyxx

yx

ni

i

ii

Covariance - Low and high redundancy

• Cov = 0 variables independent

• Cov > 0 increase together, Cov < 0 decrease together

• Cov high value – variables strongly dependent which means

they have high redundancy

Covariance of a set of variables

• If we have a set of variables, say x,y, z there

are a number of possible co-variances

• The associated co-variance matrix has three

rows and three columns

• This matrix is real and symmetric
• CT = C

• In our case each image pixel is a variable!



















),cov(),cov(),cov(

),cov(),cov(),cov(

),cov(),cov(),cov(

zzyzxz

zyyyzy

zxyxxx

C

Covariance matrix of the N2 image

• First transform 2D image into a 1D vector
• N x N image xi becomes an N2 dimensional vector

• Make each image a column in an N2 by M matrix

• xi = [X11,X12,…,X1N,X21,…,XNN]T

• An image is a point in N2 dimensional space
• Each co-ordinate usually has a range of 0 to 255 (8 bits)

• Matrix X has m columns, one for each image
• Matrix X has dimensions of N2 by M, where there are M images

• Compute the co-variance matrix
• Q is of dimension N2 by N2

• Compute eigenvectors and eigenvalues
• Covariance matrix is real and symmetric

• Eigenvectors are orthonormal

• There are N2 of these eigenvectors

• What can we do with these eigenvectors?

QQT 

TX X Q 

Eigenvectors are basis of the N2 space

• An image is a point in N2 dimensional space
• Each co-ordinate usually has a range of 0 to 255 (8 bits)

• Eigenvectors of co-variance matrix are basis
• Let be the vectors for each of these M images

• We can write each image xj in terms of these eigenvectors

• Eigenvectors of this N2 space are

• Then where

are the vector of components of xj in this
new basis called the eigenspace

2N1 x,,x 

i

Ni

1i

jij eg xx

2






  T21j 2N
g,,g,gg 

2,,1 N
ee 

Eigenspace – why use it?

• We are computing a new basis for the N2

dimensional space of these images
• This basis will have some advantages

• We will not need to use all N2 co-ordinates in

this new basis to represent an images
• Instead we will use k basis vectors where k << N2

• Why does this work and how is it done?
• Works because of characteristics of eigenvectores

• And also because of image redundancy

• Also called Principal Components

Decomposition
• We will use a set of pdf notes on PCA decomposition

•Principal components and values

• Eigenvectors of covariance matrix represent

an orthogonal basis of this space
• Also called the principal components

• Represent the directions of most variance
• Eigenvalues of the eigenvectors is the amount of variance

PCA on the Co-Variance matrix

• Algorithm operates on co-variance matrix
1. Select a normalized direction in the N2 space in which the

variance is maximized. Save this vector as p1

2. Find another direction in which the variance is maximized,

but because of orthogonality we must restrict the search to

directions perpendicular to all previous directions. Save this

vector as pi.

3. Repeat the process until we have all all N2 vectors.

• Resulting set of vectors are called the

principal components and are equal to the

eigenvectors of the co-variance matrix

• Eigenvalues of these eigenvectors is the

amount of variance for this eigenvector

Eigenspace

• Each image is a point in eigenspace
• To compare two images means computing their distance in

this new eigenspace basis (requires some dot products)

• This gets same result as correlation and convolution

• Eigenspace is just a change of basis of the

original N x N dimensional image space
• How does this help us in any way?

• There is often redundancy in the images
• Some pixels have a limited range of values

• Eigenspace or PCA finds this redundancy
• The most redundant dimensions have largest eignvalues

and vice-versa so we can ignore other dimensions

Principle components and values

• The eignenvalues of the co-variance matrix
are the principal values and the eigenvectors
are the principal components

• A large eigenvalue means that that this
direction is more “principal” than others

• You can order the principal components
(eigenvectors) by their principal values
(eigenvalues)

• You can ignore eigenvectors that have a
very small eigenvalue
• They do not contribute anything important

• This is an approximation but it does not cause a significant
error when ignoring small eigenvalues

Efficient eigenvector computation

• An image is a point in N2 dimensional space
• Each co-ordinate usually has a range of 0 to 255 (8 bits)

• Matrix X has M columns, one for each image and N2 rows

• Matrix X has dimensions of N2 by M,

• If N2 is 100 x 100 = 10,000 can not easily take

eigenvectors of such a large matrix
• One idea is to use smaller images

• Another idea is to use “trick” for computing eigenvectors

• Eigenvectors of covariance matrix X XT can be

computed from the eigenvectors of matrix XT X
• But XT X has dimension of M by M, not N2 by N2

• M images means there are only M-1 independent

eigenvectors for the N2 co-variance matrix
• If M << N2 this is a big speedup (number images << number pixels)

Efficient eigenvector computation

Define
dimension N2 by N2 where N2 is number pixels

dimension M by M where M is #images

Let be an eigenvector of :

Then is eigenvector of :

Proof:

XXL

XXC

T

T





)(

)(

)(

)()(

Xv

vX

LvX

XvXX

XvXXXvC

T

T















v

)()(XvXvC Xv

vLv L

C

Eigenspace

• Find m non-zero eignenvalues of the matrix XT X,

• Each image

• We can ignore remaining N2 - M components

• Each image is represented by a point

in M dimensional space where M << N2

• Here M is number of images, N is the image size
• So M is usually << N x N (typically 1000 < 100 x 100)

• N2 is cost of correlation and convolution while same
comparison in eigenspace now costs only O(M)
• So eigenspace representation saves time in image comparison

M ,,1  M  21

i

1i

jij eg xx 





Mi

jx
T

jg

Eigenspace Learn

• Focus on steps 2 to 5
• This process is done once only

• If the set of images changes it must be redone

• We can use fewer than M eigenvectors (say K)

• Choose K eigenvectors such that

• So that the error in the approximation is not too large

• The value of K depends on the redundancy of the
images, more redundant the smaller K, the less
redundant the closer K is to M

• Sum of all M eigenvalues represents the variability of the entire data set

• If K of them accounts for 95% of the variability then using only K
eigenvectors as a basis is a very good approximation











Mi

i

i

Ki

i

i

11

95.0 

Eigenspace Identify

Eigenspace Identify

• Take the input image and perform a dot product with
the compressed eigenbasis
• Get a new vector of K dimensions relative to this basis

• Compare it to the stored eigenvectors

• Closest vector in eigenspace is the best match
• Best in the same sense as correlation or convolution

• But this depends on the value of K
• As you decrease you get a more approximate results

• At some point if K is too small you will get an inaccurate answer

• Only experimental verification can be used to tell us
what value of K is good enough

• Choose k so that all eigenvalues sum to 95% is agood guide

• Note that that the more redundancy (the more similar
all the images) the smaller the value of K

• This works out well for faces which have a lot of redundancy

• Also closest point speed is exponential time in K, so any reduction helps

Eigenspace reconstruction

q=1 q=2 q=4 q=8

q=16 q=32 q=64 q=100
Original

Image

• q is number of eigenvectors used (our k)

• Image for each eigenvector is an eigenimage

Eigenspace limitations

• Must be able to segment the object
• Segmenting a face is easier than other objects

• Will have problems if lighting changes
between learned images and images to be
recognized (lighting can be dealt with)

• Will be problems if learned images taken at
different scale, orientation or viewpoint than
the image to be recognized (very hard to fix)

• Makes a difference only for redundant
images, where some parts of the images are
very similar to each other
• If images are all very different you gain nothing by this

change of basis involved in eigenspace

• But for many search applications there is redundancy!

Eigenspace limitations

• For large number of images in the database M you
need to compute eigenvectors of a very large matrix

• So if then no simple speedup

• This only speeds up closest image computation
• Still need other indexing algorithms to solve the closest point

problem efficiently (such as k-d trees, etc.)

• Eigenspace/PCA an important image processing tool
• Idea widely used in face recognition and object recognition

• Also can be used in appearance based recognition

• Can also be used for compression
• Look at eigenspace reconstruction slide

• Can represent each face by a small number of eigenvectors

• Not identical to original image but often very close

• PCA is a dimensionality reduction method

2Nk 

