
Comp. 4900D: Assignment #2

Due: Tuesday March 1, 2010

1) The goal of the first questions is to implement some code that performs

calibration using the method described in the book; by first computing a

projection matrix, and then decomposing that matrix to find the extrinsic and

intrinsic parameters. On the web site I have given you a program, written in C that

uses OpenCV, called assign2_shell.c. This program takes ten 3d points, and

projects them using the given camera matrix, rotation matrix and translation

vector. Your goal is to write the two routines that are missing, which are

computeprojectionmatrix and decomposeprojectionmatrix. The first

routine computes the projection matrix using the method described in Section

6.3.1 of the book, and the second uses the method in Section 6.3.2 to decompose

the projection matrix into a camera matrix, rotation matrix and translation vector.

It should be the case that the computed camera matrix, rotation matrix and

translation vector are the same as the original versions that were used to create the

projected points. The program assign2_shell.c is on the web site, and I will also e-

mail it to you. You hand in your program source and executable and the resulting

output file assign2-out created by running the program. 8 marks

2) Two kinds of line detection are implemented in OpenCV, the Hough Transform

and the probabilistic Hough transform. Assume that there are n feature points in

an image and that it takes O(k) time to increment the accumulator array for each

feature point when computing the Hough transform. What is the running time of

the Hough transform in big O notation, that is O(…). Justify your answer.

1/2 mark
3) The probabilistic Hough transform uses random sampling instead of an

accumulator array. In this approach the number of random samples r, is not

specified in the OpenCV call, but is an important hidden parameter. If there are n

feature points in an image then what is the running time of the probabilistic

Hough transform in big O notation. 1/2 mark

4) If we wished to find an ellipse using the Hough Transform, which of the two

approaches is most practical (Standard HT, or probabilistic HT). Justify your

answer. 1 mark

Below is the output from my program, your output should look similar. Your projection

matrix should be the same up to a scale factor, and the computed R, T, and K should be

the same as the original R, T, and K as is the case below.

Rotation matrix

0.902701 0.051530 0.427171

0.182987 0.852568 -0.489535

-0.389418 0.520070 0.760184

Translation vector

10.000000 15.000000 20.000000

Camera Calibration

-1000.000000 0.000000 0.000000

0.000000 -2000.000000 0.000000

0.000000 0.000000 1.000000

Object point 0 x 0.125100 y 56.358500 z 19.330400

Object point 1 x 80.874100 y 58.500900 z 47.987300

Object point 2 x 35.029100 y 89.596200 z 82.284000

Object point 3 x 74.660500 y 17.410800 z 85.894300

Object point 4 x 71.050100 y 51.353500 z 30.399500

Object point 5 x 1.498500 y 9.140300 z 36.445200

Object point 6 x 14.731300 y 16.589900 z 98.852500

Object point 7 x 44.569200 y 11.908300 z 0.466900

Object point 8 x 0.891100 y 37.788000 z 53.166300

Object point 9 x 57.118400 y 60.176400 z 60.716600

Image point 0 x -332.640564 y -1676.437988

Image point 1 x -1922.371338 y -2027.917847

Image point 2 x -704.610962 y -995.889526

Image point 3 x -1761.512817 y -44.656986

Image point 4 x -2129.829590 y -2700.072021

Image point 5 x -528.037964 y -201.473557

Image point 6 x -677.086243 y 337.669006

Image point 7 x -5553.260254 y -7197.459961

Image point 8 x -444.832092 y -535.692322

Image point 9 x -1204.620728 y -1250.743286

Computed Projection matrix

0.028475 0.001625 0.013475

0.011544 0.053787 -0.030884

0.000012 -0.000016 -0.000024

Computed Rotation matrix

0.902701 0.051530 0.427171

0.182987 0.852568 -0.489535

-0.389418 0.520070 0.760184

Computed Translation vector

9.999999 15.000001 20.000000

Computed Camera Calibration

-1000.000061 0.000000 0.000018

0.000000 -2000.000000 0.000020

0.000000 0.000000 1.000000

