
Hough Transform

COMP 4900D

Gerhard Roth

Winter 2011



Lines



Lines

Rafael, The School of Athens (1518)



Line Detection

The problem:

•How many lines?

•Find the lines.



Equations for Lines

bmxy 



What happens when the line is vertical? The slope a goes

to infinity.

The slope-intercept equation of line

A better representation – the polar representation

The two parameters         defining line are bounded 

 sincos yx 

,



Hough Transform: line-parameter mapping



 sincos yx 

A line in the plane maps to a point in the - space.



 (,)

All lines passing through a point map to a sinusoidal curve in the

- (parameter) space.



Mapping of points on a line



Points on the same line define curves in the parameter space

that pass through a single point.

Main idea: transform edge points in x-y plane to curves in the

parameter space. Then find the points in the parameter space

that has many curves passing through it.



Hough Idea

• Each straight line in this image can be 

described by an equation

• Each white point if considered in 

isolation could lie on an infinite 

number of straight lines

• In the Hough transform each point 

votes for every line it could be on

• The lines with the most votes win



Quantize Parameter Space

m



m

Detecting Lines by finding maxima / clustering in parameter space.



Parameter space – 3D view



A Voting Scheme



Hough Processing

Hough TransformImage Edge detection

• Find the edges in the image (Canny operator common)

• Use each edge point to vote in the accumulator space

• Accumulator space also called the Hough Space

• Find the peak(s) in the accumulator space



Examples

input image Hough space lines detected



Examples

Image credit: NASA Dryden Research Aircraft Photo Archive

input image Hough space lines detected



Examples

Original Edge Detection Found Lines

Parameter Space



Algorithm

1. Quantize the parameter space

int P[0, max][0, max];  // accumulators

2.  For each edge point (x, y) {

For ( = 0;  <= max;  = +) {

// round off to integer

(P[][])++;

}

} 

3.  Find the peaks in P[][].

 sincos yx 



Cell Size

Choose the parameter cell size such that the algorithm is robust

to noise.



Fewer votes land in a single bin when noise increases.



Adding more clutter increases number of bins with false peaks.



Finding Circles by Hough Transform

Equation of Circle: 

222 )()( rbyax ii 

If radius is known:

),( baAAccumulator Array

(2D Hough Space)



Finding Circles by Hough Transform

Equation of Circle: 

222 )()( rbyax ii 

If radius is not known: 3D Hough Space!

Use Accumulator array ),,( rbaA



Using Gradient Information

• Gradient information can save lot of computation:

Edge Location

Edge Direction

Need to increment only one point in Accumulator!!

If radius is not known, accumulator is 2d using gradients

i

),( ii yx

Assume radius is known:





sin

cos

ryb

rxa







Finding Coins

Original Edges (note noise)



Finding Coins (Continued)

Penny Quarters



Application: Lane Detection



Hough Characteristics

• Detects all the curves in an image at once

• Running time proportional to the number of 

edge points that are in the image

• Can deal with disconnected edge points
• Does not assume (require) any connectivity for edges

• Accumulator dimension (space) proportional 

to number of parameters that define the curve
• Works well for lines (only 2d accumulator array necessary)

• Not easy to extend to more complex curves 

because of the space requirements
• Can use image gradient to decrease space requirements

• Using gradients works well for circles



Probabilistic Hough Transform

• Given a set of p edge points in an image 
• Goal is to find a particular curve (line, or circle)

• Idea is that given n edge points (n is 2 for line or 3 for circle) 

we can create a unique curve through just these points

• Do while we have enough edge points
• For K times (a parameter)

• Choose n random edge points (2 for line and 3 for circle)

• Create a unique line or circle through these points

• Count the number of edge points that are within d pixels 

(another parameter) of that unique line or circle

• Save the best curve (has most points within distance d)

• Endfor

• remove the edge points found for best curve

• Enddo



Probabilistic Hough Transform

• Two parameters distance d, and #samples K
• Distance d is typically set in range 1 to 5 pixels

• #samples K depends on how many curves you expect there 

to be in the image

• Given expectation of at most n curves in the 

image you can compute a value for K
• K is an exponential function of n, the degrees of freedom 

(dof) of the curve, which is 2 for a line and 3 for a circle

• Running time O(n K p) where K is number of 

samples, and p is the number of edge points

• Space requirements are low so you could use 

this for complex curves (like ellipse, 5 dof)



Probabilistic HT relative to ordinary HT

• Ordinary HT space requirements where q is 

grid size are q2 for line and q3 for a circle
• Running time is O(q p) with p edge points

• Probabilistic HT space requirements are 

simply O(p), the number of edge points
• Running time is O(n K p), n curves p edge points, K samples

• Which is faster for lines and circles?
• Depends on how many lines and circles exist (n)

• Remember for Prob. HT value of K is an exponential function 

of the number of expected lines or circles

• With a small number of curves K is small, and Prob. HT is 

faster, large number of curves K is large and HT is faster

• For curves like ellipse Prob. HT is only choice


