Ellipse Fitting

COMP 4900D
Winter 2011
Gerhard Roth

Ellipses in Images

Perspective projection of circles form ellipses in the images.

Ellipses in Images

Equations of Ellipse

$$
\frac{x^{2}}{r_{1}^{2}}+\frac{y^{2}}{r_{2}^{2}}=1
$$

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

Let $\quad \mathbf{x}=\left[x^{2}, x y, y^{2}, x, y, 1\right]^{T}$

$$
\mathbf{a}=[a, b, c, d, e, f]^{T}
$$

Then $\quad \mathbf{x}^{T} \mathbf{a}=0$

Ellipse Fitting: Problem Statement

Given a set of N image points $\mathbf{p}_{i}=\left[x_{i}, y_{i}\right]^{T}$ find the parameter vector \mathbf{a}_{0} such that the ellipse

$f(\mathbf{p}, \mathbf{a})=\mathbf{x}^{T} \mathbf{a}=a x^{2}+b x y+c y^{2}+d x+e y+f=0$
fits \mathbf{p}_{i} best in the least square sense:

$$
\min _{\mathbf{a}} \sum_{i=1}^{N}\left[D\left(\mathbf{p}_{i}, \mathbf{a}\right)\right]^{2}
$$

Where $D\left(\mathbf{p}_{i}, \mathbf{a}\right)$ is the distance from \mathbf{p}_{i} to the ellipse.

Ellipse Fitting: Geometric or Algebraic

- Remember that $D\left(\mathbf{p}_{i}, \mathbf{a}\right)$ is the distance from point \mathbf{p}_{i} to the ellipse
- There are two ways to calculate this distance
- First uses the true geometric distance
- Is most accurate but is more difficult to calculate
- In this case the ellipse fitting algorithm is iterative
- But it gets the best possible result
- Second uses the algebraic distance
- Is less accurate but is easier to calculate
- In this the ellipse fitting algorithm has only one iteration
- But does not get best possible result (it is reasonable)

Algebraic Distance/Geometric Distance

Algebraic Distance for a line

$y=m x+b$

Geometric Distance for a line

Euclidean Distance Fit

$$
D\left(\mathbf{p}_{i}, \mathbf{a}\right)=\left\|\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}\right\|
$$

$\hat{\mathbf{p}}_{i}$ is the point on the ellipse that is nearest to \mathbf{p}_{i}

$$
f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right)=0
$$

$\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}$ is normal to the ellipse at $\hat{\mathbf{p}}_{i}$

Compute Geometric Distance Function

Computing the distance function is a constrained optimization problem:

$$
\min _{\hat{\mathbf{p}}_{i}}\left\|\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}\right\|^{2} \quad \text { subject to } \quad f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right)=0
$$

Using Lagrange multiplier, define:

$$
L(x, y, \lambda)=\left\|\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}\right\|^{2}-2 \lambda f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right)
$$

where $\quad \hat{\mathbf{p}}_{i}=[x, y]^{T}$
Then the problem becomes: $\min _{\hat{\mathbf{p}}_{i}} L(x, y, \lambda)$
Set $\quad \frac{\partial L}{\partial x}=\frac{\partial L}{\partial y}=0 \quad$ we have $\quad \hat{\mathbf{p}}_{i}-\mathbf{p}_{i}=\lambda \nabla f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right)$

Two Approximations

1. First-order approximation at \mathbf{p}_{i}

$$
f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right) \approx f\left(\mathbf{p}_{i}, \mathbf{a}\right)+\left(\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}\right)^{T} \nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)=0
$$

2. Assume \mathbf{p}_{i} is close to $\hat{\mathbf{p}}_{i}$, then

$$
\nabla f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right) \approx \nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)
$$

Approximate Distance Function

$$
\begin{aligned}
& f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right) \approx f\left(\mathbf{p}_{i}, \mathbf{a}\right)+\left(\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}\right)^{T} \nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)=0 \\
& \hat{\mathbf{p}}_{i}-\mathbf{p}_{i}=\lambda \nabla f\left(\hat{\mathbf{p}}_{i}, \mathbf{a}\right) \approx \lambda \nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)
\end{aligned}
$$

Solve for λ

$$
\lambda=-\frac{f\left(\mathbf{p}_{i}, \mathbf{a}\right)}{\|\left.\nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right|^{2}}
$$

Substitute back

$$
\begin{aligned}
& \hat{\mathbf{p}}_{i}-\mathbf{p}_{i}=-\frac{f\left(\mathbf{p}_{i}, \mathbf{a}\right) \nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)}{\left\|\nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right\|^{2}} \\
& D\left(\mathbf{p}_{i}, \mathbf{a}\right)=\left\|\hat{\mathbf{p}}_{i}-\mathbf{p}_{i}\right\|=\frac{\left|f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right|}{\left\|\nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right\|}
\end{aligned}
$$

Ellipse Fitting with Euclidean Distance

Given a set of N image points $\mathbf{p}_{i}=\left[x_{i}, y_{i}\right]^{T}$
find the parameter vector \mathbf{a}_{0} such that

$$
\min _{\mathbf{a}} \sum_{i=1}^{N} \frac{\left|f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right|^{2}}{\left.\nabla f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right|^{2}}
$$

This problem can be solved by using a numerical nonlinear optimization system.

Ellipse Fitting with Algebraic Distance

- The algebraic distance from a point \mathbf{p}_{i} to a curve defined by $f\left(\mathbf{p}_{i}, \mathbf{a}\right)=0$ is $\left|f\left(\mathbf{p}_{i}, \mathbf{a}\right)\right|$
- This is simply putting point \mathbf{p}_{i} into the function
- However, algebraic distance is not the true geometric distance, only an approximation
- We minimize the function below but to avoid the trivial solution, $\mathbf{a}=0$, we constrain a so that $b^{2}-4 a c=0$

$$
\min _{\mathbf{a}} \sum_{i=1}^{N}\left(\left(x_{i}^{T} a\right)^{2}\right.
$$

Algebraic Fitting of Ellipse

- With this constraint the fitting becomes an eigenvector problem (easy to solve)
- Works directly, in one iteration (real-time)
- But has a bias towards low eccentricity
- Algebraic ellipse is more "circle like" than true ellipse

Ellipse Fitting

- Given a set of 2d points fit the "best" ellipse
- Can use the algebraic or geometric approach
- Algebraic method is more commonly used
- Always produces an ellipse, and is fast
- Result not perfect but more than good enough
- Issue of geometric versus algebraic is a common problem in all fitting
- And is more complex for higher order curves and surfaces
- OpenCV has an implementation of algebraic fitting method for ellipses
- Demo program ellipsefit shows this computation in action

