Camera Calibration

Dr. Gerhard Roth Winter 2011

Finding camera parameters (intrinsic)

- Can use the EXIF tag for any digital image
- Has focal length fin millimeters but not the pixel size
- But you can get the pixel size from the camera manual
- There are only a finite number of different pixels sizes because number of sensing element sizes is limited
- If there is not a lot of image distortion due to optics then this approach is sufficient (only linear calibration)
- Can perform explicit camera calibration
- Put a calibration pattern in front of the camera
- Take a number of different pictures of this pattern
- Now run the calibration algorithm (different types)
- Result is intrinsic camera parameters (linear and non-linear) and the extrinsic camera parameters of all the images

Explicit camera calibration

- Use a calibration pattern with known geometry
- In Opencv use a checkerboard
- Other systems use special targets with known 3d geometry
- Write equations linking co-ordinates of the projected points, and the camera parameters
- From images of the calibration target
- Intrinsic camera parameters
- (depend only on camera characteristics)
- Extrinsic camera parameters
- (depend only on position camera)
- In OpenCV the calibration process finds fx, fy, ox, oy, along with the distortion parameters
- We study a method that does not find the distortion parameters

Calibration using known 3d geometry

- Use a calibration pattern with known 3d geometry (often a box, not planar)
- Write projection equations linking known coordinates of a set of 3-D points and their projections and solve for camera parameters
- Given a set of one or more images of the calibration pattern estimate
- Intrinsic camera parameters
- (depend only on camera characteristics)
- Extrinsic camera parameters
- (depend only on position camera)
- We do not estimate distortion parameters

Estimating camera parameters

- Projection matrix

Calibration pattern

Camera parameters

- Intrinsic parameters (K matrix)
- There are 5 intrinsic parameters
- Focal length f
- Pixel size in x and y directions, sx and sy
- Principal point ox, oy
- But they are not independent
- Focal length $\mathrm{fx}=\mathrm{f} / \mathrm{sx}$ and $\mathrm{fy}=\mathrm{f} / \mathrm{sy}$
- Principal point ox, oy
- This makes four intrinsic parameters
- Extrinsic parameters [R| T]
- Rotation matrix and translation vector of camera
- Relations camera position to a known frame
- $[\mathrm{R} \mid \mathrm{T}]$ are the intrinsic parameters
- Projection matrix
- 3 by 4 matrix $P=K[R \mid T]$ is called projection matrix

Projection Equations

Projective Space

- Add fourth coordinate
- $P_{w}=\left(X_{w}, Y_{w}, Z_{w}, 1\right)^{\top}$
- Define $(u, v, w)^{\top}$ such that

$$
-\mathrm{U} / \mathrm{W}=\mathrm{Xim}, \mathrm{~V} / \mathrm{W}=\mathrm{Y} \mathrm{im}
$$

$$
\binom{x_{i m}}{y_{i m}}=\binom{u / w}{v / w} \Leftarrow\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=\mathbf{M}_{\mathbf{i n t}} \mathbf{M}_{\mathbf{e x t}}\left(\begin{array}{l}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right)
$$

3x4 Matrix Eext

- Only extrinsic parameters
- World to camera
3×3 Matrix Eint

$$
\mathbf{M}_{\text {ext }}=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & T_{x} \\
r_{21} & r_{22} & r_{23} & T_{y} \\
r_{31} & r_{32} & r_{33} & T_{z}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R}_{1}^{T} & T_{x} \\
\mathbf{R}_{2}^{T} & T_{y} \\
\mathbf{R}_{3}^{T} & T_{z}
\end{array}\right]
$$

$$
\mathbf{M}_{\mathrm{int}}=\left[\begin{array}{ccc}
-f_{x} & 0 & o_{x} \\
0 & -f_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Simple Matrix Product! Projective Matrix $\mathrm{M}=\mathrm{M}_{\text {int }} \mathrm{Mext}_{\text {ext }}$

- $(X w, Y w, Z w)^{\top}->(x i m, y i m)^{\top}$
- Linear Transform from projective space to projective plane
- M defined up to a scale factor - 11 independent entries

Two different calibration methods

- Both use a set of 3d points and 2d projections
- Direct approach (called Tsai method)
- Write projection equations in terms of all the parameters
- That is all the unknown intrinsic and extrinsic parameters
- Solve for these parameters using non-linear equations
- Projection matrix approach
- Compute the projection matrix (the 3×4 matrix M)

$$
\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]
$$

- Compute camera parameters as closed-form functions of M

-Two different calibration methods

- Both approaches work with same data
- Projection matrix approach is simpler to explain than the direct approach
- Direct approach requires an extra step
- There are also other calibration methods
- But all calibration methods
- Use patterns with know geometry or shape
- Take multiple views of theses patterns
- Match the information across the different views
- Perform some mathematics to calculate the intrinsic and extrinsic camera parameters
- We look at simplified case of only one view!

Estimating the projection matrix

World - Frame Transform

- Drop "im" and "w"
- N pairs (xi,yi) <-> (Xi,Yi,Zi)

Linear equations of m

$$
\begin{aligned}
& x_{i}=\frac{u_{i}}{w_{i}}=\frac{m_{11} X_{i}+m_{12} Y_{i}+m_{13} Z_{i}+m_{14}}{m_{31} X_{i}+m_{32} Y_{i}+m_{33} Z_{i}+m_{34}} \\
& y_{i}=\frac{u_{i}}{w_{i}}=\frac{m_{21} X_{i}+m_{22} Y_{i}+m_{23} Z_{i}+m_{24}}{m_{31} X_{i}+m_{32} Y_{i}+m_{33} Z_{i}+m_{34}}
\end{aligned}
$$

- 2 N equations, 11 independent variables
- $N>=6, S V D=>m$ up to a unknown scale
$\mathbf{A m}=\mathbf{0}$

$$
\mathbf{A}=\left[\begin{array}{cccccccccccc}
X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -x_{1} X_{1} & -x_{1} Y_{1} & -x_{1} Z_{1} & -x_{1} \\
0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -y_{1} X_{1} & -y_{1} Y_{1} & -y_{1} Y_{1} & -y_{1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & & & & & &
\end{array}\right]
$$

$\mathbf{m}=\left[\begin{array}{llllllllllll}m_{11} & m_{12} & m_{13} & m_{14} & m_{21} & m_{22} & m_{23} & m_{24} & m_{31} & m_{32} & m_{33} & m_{34}\end{array}\right]^{T}$

Homogeneous System

- M linear equations of form $A \mathbf{x}=0$
- If we have a given solution x 1 , s.t. $\mathrm{Ax} 1=0$ then $c^{*} x 1$ is also a solution $A\left(c^{*} x 1\right)=0$
- Need to add a constraint on \mathbf{x},
- Basically make \mathbf{x} a unit vector $X^{T} X=1$
- Can prove that the solution is the eigenvector corresponding to the single zero eigenvalue of that matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$
- This can be computed using eigenvector of SVD routine
- Then finding the zero eigenvalue (actually smallest)
- Returning the associated eigenvector

Decompose projection matrix

- 3x4 Projection Matrix M computed previously
- Both intrinsic (4) and extrinsic (6) - 10 parameters

$$
\mathbf{M}=\left[\begin{array}{cccc}
-f_{x} r_{11}+o_{x} r_{31} & -f_{x} r_{12}+o_{x} r_{32} & -f_{x} r_{13}+o_{x} r_{33} & -f_{x} T_{x}+o_{x} T_{z} \\
-f_{y} r_{21}+o_{y} r_{31} & -f_{y} r_{22}+o_{y} r_{32} & -f_{y} r_{23}++o_{y} r_{33} & -f_{y} T_{y}+o_{y} T_{z} \\
r_{31} & r_{32} & r_{33} & T_{z}
\end{array}\right]
$$

From M^{\wedge} to parameters (p134-135)

- Find scale $|\gamma|$ by using unit vector $\mathrm{R}_{3}{ }^{\top}$
- Determine T_{z} and sign of γ from m_{34} (i.e. q_{43})
- Obtain $\mathrm{R}_{3}{ }^{\top}$
- Find (Ox, Oy) by dot products of Rows q1. q3, q2.q3, using the orthogonal constraints of R
- Determine fx and fy from $q 1$ and $q 2$ All the rests: $R_{1}{ }^{\top}, R_{2}{ }^{\top}$, Tx, Ty

Calibration Summary

- Comparison of methods
- Direct approach requires extra step to find Ox, Oy
- Projection approach finds Ox, and Oy at same time
- Is simpler mathematically than the direct approach
- Both methods require a refit to find a "valid" R matrix
- There are other calibration methods
- Zhang approach uses flat plane (implemented in OpenCV)
- Plane must be flat, but do not need 3D co-ordinates
- But all calibration methods
- Have some known targets with known 3D geometry or shape
- Take a number of images of these targets
- From these measurements calculate the camera partakers
- Are essential for further processing like reconstruction

Multiple View/Camera Calibration

- Previous math describes the calibration process for a single image
- We usually take multiple images of the same calibration target (from a variety of different views)
- Simultaneously find all extrinsic parameters and all the intrinsic parameters of the single camera
- Also calibrate radial distortion using fact that there are straight lines in the pattern
- OpenCV code can do this using a checkerboard pattern
- Zhang's algorithm is used most in practice

Input set of 2d Calibration Patterns

Final Camera positions and the pattern

