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Linear Equations

A system of linear equations, e.g.
2X, +4X, =2
4x, +11x, =1

can be written in matrix form:

2 4| x
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X5

or in general:

Ax =D




Vectors

eg. X=|3

The length or the norm of a vector is

e.g.

X

X

2 2 2
= XX+ X
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Vector Arithmetic

Vector addition

_u1_
U+V= -+
_uz_
Vector subtraction
U
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Multiplication by scalar
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Dot Product (inner product)

2 4
a=|3 b=|-3
_5_ _2_
e
a-b:aTb:[Z 3 5]\—3 =2-4+3-(-3)+5-2=9
2

a-b=a'b=ab +ab,+---+ab



Linear Independence

« A set of vectors is linear dependant if one of
the vectors can be expressed as a linear
combination of the other vectors.

Vi =00V +- -+ 0y Vg O gV T T ALY

* A set of vectors is linearly independent if
none of the vectors can be expressed as a
linear combination of the other vectors.



Vectors and Points

Two points in a Cartesian coordinate system define a vector

V.
'V/Y Q(x2.y2) X, — X, |
P(X1,y1) ‘ N
>

A point can also be represented as a vector, defined by the point
and the origin (0,0).
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Note: point and vector are different; vectors do not have positions



Matrix

A matrix Is an mxn array of numbers.
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Matrix Arithmetic

Matrix addition
A + B = \_a'ij +D; men
Matrix multiplication
A B nxp - ~mxp Cij = aikbkj
Matrix transpose
Al = [aji]
(A+B) =A"+B" (AB) =B"A’



Multiplication not commutative

Matrix multiplication is not commutative

Example:
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AB = BA
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Symmetric Matrix

We say matrix A Is symmetric if
A=A

Example:

A symmetric matrix has to be a square matrix



Inverse of matrix

If A is a square matrix, the inverse of A, written A-! satisfies:

AI=1 A*A=1

Where |, the identity matrix, is a diagonal matrix with all 1°’s
on the diagonal.
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Trace of Matrix

The trace of a matrix:

TF(A) — Zn:aii



Orthogonal Matrix

A matrix A is orthogonal if

A'A=

Example:
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Matrix Transformation

A matrix-vector multiplication transforms one vector to another

Anxn nxl
Example:
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Coordinate Rotation

Iy sing

Iy

ryCcosg
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I'x= TIxCOSQ + IySing

I'y'= —I'x SINQ + Iy COS(
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Eigenvalue and Eigenvector

We say that X Is an eigenvector of a square matrix A if

AX = AX
A 1s called eigenvalue and X Is called eigenvector.

The transformation defined by A changes only the
magnitude of the vector X

Example:

P s F R P e Y

1 2 _
5 and 2 are eigenvalues, and H and {_J are eigenvectors.



Properties of Eigen Vectors

« If A, N,,..., A, @re distinct eigenvalues of a
matrix, then the corresponding eigenvectors
e.e,,....6, are linearly independent.

« A real, symmetric matrix has real eigenvalues
with eigenvectors that can be chosen to be

orthonormal.



Eigenvectors of real symmetric matrix

* Let A be an n by n real symmetric matrix such
that all its eigenvales are distinct. Then, there
exists an orthogonal matrix P such that

A=PTDP
where D is a diagonal matrix with diagonal
entries being the eigenvalues of A and the
column vectors of P are the eigenvectors of A

* The process of finding the matrix P and D
given the matrix A is called diagonalization

* Any matrix A which is a real n by n symmetric
matrix can be diagonalized



SVD: Singular Value Decomposition

An mxn matrix A can be decomposed into:
A=UDV'

U Is mxm, V is nxn, both of them have orthogonal columns:

U'U=I V'V =1

D Is an mxn diagonal matrix.

Example:
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Singular Value Decomposition

/Any m by n matrix A can be written as product of three
matrices A = UDVT

*The columns of the m by m matrix U are mutually
orthogonal unit vectors, as are the columns of the n by
n matrix V

*The m by n matrix D is diagonal, and the diagonal
elements, O; are called the singular values

*Itis the case that 0,>0,2>...0,2>0

A matrix is non-singular if and only all of the singular
values are not zero
O

*The condition number of the matrix is -

*If the condition number is large, then then matrix is
almost singular and is called ill-conditioned



Singular Value Decomposition

*The rank of a square matrix is the number of linearly
Independent rows or columns

*For a square matrix (m = n) the number of non-zero
singular values equals the rank of the matrix

*If A Is a square, non-singular matrix, it's inverse can be
writtenas At =VD U™ where A=UDV'
» The squares of the non zero singular values are the

non-zero eigenvalues of both the n by n matrix A' A
and of the m by m matrix AA'

The columns of U are the eigenvectors of AA'
*The columns of V are the eigenvectors of A A



Least Squares

When m>n for an m-by-n matrix A, AX =D has no solution.

In this case, we look for an approximate solution.
We look for vector X such that

Ax—b’
IS as small as possible.

This is called the least squares solution.



Least Squares

Least squares solution of linear system of equations
AX=D
Normal equation: AT Ax = A"h

A" A is square and symmetric

The Least Square solution X = (A" A) " A'b

makes HAX—bH2 minimal.



Least Square Fitting of a Line

Line equations:

c+dx =y, 1% 0

C+dx, =Y, 1 X, {c}_ Y,

: : td s
y c+dx_ =Yy 1 X Yo |

m = m =

AX=y

The best solution ¢, d is the one that minimizes:

E? =y —AX" = (y, —C—dx)* +---+(y, —c—dx,)’.




Least Square Fitting - Example

Problem: find the line that best fit these three points:
P1=(-1,1), P2=(1,1), P3=(2,3)

Y, Solution:
c—-d=1 1 -1

c+d=1 or 1 1 {C}:

J/ c+2d =3 _1 2_ ]
3 2| ¢cC 5

1
1
3
X AT AX = ATb IS |:2 6:||:d:| — |:6:|

The solutionis C =2,d =4 and best lineis 2+2X =y

\l



Homogeneous System

m linear equations with n unknowns Ax =0
Assume that m >= n-1 and rank(A) = n-1
Trivial solution is x = 0 but there are more

If we have a given solution x, s.t. Ax = 0 then
c * X Is also a solution since A(c* x) =0

Need to add a constraint on X,

« Usually make x a unit vector XTX — 1

Can prove that the solution of Ax =0
satisfying this constraint is the eigenvector
corresponding to the only zero eigenvalue of
that matrix A' A



Homogeneous System

« This solution can be computed using the

eigenvector or SVD routine

* Find the zero eigenvalue (or the eigenvalue almost zero)
« Then the associated eigenvector is the solution x

« And any scalar times x Is also a solution



