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Linear Equations

A system of linear equations, e.g.
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can be written in matrix form:
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or in general:

bAx 



Vectors
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The length or the norm of a vector is
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Vector Arithmetic
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Vector addition

Vector subtraction

Multiplication by scalar
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Dot Product (inner product)
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Linear Independence

• A set of vectors is linear dependant if one of 

the vectors can be expressed as a linear 

combination of the other vectors.

• A set of vectors is linearly independent if 

none of the vectors can be expressed as a 

linear combination of the other vectors.
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Vectors and Points

Two points in a Cartesian coordinate system define a vector

P(x1,y1)

Q(x2,y2)
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A point can also be represented as a vector, defined by the point

and the origin (0,0).
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Note: point and vector are different; vectors do not have positions



Matrix

A matrix is an m×n array of numbers.
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Matrix Arithmetic

Matrix addition
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Multiplication not commutative

BAAB 

Matrix multiplication is not commutative

Example:
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Symmetric Matrix

We say matrix A is symmetric if

AAT 

Example:
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Inverse of matrix

If A is a square matrix, the inverse of A, written A-1 satisfies:

IAA 1 IAA 1

Where I, the identity matrix, is a diagonal matrix with all 1’s

on the diagonal. 
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Trace of Matrix

The trace of a matrix:
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Orthogonal Matrix

A matrix A is orthogonal if

IAAT  1 AATor

Example:
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Matrix Transformation

A matrix-vector multiplication transforms one vector to another
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Coordinate Rotation
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Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if

xAx 

 is called eigenvalue and      is called eigenvector.

The transformation defined by A changes only the

magnitude of the vector x

Example:

x




































1

1
5

5

5

1

1

41

23








































1

2
2

2

4

1

2

41

23
and

5 and 2 are eigenvalues, and 








1

1









1

2
and are eigenvectors.



Properties of Eigen Vectors

• If 1, 2,…, q are distinct eigenvalues of a 

matrix, then the corresponding eigenvectors 

e1,e2,…,eq are linearly independent.

• A real, symmetric matrix has real eigenvalues 

with eigenvectors that can be chosen to be 

orthonormal.



Eigenvectors of real symmetric matrix

• Let A be an n by n real symmetric matrix such 

that all its eigenvales are distinct. Then, there

exists an orthogonal matrix P such that

A = PT D P

where D is a diagonal matrix with diagonal 

entries being the eigenvalues of A and the 

column vectors of P are the eigenvectors of A

• The process of finding the matrix P and D 

given the matrix A is called diagonalization

• Any matrix A which is a real n by n symmetric 

matrix can be diagonalized 



SVD: Singular Value Decomposition

TUDVA 

An mn matrix A can be decomposed into:

U is mm, V is nn, both of them have orthogonal columns:

IUU T 

D is an mn diagonal matrix.
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Singular Value Decomposition

•Any m by n matrix A can be written as product of three 

matrices A = UDVT

•The columns of the m by m matrix U are mutually 

orthogonal unit vectors, as are the columns of the n by 

n matrix V

•The m by n matrix D is diagonal, and the diagonal 

elements,       are called the singular values

•It is the case that 

•A matrix is non-singular if and only all of the singular 

values are not zero

•The condition number of the matrix is

•If the condition number is large, then then matrix is 

almost singular and is called ill-conditioned 
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Singular Value Decomposition

•The rank of a square matrix is the number of linearly 

independent rows or columns

•For a square matrix (m = n) the number of non-zero 

singular values equals the rank of the matrix

•If A is a square, non-singular matrix, it’s inverse can be 

written as                           where 

• The squares of the non zero singular values are the 

non-zero eigenvalues of both the n by n matrix            

and of the m by m matrix

•The columns of U are the eigenvectors of

•The columns of V are the eigenvectors of      
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Least Squares

When m>n for an m-by-n matrix A, bAx  has no solution.

In this case, we look for an approximate solution.

We look for vector      such that x

2
bAx 

is as small as possible.

This is called the least squares solution.



Least Squares

Least squares solution of linear system of equations

bAx 

bAAxA TT 

AAT is square and symmetric
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Normal equation:
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Least Square Fitting of a Line
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Least Square Fitting - Example

x

y

P1=(-1,1), P2=(1,1), P3=(2,3)

Problem: find the line that best fit these three points:

Solution: 
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Homogeneous System

• m linear equations with n unknowns Ax = 0 

• Assume that m >= n-1 and rank(A) = n-1

• Trivial solution is x = 0 but there are more

• If we have a given solution x, s.t. Ax = 0 then 

c * x is also a solution since A(c* x) = 0

• Need to add a constraint on x,
• Usually make x a unit vector

• Can prove that the solution of Ax = 0 

satisfying this constraint is the eigenvector 

corresponding to the only zero eigenvalue of 

that matrix 

1 x xT 

AAT



Homogeneous System

• This solution can be computed using the 

eigenvector or SVD routine
• Find the zero eigenvalue (or the eigenvalue almost zero)

• Then the associated eigenvector is the solution x

• And any scalar times x is also a solution 


