## **Image Formation**

Dr. Gerhard Roth

COMP 4900D Winter 2011

# Image Formation

- Two type of images
  - Intensity— image encodes light intensities (passive sensor)
  - Range (depth)- image encodes shape and distance
    - Created from processing passive images or by an active sensor
- Intensity image is a function of three things
- Optical parameters of the lens
  - Lens type, focal length, field of view, angular apertures
- Photogrammetric (Radiometric) parameters
  - Type, direction and intensity of the illumination
  - Reflectance properties of the viewed surface
  - Characteristics of the image sensor
- Geometric parameters
  - Type of projection, position and orientation of camera

## Elements of an imaging device

Light rays coming from outside world and falling on the photoreceptors in the retina.



### Pinhole Camera



#### **Perspective Projection**



Draughtsman Drawing a Lute, Albrecht Dürer, 1525

## Camera Obscura

illum in tabula per radios Solis, quâm in cœlo contingit: hoc eft, fi in cœlo fuperior pars deliquiũ patiatur, in radiis apparebit inferior deficere, vt ratio exigit optica.



Sic nos exacté Anno . 1544 . Louanii ecliphim Solis obleruauimus, inuenimusq; deficere paulò plus g dex-

#### Camera Obscura, Reinerus Gemma Frisius, 1544

Camera Obscura: Latin 'dark chamber'

## Camera Obscura



Contemporary artist Madison Cawein rented studio space in an old factory building where many of the windows were boarded up or painted over. A random small hole in one of those windows turned one room into a camera obscura.

## Photographic Camera



#### Photographic camera: Joseph Nicéphore Niepce, 1816

## First Photograph



First photograph on record, *la table servie*, obtained by Niepce in 1822.

## Why Lenses?



## Why Lenses?

•Pinhole too big - many directions are averaged, blurring the image

•Pinhole too small diffraction effects blur the image

•Generally, pinhole cameras are *dark*, because a very small set of rays from a particular point hits the screen.



## Camera with Lens - Thin Lens Model

- Lens thickness small compared to focal length
- Basic properties
- 1. Any ray entering the lens parallel to the axis on one side goes through the focal point on the other side.
- 2. Any ray entering the lens from the focal point on one side emerges parallel to the axis on the other side.



## Fundamental Equation of Thin Lenses



Proof uses similar triangles: PSF1~ORF1 and QOFr~spFr and fact that |PS| = |QO| and |sp| = |OR|

## Thin Lenses

- As the point goes to infinity the focal length approaches f, the value for a pin hole camera
- For a lens we can adjust focus ring to move the lens and aperture ring to change aperture
- Both of these adjustments affect what is called the depth of field



Thin lens applet:

http://www.phy.ntnu.edu.tw/java/Lens/lens\_e.html

## Depth of field

• Point is in focus over a given distance which is called the depth of field



## Depth of field



## Depth of field



DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD DEPTH OF FIELD

## Aperture size

- Blurriness of out of focus objects depends on the aperture size
- Larger aperture means smaller depth of field but it also lets in more light



## Varying the aperture





Small apeture = large DOF

Large apeture = small DOF

#### Nice Depth of Field effect



## Field of View (Zoom)



#### From London and Upton

## Field of View (Zoom)



#### **From London and Upton**

### FOV depends of Focal Length



Size of field of view governed by size of the camera retina:

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Smaller FOV = larger Focal Length

## Field of View / Focal Length





#### Large FOV, small f Camera close to car

Small FOV, large f Camera far from the car

Small field of view has wide angle, but more perspective distortion

## **Basic radiometry**

Image Irradiance: the power of light, per unit area and at each point p of the image plane.
Scene (surface) Radiance: the power of the light, per unit area, ideally emitted by each point p of a surface in 3-D space in a given direction.



## Surface Reflectance for Lambertian



Lambertian model: each surface point appears equally bright from all viewing directions. Non specular surface.Specular model: this is not true, looks brighter from some viewing directions (mirrors are very specular)

## Human Eye



#### CCD (Charge-Coupled Device) Cameras

Small <u>solid state cells</u> convert light energy into electrical charge (sensing elements always rectangles and are usually square)

The image plane acts as a digital memory that can be read row by row by a computer



# Image Digitization



<u>Sampling</u> – measuring the value of an image at a finite number of points.

<u>Quantization</u> – representing the measured value at the sampled point, by an integer.

Pixel – picture element, usually in the range [0,255]

## Grayscale Image



A digital image is represented by an integer array E of m-by-n. E(i,j), a pixel, is an integer in the range [0, 255].

## Color Image





### **Geometric Model of Camera**

#### Perspective projection



## Funny things happen...



#### Parallel lines aren't...



Figure by David Forsyth

### Lengths can't be trusted...

