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Geometric Model of Camera
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Parallel lines aren’t…

Figure by David Forsyth



Lengths can’t be trusted...



Coordinate Transformation – 2D
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Homogeneous Coordinates
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Go one dimensional higher:
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is an arbitrary non-zero scalar, usually we choose 1.w
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From homogeneous coordinates to Cartesian coordinates:



2D Transformation with Homogeneous Coordinates

2D coordinate transformation using homogeneous coordinates:
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2D coordinate transformation:



3D Rotation Matrix

Rotate around each coordinate axis:
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Combine the three rotations:

3D rotation matrix has three parameters, 

no matter how it is specified.
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Rotation Matrices

• Both 2d and 3d rotation matrices have two 

characteristics

• They are orthogonal (also called orthonormal)

• Their determinant is 1

• Matrix below is orthogonal but not a rotation 

matrix because the determinate is not 1

IRRT  1 RRT
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Four Coordinate Frames
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Perspective Projection
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These are nonlinear.
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World to Camera Coordinate

TRXX  wc
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Camera Coordinates to Pixel Coordinates
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Camera co-ordinates x, and y are in millimetres

Image co-ordinates  xim, yim, are in pixels

Center of projection ox, oy is in pixels



Put All Together – World to Pixel
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Camera Parameters

• Extrinsic parameters define the location and 

orientation of the camera reference frame 

with respect to a world reference frame
• Depend on the external world, so they are extrinsic

• Intrinsic parameters link pixel co-ordinates in 

the image with the corresponding co-

ordinates in the camera reference frame
• An intrinsic characteristic of the camera

• Image co-ordinates are in pixels

• Camera co-ordinates are in millimetres



Intrinsic Camera Parameters
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K is a 3x3 upper triangular matrix, called the 

Camera Calibration Matrix.

There are five intrinsic parameters:

(a) The pixel sizes in x and y directions            in millimeters/pixel

(b) The focal length       in millimeters

(c) The principal point (ox,oy) in pixels, which is the point

where the optic axis intersects the image plane. 
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Camera intrinsic parameters

• Can write three of these parameters 

differently by letting f/sx = fx and f/sy = fy 
• Then intrinsic parameters are ox,oy,fx,fy

• The units of these parameters are pixels!

• In practice pixels are square (sx = sy) so that 

means fx should equal fy for most cameras
• However, every explicit camera calibration process (using 

calibration objects) introduces some small errors

• These calibration errors make fx not exactly equal to fy

• So in OpenCV the intrinsic camera 

parameters are the four following ox,oy,fx,fy 
• However fx is usually very close to fy and if this is not the 

case then there is a problem



Extrinsic Parameters

[R|T] defines the extrinsic parameters.

The 3x4 matrix M = K[R|T] is called the projection matrix.

It takes 3d points in the world co-ordinate system and maps 

them to the appropriate image co-ordinates in pixels
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Effect of change in focal length

Small f is wide angle, large f is telescopic 



Orthographic Projection

Orthographic Projection
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Orthographic Projection
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Weak Perspective Model

Assume the relative distance between any two points along the

principal axis is much smaller (1/20th at most) than the 

average distance 

Then the camera projection can be approximated as:

X
Z

f

Z

X
fx 

Y
Z

f

Z

Y
fy 

This is the weak-perspective camera model.

Sometimes called scaled orthography.
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Two step projection:
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Weak Perspective



Impact of different projections

• Perspective projections
• Parallel lines in world are not parallel in the image

• Object projection gets smaller with distance from camera

• Weak perspective projection
• Parallel lines in the world are parallel in the image

• Object projection gets smaller with distance from camera

• Orthographic projection
• Parallel lines in the world are parallel in the image

• Object projection is unchanged with distance from camera



Image distortion due to optics

• Radial distortion which depends on radius r, 

distance of each point from center of image

• r2 =  (x- ox)2  +(y- oy)2 

Correction uses three

parameters, k1,k2,k3



Correcting Radial Distortions



Tangential Distortion

• Lens not exactly parallel to the image plane

• Correction uses two parameter p1, p2

• Both types of distortion are removed (image 

is un-distorted) and only then does standard 

calibration matrix K apply to the image

• Camera calibration computes both K and 

these five distortion parameters



How to find the camera parameters

• Can use the EXIF tag for any digital image
• Has focal length f in millimeters but not the pixel size

• But you can get the pixel size from the camera manual

• There are only a finite number of different pixels sizes 

because number of sensing element sizes is limited

• If there is not a lot of image distortion due to optics then this 

approach is sufficient (only linear calibration) 

• Can perform explicit camera calibration
• Put a calibration pattern in front of the camera

• Take a number of different pictures of this pattern

• Now run the calibration algorithm (different types)

• Result is intrinsic camera parameters (linear and non-linear) 

and the extrinsic camera parameters of all the images


