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Image Features

Image features — may appear in two contexts:

« Global properties of the image (average gray level, etc) — global features

« Parts of the image with special properties (line, circle, textured region) —
local features

Here, assume second context for image features:

« Local, meaningful, detectable parts of the image

» Should also be invariant to changes in the image
Detection of image features

« Detection algorithms — produce feature descriptors
« Feature descriptors — often just high dimensional vectors

« Example — line segment descriptor: coordinates of mid-point, length,
orientation



Edges in Images

Definition of edges

« Edges are significant local changes of intensity in an image.
« Edges typically occur on the boundary between two different regions in an image.




Origin of Edges

surface normal discontinuity
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Edges are caused by a variety of factors



What causes intensity changes?

« Geometric events
— object boundary (discontinuity in depth and/or surface color and texture)

— surface boundary (discontinuity in surface orientation and/or surface color
and texture)

« Non-geometric events
— specularity
— shadows (from other objects or from the same object)
— Inter-reflections




An edge Is not a line...




Human visual system computes edges

« Regions of brain called V1 (in red) find edges




Simple and Complex cell

* These cells are local feature detectors

View-tuned cells

Complex compaosite cells {C2)

Composite feature cells (52)
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Result is an “edge like” representation




Edge Pixel Descriptors

Edges are a connected set of edge pixels, each edge pixel has:

Edge normal: unit vector in the direction of maximum intensity change.
« Often called edge gradient (orthogonal to the edge direction)

Edge direction: unit vector to perpendicular to the edge normal.

Edge position or center: the pixel position at which the edge is located.
Edge strength: related to the local image contrast along the normal.
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Applications of Edge Detection

* Produce a line drawing of a scene from an image of that scene.
« Important features can be extracted from the edges of an image (e.g.
corners, lines, curves).

« These features are used by higher-level computer vision algorithms (e.g.,
segmentation, recognition, retrieval).
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Three Steps of Edge Detection

* Noise smoothing

« Suppress the noise without affecting the true edges
« Often blur the image with Gaussian kernel of a given sigma

« Edge enhancement

« Design a filter responding to edges, so that the output of the
filter is large at edge pixels, so edges are localized as
maxima in the filters response

« Edge localization

« Decide which local maxima in the filters output are edges,
and which are caused by noise. This usually involves:
» Thinning the edges to 1 pixel width (non-maxima suppression)

» Establish the minimum value to declare a local maxima as a
true edge (thresholding)



Images as Functions

| = f(X)



Images as Functions
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Edge Detection using Derivatives

Calculus describes changes of continuous functions using
derivatives.

An image is a 2D function, so operators finding edges are
based on partial derivatives.

Points which lie on an edge can be detected by either:
— detecting local maxima or minima of the first derivative
— detecting the zero-crossing of the second derivative

Here we assume that there is no smoothing in the edge detection process
» We are only looking at enhancement and localization



Edge Detection Using Derivatives
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Finite Difference Method

We approximate derivatives with differences.

Derivative for 1-D signals:

Continuous function

£ (x) = lim

h—0

f(x+h) = f(x)

Discrete approximation
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Finite Difference and Convolution

Finite difference on a 1-D image

F'() = T(X,) = T(%)

IS equivalent to convolving with kernel: [_]_ 1]



Finite Difference — 2D

Continuous function:
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Image Derivatives
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Image Derivatives
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